Skip to main content

Glucosinolates: Novel Sources and Biological Potential

  • Reference work entry
  • First Online:
Glucosinolates

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

In this chapter, some of the most recent information on glucosinolate-containing plant families is presented. Glucosinolates (GLs) are structurally homogenous secondary metabolites present in the Brassicaceae, Capparidaceae, Moringaceae, and Resedaceae families, as well as in other less-studied families of the order Brassicales. Based on the GL contents, new subdivisions of GL-containing plants are suggested. It was shown that only a limited number of the reported ca 130 GLs are available in fair quantities, acceptable for further investigation of the biological potential. In recent years, degradation products of a limited number of GLs (e.g., gluconasturtiin, glucoraphanin, glucomoringin), mostly isothiocyanates, have been found to possess real pharmacological activity. Some of the biological aspects of GLs and isothiocyanates which have been in recent focus are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

Ala:

Alanine

APG:

Angiosperm phylogeny group classification

ARE:

Antioxidant response element

BCAA:

Branched-chain amino acids

DS-GL:

Desulfo-glucosinolate

ESI FTICR MS:

Electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry

GC-MS:

Gas chromatography–mass spectrometry

GL:

Glucosinolate

GSH:

Glutathione

HPLC:

High-performance liquid chromatography

HPLC-ESI-MS:

High-performance liquid chromatography–electrospray mass spectrometry

Ile:

Isoleucine

ITC:

Isothiocyanate

Leu:

Leucine

Met:

Methionine

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

Phe:

Phenylalanine

Rha:

Rhamnose

SeCys:

Selenocysteine

SeMet:

Selenomethionine

Trp:

Tryptophan

Tyr:

Tyrosine

Val:

Valine

References

  1. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51. doi:10.1016/S0031-9422(00)00316-2

    Article  CAS  Google Scholar 

  2. Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67(11):1053–1067. doi:10.1016/j.phytochem.2006.02.024

    Article  CAS  Google Scholar 

  3. Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2(4):310–325. doi:10.1039/B9AY00280D

    Article  CAS  Google Scholar 

  4. Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45. doi:10.1016/j.phytochem.2012.02.005

    Article  CAS  Google Scholar 

  5. Bennett RN, Mellon FA, Kroon PA (2004) Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J Agric Food Chem 52(3):428–438. doi:10.1021/jf030530p

    Article  CAS  Google Scholar 

  6. Rollin P, Tatibouët A (2011) Glucosinolates: the synthetic approach. C R Chim 14(2–3):194–210. doi:10.1016/j.crci.2010.05.002

    Article  CAS  Google Scholar 

  7. Avato P, Argentieri MP (2015) Brassicaceae: a rich source of health improving phytochemicals. Phytochem Rev 2015, 14(6):1019–1033. doi:10.1007/s11101-015-9414-4

  8. Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci 15(5):283–290. doi:10.1016/j.tplants.2010.02.005

    Article  CAS  Google Scholar 

  9. Wathelet J-P, Iori R, Leoni O, Rollin P, Quinsac A, Palmieri S (2004) Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria 3(3):257–266

    Google Scholar 

  10. Songsak T, Lockwood GB (2002) Glucosinolates of seven medicinal plants from Thailand. Fitoterapia 73(3):209–216. doi:10.1016/S0367-326X(02)00061-8

    Article  CAS  Google Scholar 

  11. Kiddle G, Bennett RN, Botting NP, Davidson NE, Robertson AAB, Wallsgrove RM (2001) High-performance liquid chromatographic separation of natural and synthetic desulphoglucosinolates and their chemical vadation by UV, NMR and chemical ionisation-MS methods. Phytochem Anal 12(4):226–242. doi:10.1002/pca.589

    Article  CAS  Google Scholar 

  12. Bianco G, Agerbirk N, Losito I, Cataldi TRI (2014) Acylated glucosinolates with diverse acyl groups investigated by high resolution mass spectrometry and infrared multiphoton dissociation. Phytochemistry 100:92–102. doi:10.1016/j.phytochem.2014.01.010

    Article  CAS  Google Scholar 

  13. Bianco G, Lelario F, Battista FG, Bufo SA, Cataldi TRI (2012) Identification of glucosinolates in capers by LC-ESI-hybrid linear ion trap with fourier transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR MS) and infrared multiphoton dissociation. J Mass Spectrom 47(9):1160–1169. doi:10.1002/jms.2996

    Article  CAS  Google Scholar 

  14. Bertelsen F, Gissel-Nielsen G, Kjær A, Skrydstrup T (1988) Selenoglucosinolates in nature: fact or myth? Phytochemistry 27(12):3743–3749. doi:10.1016/0031-9422(88)83010-3

    Google Scholar 

  15. Tian M, Xu X, Liu Y, Xie L, Pan S (2016) Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem 190:374–380. doi:10.1016/j.foodchem.2015.05.098

    Article  CAS  Google Scholar 

  16. Matich AJ, McKenzie MJ, Lill RE, McGhie TK, Chen RKY, Rowan DD (2015) Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate. J Agric Food Chem 63(7):1896–1905. doi:10.1021/jf505963c

    Article  CAS  Google Scholar 

  17. Avila FW, Yang Y, Faquin V, Ramos SJ, Guilherme LRG, Thannhauser TW, Li L (2014) Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 165:578–586. doi:10.1016/j.foodchem.2014.05.134

    Article  CAS  Google Scholar 

  18. Matich AJ, Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK, Chen RKY, Rowan DD (2012) Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–152. doi:10.1016/j.phytochem.2011.11.021

    Article  CAS  Google Scholar 

  19. Johnson SD, Griffiths ME, Peter CI, Lawes MJ (2009) Pollinators, “mustard oil” volatiles, and fruit production in flowers of the dioecious tree Drypetes natalensis (Putranjivaceae). Am J Bot 96(11):2080–2086. doi:10.3732/ajb.0800362

    Article  CAS  Google Scholar 

  20. Hu Y, Liang H, Yuan Q, Hong Y (2010) Determination of glucosinolates in 19 Chinese medicinal plants with spectrophotometry and high-pressure liquid chromatography. Nat Prod Res 24(13):1195–1205. doi:10.1080/14786410902975681

    Article  CAS  Google Scholar 

  21. Agnaniet H, Mounzeo H, Menut C, Bessiere JM, Criton M (2003) The essential oils of Rinorea subintegrifolia O. Ktze and Drypetes gossweileri S. Moore occurring in Gabon. Flavour Fragance J 18(3):207–210. doi:10.1002/ffj.1185

    Article  CAS  Google Scholar 

  22. Stevens PF (2001) Angiosperm Phylogeny Website. Version 13, September 2013. http://www.mobot.org/MOBOT/research/APweb/

  23. McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nutr 90(3):687–697. doi:10.1079/BJN2003917

  24. Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, de Schrijver R, Hansen M, Gerhäuser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(Suppl 2):219–265. doi:10.1002/mnfr.200800065

  25. Bennett RN, Mellon FA, Rosa EAS, Perkins L, Kroon PA (2004) Profiling glucosinolates, flavonoids, alkaloids, and other secondary metabolites in tissues of Azima tetracantha L. (Salvadoraceae). J Agric Food Chem 52(19):5856–5862. doi:10.1021/jf040091+

    Article  CAS  Google Scholar 

  26. Berhow MA, Polat U, Glinski JA, Glensk M, Vaughn SF, Isbell T, Ayala-Diaz I, Marek L, Gardner C (2013) Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Ind Crops Prod 43(2013):119–125. doi:10.1016/j.indcrop.2012.07.018

    Article  CAS  Google Scholar 

  27. Montaut S, Zhang W-D, Nuzillard J-M, De Nicola GR, Rollin P (2015) Glucosinolate diversity in Bretschneidera sinensis of Chinese origin. J Nat Prod. doi:10.1021/acs.jnatprod.5b00338

    Google Scholar 

  28. Mithen R, Bennett R, Marquez J (2010) Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71(17–18):2074–2086. doi:10.1016/j.phytochem.2010.09.017

    Article  CAS  Google Scholar 

  29. Al-Shehbaz Ihsan A (2001) Brassicaceae (Mustard Family). In: eLS. John Wiley & Sons Ltd, Chichester doi:10.1002/9780470015902.a0003690.pub2

  30. De Nicola G, Rollin P, Mazzon E, Iori R (2014) Novel gram-scale production of enantiopure R-sulforaphane from Tuscan black kale seeds. Molecules 19(6):6975. doi:10.3390/molecules19066975

    Article  CAS  Google Scholar 

  31. Abdulah R, Faried A, Kobayashi K, Yamazaki C, Suradji E, Ito K, Suzuki K, Murakami M, Kuwano H, Koyama H (2009) Selenium enrichment of broccoli sprout extract increases chemosensitivity and apoptosis of LNCaP prostate cancer cells. BMC Cancer 9(1):414. doi:10.1186/1471-2407-9-414

    Article  CAS  Google Scholar 

  32. Agneta R, Möllers C, De Maria S, Rivelli AR (2014) Evaluation of root yield traits and glucosinolate concentration of different Armoracia rusticana accessions in Basilicata region (southern Italy). Sci Hortic 170:249–255. doi:10.1016/j.scienta.2014.03.025

    Article  CAS  Google Scholar 

  33. Agerbirk N, Warwick SI, Hansen PR, Hansen PR, Olsen CE (2008) Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry 69(17):2937–2949. doi:10.1016/j.phytochem.2008.08.014

  34. Barillari J, Iori R, Rollin P, Hennion F (2005) Glucosinolates in the subantarctic crucifer Kerguelen cabbage (Pringlea antiscorbutica). J Nat Prod 68(2):234–236. doi:10.1021/np049822q

    Article  CAS  Google Scholar 

  35. Blažević I, De Nicola GR, Montaut S, Rollin P (2013) Glucosinolates in two endemic plants of the Aurinia genus and their chemotaxonomic significance. Nat Prod Commun 8(10):1463–1466

    Google Scholar 

  36. De Nicola GR, Blažević I, Montaut S, Rollin P, Mastelić J, Iori R, Tatibouët A (2011) Glucosinolate distribution in aerial parts of Degenia velebitica. Chem Biodivers 8(11):2090–2096. doi:10.1002/cbdv.201100114

    Article  CAS  Google Scholar 

  37. Blažević I, Radonić A, Skočibušić M, De Nicola GR, Montaut S, Iori R, Rollin P, Mastelić J, Zekić M, Maravić A (2011) Glucosinolate profiling and antimicrobial screening of Aurinia leucadea (Brassicaceae). Chem Biodivers 8(12):2310–2321. doi:10.1002/cbdv.201100169

  38. Blažević I, De Nicola GR, Montaut S, Rollin P, Ruśčić M (2015) Glucosinolate profile of Fibigia triquetra (DC.) Boiss. Ex Prantl, Croatian stenoendemic plant of the brassicaceae family. Croat Chem Acta 88(3):307–314. doi:10.5562/cca2687

  39. Horvatić B (2015) Degenia velebitica (Degen) Hayek. Flora Croatica baza podataka. On-Line http://hirc.botanic.hr/fcd. Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu, Zagreb

  40. Agerbirk N, Olsen CE, Cipollini D, Ørgaard M, Linde-Laursen I, Chew FS (2014) Specific glucosinolate analysis reveals variable levels of epimeric glucobarbarins, dietary precursors of 5-phenyloxazolidine-2-thiones, in watercress types with contrasting chromosome numbers. J Agric Food Chem 62(39):9586–9596. doi:10.1021/jf5032795

    Article  CAS  Google Scholar 

  41. Blazevic I, Montaut S, De Nicola GR, Rollin P (2015) Long-chain glucosinolates from Arabis turrita: enzymatic and non-enzymatic degradations. Nat Prod Commun 10(6):1043–1046

    Google Scholar 

  42. Griffiths DW, Deighton N, Birch AE, Patrian B, Baur R, Städler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57(5):693–700. doi:10.1016/S0031-9422(01)00138-8

    Article  CAS  Google Scholar 

  43. Radwan HM, El-Missiry MM, Al-Said WM, Ismael AS, Abdel Shafeek KA, Seif-El-Nasr MM (2007) Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci 2(2):127–132

    CAS  Google Scholar 

  44. Agerbirk N, Olsen CE, Chew FS, Ørgaard M (2010) Variable glucosinolate profiles of Cardamine pratensis (Brassicaceae) with equal chromosome numbers. J Agric Food Chem 58(8):4693–4700. doi:10.1021/jf904362m

    Article  CAS  Google Scholar 

  45. O’Hare TJ, Wong LS, Irving DE (2005) Asian and Western horticultural species of the Brassica family with anti-cancer potential. In: International Society for Horticultural Science (ISHS), Leuven, pp 457–462. doi:10.17660/ActaHortic.2005.694.75

  46. de Graaf RM, Krosse S, Swolfs AEM, te Brinke E, Prill N, Leimu R, van Galen PM, Wang Y, Aarts MGM, van Dam NM (2015) Isolation and identification of 4-α-rhamnosyloxy benzyl glucosinolate in Noccaea caerulescens showing intraspecific variation. Phytochemistry 110:166–171. doi:10.1016/j.phytochem.2014.11.016

    Article  CAS  Google Scholar 

  47. Agerbirk N, Olsen CE (2011) Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Phytochemistry 72(7):610–623. doi:10.1016/j.phytochem.2011.01.034

  48. Barillari J, Gueyrard D, Rollin P, Iori R (2001) Barbarea verna as a source of 2-phenylethyl glucosinolate, precursor of cancer chemopreventive phenylethyl isothiocyanate. Fitoterapia 72(7):760–764. doi:10.1016/S0367-326X(01)00320-3

    Article  CAS  Google Scholar 

  49. Radulović N, Zlatković B, Skropeta D, Palić R (2008) Chemotaxonomy of the peppergrass Lepidium coronopus (L.) Al-Shehbaz (syn. Coronopus squamatus) based on its volatile glucosinolate autolysis products. Biochem Syst Ecol 36(10):807–811. doi:10.1016/j.bse.2008.07.006

    Article  CAS  Google Scholar 

  50. Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30(8):2623–2638. doi:10.1016/0031-9422(91)85112-D

    Article  CAS  Google Scholar 

  51. Kjær A, Wagnières M (1971) 3,4,5-Trimethoxybenzylglucosinolate: a constituent of Lepidium sordidum. Phytochemistry 10(9):2195–2198. doi:10.1016/S0031-9422(00)97218-2

  52. Kjær A, Schuster A, Park RJ (1971) Glucosinolates in Lepidium species from Queensland. Phytochemistry 10(2):455–457. doi:10.1016/S0031-9422(00)94076-7

  53. Galletti S, Bagatta M, Branca F, Argento S, De Nicola GR, Cianchetta S, Iori R, Ninfali P (2014) Isatis canescens is a rich source of glucobrassicin and other health-promoting compounds. J Sci Food Agric 95(1):158–164. doi:10.1002/jsfa.6697

    Article  CAS  Google Scholar 

  54. Agerbirk N, Petersen BL, Olsen CE, Halkier BA, Nielsen JK (2001) 1,4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica. J Agric Food Chem 49(3):1502–1507. doi:10.1021/jf001256r

  55. Mohn T, Cutting B, Ernst B, Hamburger M (2007) Extraction and analysis of intact glucosinolates-A validated pressurized liquid extraction/liquid chromatography-mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants. J Chromatogr A 1166(1–2):142–151. doi:10.1016/j.chroma.2007.08.028

    Article  CAS  Google Scholar 

  56. Fréchard A, Fabre N, Péan C, Montaut S, Fauvel M-T, Rollin P, Fourasté I (2001) Novel indole-type glucosinolates from woad (Isatis tinctoria L.). Tetrahedron Lett 42(51):9015–9017. doi:10.1016/S0040-4039(01)02015-9

    Article  Google Scholar 

  57. Mohn T, Hamburger M (2008) Glucosinolate pattern in Isatis tinctoria and I. indigotica seeds. Planta Med 74(8):885–888. doi:10.1055/s-2008-1074554

    Article  CAS  Google Scholar 

  58. Agerbirk N, Olsen CE, Heimes C, Christensen S, Bak S, Hauser TP (2015) Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. Phytochemistry 115:130–142. doi:10.1016/j.phytochem.2014.09.003

    Article  CAS  Google Scholar 

  59. Survay NS, Kumar B, Upadhyaya CP, Ko E, Lee C, Choi JN, Yoon D-Y, Jung Y-S, Park SW (2010) Characterization of a cinnamoyl derivative from broccoli (Brassica oleracea L. var. italica) florets. Fitoterapia 81(8):1062–1066. doi:10.1016/j.fitote.2010.06.030

    Article  CAS  Google Scholar 

  60. Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G, Gershenzon J, Last RL, Jander G (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J 51(6):1062–1076. doi:10.1111/j.1365-313X.2007.03205.x

    Article  CAS  Google Scholar 

  61. Lee S, Kaminaga Y, Cooper B, Pichersky E, Dudareva N, Chapple C (2012) Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis. Plant J 72(3):411–422. doi:10.1111/j.1365-313X.2012.05096.x

  62. Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59(6):663–671. doi:10.1016/S0031-9422(02)00014-6

    Article  CAS  Google Scholar 

  63. Gull T, Anwar F, Sultana B, Alcayde MAC, Nouman W (2015) Capparis species: a potential source of bioactives and high-value components: a review. Ind Crop Prod 67:81–96. doi:10.1016/j.indcrop.2014.12.059

  64. Hall JC (2008) Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data. Botany 86(7):682–696. doi:10.1139/B08-026

  65. Matthäus B, Özcan M (2005) Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa var. spinosa and Capparis ovata Desf. var. canescens (Coss.) Heywood. J Agric Food Chem 53(18):7136–7141. doi:10.1021/jf051019u

  66. Argentieri M, Macchia F, Papadia P, Fanizzi FP, Avato P (2012) Bioactive compounds from Capparis spinosa subsp. rupestris. Ind Crop Prod 36(1):65–69. doi:10.1016/j.indcrop.2011.08.007

  67. Bor M, Ozkur O, Ozdemir F, Turkan I (2009) Identification and characterization of the glucosinolate–myrosinase system in caper (Capparis ovata Desf.). Plant Mol Biol Rep 27(4):518–525. doi:10.1007/s11105-009-0117-0

    Article  CAS  Google Scholar 

  68. Gueye MT, Seck D, Diallo A, Trisman D, Fischer C, Barthelemy J-P, Wathelet J-P, Lognay G (2013) Development of a performant method for glucocapparin determination in Boscia senegalensis Lam Ex. Poir.: a study of the variability. Am J Anal Chem 4(2):7. doi:10.4236/ajac.2013.42014

    Article  CAS  Google Scholar 

  69. Antunes Carvalho F, Renner SS (2012) A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogenet Evol 65(1):46–53. doi:10.1016/j.ympev.2012.05.019

    Article  Google Scholar 

  70. Rodman J, Karol K, PRice R, Conti E, Systma K (1994) Nucleotide sequences of rbcL confirm the capparalean affinity of the Australian endemis Gyrostemonaceae. Aust Syst Bot 7(1):57–69. doi:10.1071/SB9940057

    Article  Google Scholar 

  71. Rodman J, Price RA, Karol K, Conti E, Systma KJ, Palmer JD (1993) Nucleotide sequences of the rbcL gene indicate Missouri of mustard oil plants. Ann Missouri Bot Gard 80(3):686–699. doi:10.2307/2399854

  72. Rodman JE, Karol KG, Price RA, Sytsma KJ (1996) Molecules, morphology, and Dahlgren’s expanded order capparales. Syst Bot 21(3):289–307

    Article  Google Scholar 

  73. Rodman J, Soltis P, Soltis D, Sytsma K, Karol K (1998) Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85(7):997

    Article  CAS  Google Scholar 

  74. Verkerk R, Dekker M (2008) Glucosinolates. In: Bioactive compounds in foods, Gilbert J, Senyuva HZ (eds). John Wiley & Sons Ltd, Chichester

    Google Scholar 

  75. Frisch T, Motawia MS, Olsen CE, Agerbirk N, Møller BL, Bjarnholt N (2015) Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata. Front Plant Sci 6:1–16. doi:10.3389/fpls.2015.00926

  76. Shahzad A, Shaheen A, Kozgar MI, Sahai A, Sharma S (2013) Phytoactive Compounds from In Vitro Derived Tissues. In: Recent trends in biotechnology and therapeutic applications of medicinal plants, Shahid M, Shahzad A, Malik A, Sahai A (eds). Springer, New York, doi:10.1007/978-94-007-6603-7

  77. Williams DJ, Pun S, Chaliha M, Scheelings P, O’Hare T (2013) An unusual combination in papaya (Carica papaya): the good (glucosinolates) and the bad (cyanogenic glycosides). J Food Compos Anal 29(1):82–86. doi:10.1016/j.jfca.2012.06.007

    Article  CAS  Google Scholar 

  78. Patchell MJ, Roalson EH, Hall JC (2014) Resolved phylogeny of Cleomaceae based on all three genomes. Taxon 63(2):315–328. doi:10.12705/632.17

    Article  Google Scholar 

  79. Blua MJ, Hanscom Z 3rd, Collier BD (1988) Glucocapparin variability among four populations of Isomeris arborea Nutt. J Chem Ecol 14(2):623–633. doi:10.1007/BF01013911

  80. Lazzeri L, Manici LM, Leoni O, Palmieri S (1998) Soil-borne phytopathogenic fungi control by Cleome hassleriana green manure. In: International Society for Horticultural Science (ISHS), Leuven, pp 53–62. doi:10.17660/ActaHortic.1998.513.5

  81. Velasco P, Slabaugh MB, Reed R, Kling J, Kishore VK, Stevens JF, Knapp SJ (2011) Glucosinolates in the new oilseed crop meadowfoam: natural variation in Section Inflexae of Limnanthes, a new glucosinolate in L. floccosa, and QTL analysis in L. alba. Plant Breed 130(3):352–359. doi:10.1111/j.1439-0523.2010.01830.x

  82. Stevens JF, Reed RL, Alber S, Pritchett L, Machado S (2009) Herbicidal activity of glucosinolate degradation products in fermented meadowfoam (Limnanthes alba) seed meal. J Agric Food Chem 57(5):1821–1826. doi:10.1021/jf8033732

    Article  CAS  Google Scholar 

  83. Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish Tree) and Moringa stenopetala L. J Agric Food Chem 51(12):3546–3553. doi:10.1021/jf0211480

    Article  CAS  Google Scholar 

  84. Maldini M, Maksoud SA, Natella F, Montoro P, Petretto GL, Foddai M, De Nicola GR, Chessa M, Pintore G (2014) Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry. J Mass Spectrom 49(9):900–910. doi:10.1002/jms.3437

  85. Ronse De Craene LP (2002) Floral development and anatomy of Pentadiplandra (Pentadiplandraceae): a key genus in the identification of floral morphological trends in the core Brassicales. Can J Bot 80(5):443–459. doi:10.1139/b02-021

  86. Hall JC, Iltis HH, Sytsma KJ (2004) Molecular phylogenetics of core brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot 29(3):654–669. doi:10.1600/0363644041744491

  87. De Nicola GR, Nyegue M, Montaut S, Iori R, Menut C, Tatibouët A, Rollin P, Ndoyé C, Zollo P-HA (2012) Profile and quantification of glucosinolates in Pentadiplandra brazzeana Baillon. Phytochemistry 73(1):51–56. doi:10.1016/j.phytochem.2011.09.006

    Article  CAS  Google Scholar 

  88. Martín-Bravo S, Jiménez-Mejías P (2013) Reseda minoica (Resedaceae), a New species from the Eastern Mediterranean Region. Ann Bot Fenn 50(1–2):55–60. doi:10.5735/085.050.0108

    Article  Google Scholar 

  89. Schraudolf H, Bäuerle R (1986) 1N-acetyl-S-indolylmethylglucosinolate in Seedlings of Tovaria pendula Ruiz et Pay. Z Naturforsch C 41(5–6):526–528. doi:10.1515/znc-1986-5-605

  90. MacLeod AJ, Panchasara SD (1983) Volatile aroma components, particularly glucosinolate products, of cooked edible mushroom (Agaricus bisporus) and cooked dried mushroom. Phytochemistry 22(3):705–709. doi:10.1016/S0031-9422(00)86966-6

    Article  CAS  Google Scholar 

  91. Larsen LM, Olsen O, Sørensen H (1983) Failure to detect glucosinolates in Plantago species. Phytochemistry 22(10):2314–2315. doi:10.1016/S0031-9422(00)80170-3

  92. Bjerg B, Fenwick GR, Spinks A, Sørensen H (1987) Failure to detect glucosinolates in cocoa. Phytochemistry 26(2):567–568. doi:10.1016/S0031-9422(00)81456-9

    Article  CAS  Google Scholar 

  93. Hanschen FS, Lamy E, Schreiner M, Rohn S (2014) Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Int Ed 53(43):11430–11450. doi:10.1002/anie.201402639

    Article  CAS  Google Scholar 

  94. Kissen R, Rossiter J, Bones A (2009) The “mustard oil bomb”: not so easy to assemble?! localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8(1):69–86. doi:10.1007/s11101-008-9109-1

    Article  CAS  Google Scholar 

  95. Jones AME, Winge P, Bones AM, Cole R, Rossiter JT (2002) Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem Mol Biol 32(3):275–284. doi:10.1016/S0965-1748(01)00088-1

    Article  CAS  Google Scholar 

  96. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 10(5):501–508

    CAS  Google Scholar 

  97. Krul C, Humblot C, Philippe C, Vermeulen M, van Nuenen M, Havenaar R, Rabot S (2002) Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23(6):1009–1016. doi:10.1093/carcin/23.6.1009

    Article  CAS  Google Scholar 

  98. Saha S, Hollands W, Teucher B, Needs PW, Narbad A, Ortori CA, Barrett DA, Rossiter JT, Mithen RF, Kroon PA (2012) Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Mol Nutr Food Res 56(12):1906–1916. doi:10.1002/mnfr.201200225

    Article  CAS  Google Scholar 

  99. Palop ML, Smiths JP, ten Brink B (1995) Degradation of sinigrin by Lactobacillus agilis strain R16. Int J Food Microbiol 26(2):219–229. doi:10.1016/0168-1605(95)00123-2

    Article  CAS  Google Scholar 

  100. Nugon-Baudon L, Rabot S, Wal J-M, Szylit O (1990) Interactions of the intestinal microflora with glucosinolates in rapeseed meal toxicity: first evidence of an intestinal Lactobacillus possessing a myrosinase-like activity in vivo. J Sci Food Agric 52(4):547–559. doi:10.1002/jsfa.2740520412

  101. Elfoul L, Rabot S, Khelifa N, Quinsac A, Duguay A, Rimbault A (2001) Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol Lett 197(1):99–103. doi:10.1111/j.1574-6968.2001.tb10589.x

    Article  CAS  Google Scholar 

  102. Brabban AD, Edwards C (1994) Isolation of glucosinolate degrading microorganisms and their potential for reducing the glucosinolate content of rapemeal. FEMS Microbiol Lett 119(1–2):83–88. doi:http://dx.doi.org/10.1111/j.1574-6968.1994.tb06871.x

  103. Cheng DL, Hashimoto K, Uda Y (2004) In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem Toxicol 42(3):351–357. doi:10.1016/j.fct.2003.09.008

  104. Tani N, Ohtsuru M, Hata T (1974) Isolation of myrosinase producing microorganism. Agric Biol Chem 38(9):1617–1622. doi:10.1080/00021369.1974.10861387

    CAS  Google Scholar 

  105. Tani N, Ohtsuru M, Hata T (1974) Purification and general characteristics of bacterial myrosinase produced by Enterobacter cloacae. Agric Biol Chem 38(9):1623–1630. doi:10.1080/00021369.1974.10861388

    CAS  Google Scholar 

  106. Luang-In V, Narbad A, Nueno-Palop C, Mithen R, Bennett M, Rossiter JT (2014) The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol Nutr Food Res 58(4):875–883. doi:10.1002/mnfr.201300377

    Article  CAS  Google Scholar 

  107. Luang-In V, Narbad A, Cebeci F, Bennett M, Rossiter J (2015) Identification of proteins possibly involved in glucosinolate metabolism in L. agilis R16 and E. coli VL8. Protein J 34(2):135–146. doi:10.1007/s10930-015-9607-0

    Article  CAS  Google Scholar 

  108. Mullaney JA, Kelly WJ, McGhie TK, Ansell J, Heyes JA (2013) Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae. J Agric Food Chem 61(12):3039–3046. doi:10.1021/jf305442j

    Article  CAS  Google Scholar 

  109. Combourieu B, Elfoul L, Delort AM, Rabot S (2001) Identification of new derivatives of sinigrin and glucotropaeolin produced by the human digestive microflora using 1H NMR spectroscopy analysis of in vitro incubations. Drug Metab Dispos 29(11):1440–1445

    CAS  Google Scholar 

  110. Olaimat AN, Sobhi B, Holley RA (2014) Influence of temperature, glucose, and iron on sinigrin degradation by Salmonella and Listeria monocytogenes. J Food Prot 77(12):2133–2138. doi:10.4315/0362-028X.JFP-14-210

    Article  CAS  Google Scholar 

  111. Blažević I, Radonić A, Mastelić J, Zekić M, Skočibušić M, Maravić A (2010) Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chem 121(4):1020–1028. doi:10.1016/j.foodchem.2010.01.041

    Article  CAS  Google Scholar 

  112. Blažević I, Radonić A, Mastelić J, Zekić M, Skočibušić M, Maravić A (2010) Hedge mustard (Sisymbrium officinale): chemical diversity of volatiles and their antimicrobial activity. Chem Biodivers 7(8):2023–2034. doi:10.1002/cbdv.200900234

    Article  CAS  Google Scholar 

  113. Mastelić J, Blažević I, Kosalec I (2010) Chemical composition and antimicrobial activity of volatiles from Degenia velebitica, a European stenoendemic plant of the Brassicaceae family. Chem Biodivers 7(11):2755–2765. doi:10.1002/cbdv.201000053

    Article  CAS  Google Scholar 

  114. Radonić A, Blažević I, Mastelić J, Zekić M, Skočibušić M, Maravić A (2011) Phytochemical analysis and antimicrobial activity of Cardaria draba (L.) desv. volatiles. Chem Biodivers 8(6):1170–1181. doi:10.1002/cbdv.201000370

    Article  CAS  Google Scholar 

  115. Dufour V, Stahl M, Baysse C (2015) The antibacterial properties of isothiocyanates. Microbiology 161(2):229–243. doi:10.1099/mic.0.082362-0

    Article  CAS  Google Scholar 

  116. Haristoy X, Fahey JW, Scholtus I, Lozniewski A (2005) Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori. Planta Med 71(4):326–330. doi:10.1055/s-2005-864098

    Article  CAS  Google Scholar 

  117. Fahey JW, Stephenson KK, Wade KL, Talalay P (2013) Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates. Biochem Biophys Res Commun 435(1):1–7. doi:10.1016/j.bbrc.2013.03.126

    Article  CAS  Google Scholar 

  118. Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18(6):337–347. doi:10.1016/j.molmed.2012.04.003

    Article  CAS  Google Scholar 

  119. Angelino D, Dosz EB, Sun J, Hoeflinger JL, Van Tassell ML, Chen P, Harnly JM, Miller MJ, Jeffery EH (2015) Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front Plant Sci 6:1–6. doi:10.3389/fpls.2015.00831

  120. Podhradsky D, Drobnica L, Kristian P (1979) Reactions of cysteine, its derivatives, glutathione coenzyme A, and dihydrolipoic acid with isothiocyanates. Experientia 35(2):154–155. doi:10.1007/BF01920581

    Article  CAS  Google Scholar 

  121. Steinbrecher A, Rohrmann S, Timofeeva M, Risch A, Jansen E, Linseisen J (2010) Dietary glucosinolate intake, polymorphisms in selected biotransformation enzymes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 19(1):135–143. doi:10.1158/1055-9965.epi-09-0660

    Article  CAS  Google Scholar 

  122. Fofaria NM, Ranjan A, Kim S-H, Srivastava SK (2015) Chapter five – Mechanisms of the anticancer effects of isothiocyanates. In: The enzymes, Mechanism of the anticancer effect of phytochemicals, Bathaie SZ, Fuyuhiko T (eds) Elsevier Inc., Academic press, London, 37:111–137. doi:10.1016/bs.enz.2015.06.001

  123. Valgimigli L, Iori R (2009) Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen 50(3):222–237. doi:10.1002/em.20468

    Article  CAS  Google Scholar 

  124. Giacoppo S, Galuppo M, Montaut S, Iori R, Rollin P, Bramanti P, Mazzon E (2015) An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 106:12–21. doi:10.1016/j.fitote.2015.08.001

    Article  CAS  Google Scholar 

  125. Steinbrecher A, Linseisen J (2009) Dietary intake of individual glucosinolates in participants of the EPIC-Heidelberg Cohort Study. Ann Nutr Metab 54(2):87–96. doi:10.1159/000209266

    Article  CAS  Google Scholar 

  126. Clarke JD, Hsu A, Williams DE, Dashwood RH, Stevens JF, Ho E (2011) Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice. Pharm Res 28(12):3171–3179. doi:10.1007/s11095-011-0500-z

    Article  CAS  Google Scholar 

  127. Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14(12):2347–2360. doi:10.1089/ars.2010.3731

    Article  CAS  Google Scholar 

  128. Xiang J, Alesi GN, Zhou N, Keep RF (2012) Protective effects of isothiocyanates on blood-CSF barrier disruption induced by oxidative stress. Am J Physiol Regul Integr Comp Physiol 303(1):R1–R7. doi:10.1152/ajpregu.00518.2011

    Article  CAS  Google Scholar 

  129. Tarozzi A, Morroni F, Bolondi C, Sita G, Hrelia P, Djemil A, Cantelli-Forti G (2012) Neuroprotective effects of erucin against 6-hydroxydopamine-induced oxidative damage in a dopaminergic-like neuroblastoma cell line. Int J Mol Sci 13(9):10899–10910. doi:10.3390/ijms130910899

    Article  CAS  Google Scholar 

  130. Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, Hrelia P (2013) Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev, pp 1–10. doi:10.1155/2013/415078

  131. Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:467–471. doi:10.1136/bmj.b158

    Google Scholar 

  132. World Health Organization (2016) Fact sheet N°362 - Dementia. Retrieved on May 25th 2016 from http://www.who.int/mediacentre/factsheets/fs362/en/

  133. Blazevic I, Burcul F, Ruscic M, Mastelic J (2013) Glucosinolates, volatile constituents, and acetylcholinesterase inhibitory activity of Alyssoides utriculata. Chem Nat Comd 49(2):374–378. doi:10.1007/s10600-013-0613-1

    Article  CAS  Google Scholar 

  134. Burčul F, Mekinić IG, Đulović A, Kardum I, Brekalo J, Stojanov D, Ruščić M, Nicola GRD, Montaut S, Rollin P, Blažević I (2015) Isothiocyanates as acetylcholinesterase inhibitors and their sources from Croatian wild-growing plants. In: Ukić Š, Bolanča T (eds) 24. Croatian meeting of chemical engineers. Croatian Socieiety of Chemical Engineers and Technologists Croatian Chemical Society, Zagreb, pp 142–143

    Google Scholar 

  135. Agneta R, Lelario F, De Maria S, Möllers C, Bufo SA, Rivelli AR (2014) Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry 106:178–187. doi:10.1016/j.phytochem.2014.06.019

    Article  CAS  Google Scholar 

  136. Radojčić Redovniković I, Peharec P, Krsnik-Rasol M, Delonga K, Brkić K, Vorkapić-Furač J (2008) Glucosinolate profiles, myrosinase and peroxidase activity in horseradish (Armoracia lapathifolia Gilib.) plantlets, tumour and teratoma tissues. Food Technol Biotechnol 46(3):317–321.

    Google Scholar 

  137. Ahmed ZF, Rizk AM, Hammouda FM, Seif El-Nasr MM (1972) Glucosinolates of egyptian Capparis species. Phytochemistry 11(1):251–256. doi:10.1016/S0031-9422(00)89999-9

  138. Schuster A, Friedt W (1998) Glucosinolate content and composition as parameters of quality of Camelina seed. Ind Crop Prod 7(2–3):297–302. doi:10.1016/S0926-6690(97)00061-7

  139. Montaut S, Grandbois J, Righetti L, Barillari J, Iori R, Rollin P (2009) Updated glucosinolate profile of Dithyrea wislizenii. J Nat Prod 72(5):889–893. doi:10.1021/np800738w

    Article  CAS  Google Scholar 

  140. Mohn T, Suter K, Hamburger M (2008) Seasonal changes and effect of harvest on glucosinolates in Isatis leaves. Planta Med 74(5):582–587. doi:10.1055/s-2008-1074504

  141. Angelini LG, Tavarini S, Antichi D, Bagatta M, Matteo R, Lazzeri L (2015) Fatty acid and glucosinolate patterns of seed from Isatis indigotica fortune as bioproducts for green chemistry. Ind Crop Prod 75(part B):51–58. doi:10.1016/j.indcrop.2015.04.010

  142. Matthäus B, Angelini LG (2005) Anti-nutritive constituents in oilseed crops from Italy. Ind Crop Prod 21(1):89–99. doi:10.1016/j.indcrop.2003.12.021

    Article  CAS  Google Scholar 

  143. Yábar E, Pedreschi R, Chirinos R, Campos D (2011) Glucosinolate content and myrosinase activity evolution in three maca (Lepidium meyenii Walp.) ecotypes during preharvest, harvest and postharvest drying. Food Chem 127(4):1576–1583. doi:10.1016/j.foodchem.2011.02.021

    Article  CAS  Google Scholar 

  144. Li G, Ammermann U, Quirós C (2001) Glucosinolate contents in maca (Lepidium peruvianum Chacón) seeds, sprouts, mature plants and several derived commercial products. Econ Bot 55(2):255–262. doi:10.1007/BF02864563

    Article  CAS  Google Scholar 

  145. Esparza E, Hadzich A, Kofer W, Mithöfer A, Cosio EG (2015) Bioactive maca (Lepidium meyenii) alkamides are a result of traditional andean postharvest drying practices. Phytochemistry 116:138–148. doi:10.1016/j.phytochem.2015.02.030

    Article  CAS  Google Scholar 

  146. Asad SA, Young S, West H (2013) Effect of nickel and cadmium on glucosinolate production in Thlaspi caerulescens. Pak J Bot 45(S1):495–500

    Google Scholar 

  147. Voelckel C, Mirzaei M, Reichelt M, Luo Z, Pascovici D, Heenan PB, Schmidt S, Janssen B, Haynes PA, Lockhart PJ (2010) Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon. BMC Evol Biol 10 (1):1–15. doi:10.1186/1471-2148-10-151

  148. Rivera-Vega LJ, Krosse S, de Graaf RM, Garvi J, Garvi-Bode RD, van Dam NM (2015) Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water. Front Plant Sci 6 (July). doi:10.3389/fpls.2015.00532

  149. Matthäus B, Özcan M (2002) Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey. J Agric Food Chem 50(25):7323–7325. doi:10.1021/jf020530+

  150. Ikeura H, Kobayashi ZF, Hayata Y (2010) Attractant and oviposition stimulant of Crataeva religiosa Forst. to Pierisrapae. Asian J Plant Sci 9(8):492–497. doi:10.3923/ajps.2010.492.497

  151. Tang CS (1973) Localization of benzyl glucosinolate and thioglucosidase in Carica papaya fruit. Phytochemistry 12(4):769–773. doi:10.1016/0031-9422(73)80676-4

    Article  CAS  Google Scholar 

  152. Nakamura Y, Yoshimoto M, Murata Y, Shimoishi Y, Asai Y, Park EY, Sato K, Nakamura Y (2007) Papaya seed represents a rich source of biologically active isothiocyanate. J Agric Food Chem 55(11):4407–4413. doi:10.1021/jf070159w

    Article  CAS  Google Scholar 

  153. Li Z-Y, Wang Y, Shen W-T, Zhou P (2012) Content determination of benzyl glucosinolate and anti–cancer activity of its hydrolysis product in Carica papaya L. Asian Pac J Trop Med 5(3):231–233. doi:10.1016/S1995-7645(12)60030-3

    Article  CAS  Google Scholar 

  154. Rossetto MRM, Oliveira do Nascimento JR, Purgatto E, Fabi JP, Lajolo FM, Cordenunsi BR (2008) Benzylglucosinolate, benzylisothiocyanate, and myrosinase activity in papaya fruit during development and ripening. J Agric Food Chem 56(20):9592–9599. doi:10.1021/jf801934x

    Article  CAS  Google Scholar 

  155. Förster N, Ulrichs C, Schreiner M, Müller CT, Mewis I (2015) Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chem 166(1):456–464. doi:10.1016/j.foodchem.2014.06.043

  156. Amaglo NK, Bennett RN, Lo Curto RB, Rosa EAS, Lo Turco V, Giuffrida A, Curto AL, Crea F, Timpo GM (2010) Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem 122(4):1047–1054. doi:10.1016/j.foodchem.2010.03.073

    Article  CAS  Google Scholar 

  157. Kleinwächter M, Schnug E, Selmar D (2008) The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization. J Agric Food Chem 56(23):11165–11170. doi:10.1021/jf802053n

    Article  CAS  Google Scholar 

  158. Ortega OR, Kliebenstein DJ, Arbizu C, Ortega R, Quiros CF (2006) Glucosinolate survey of cultivated and feral mashua (Tropaeolum tuberosum Ruíz & Pavón) in the cuzco region of Peru. Econ Bot 60(3):254–264. doi:10.1663/0013-0001(2006)60[254:GSOCAF]2.0.CO;2

    Article  CAS  Google Scholar 

  159. Ramallo R, Wathelet JP, Le Boulengé E, Torres E, Marlier M, Ledent JF, Guidi A, Larondelle Y (2004) Glucosinolates in isaño (Tropaeolum tuberosum) tubers: qualitative and quantitative content and changes after maturity. J Sci Food Agric 84(7):701–706. doi:10.1002/jsfa.1691

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Blažević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Blažević, I., Montaut, S., Burčul, F., Rollin, P. (2017). Glucosinolates: Novel Sources and Biological Potential. In: Mérillon, JM., Ramawat, K. (eds) Glucosinolates. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25462-3_1

Download citation

Publish with us

Policies and ethics