Skip to main content

Analytical Techniques for Discovery of Bioactive Compounds from Marine Fungi

  • Reference work entry
  • First Online:
Fungal Metabolites

Abstract

Marine fungi have been a rich source of bioactive natural products with interesting pharmaceutical activities and potential therapeutic applications. This chapter reviews the recent analytical techniques for discovery and the characterization of bioactive compounds derived from marine fungi, which are highly diversified and are less explored. An overview about bioprospecting, collection, preparation, and preservation of fungi samples are also presented, as well as different methods and strategies used for extraction, fractionation, and structural characterization of the bioactive compounds are discussed, including their advantages and the disadvantages. Possible roles of these natural compounds in several interesting biological activities are also covered in this chapter.

Conflict of Interest

The authors report no declarations of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gomes AR, Freitas AC, Rocha-Santos TAP, Duarte AC (2014) Bioactive compounds derived from echinoderms. RSC Adv 4:29365–29382

    Article  CAS  Google Scholar 

  2. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32(2):116–211

    Article  CAS  Google Scholar 

  3. Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101

    Article  Google Scholar 

  4. Krause J, Tobin G (2013) Discovery, development, and regulation of natural products. In: Marianna K (ed) Using old solutions to new problems – natural drug discovery in the 21st century. InTech, Rijeka, Croatia, pp 3–36

    Google Scholar 

  5. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:1–8

    Google Scholar 

  6. Keating G, Figgitt D (2003) Caspofungin: a review of its use in oesophageal candidiasis, invasive candidiasis and invasive aspergillosis. Drugs 63(20):2235–2263

    Article  CAS  Google Scholar 

  7. Gloer JB (2007) Applications of fungal ecology in the search for new bioactive natural products. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships. Springer, New York/Berlin/Heidelberg, pp 257–83

    Google Scholar 

  8. Strader CR, Pearce CJ, Oberlies NH (2011) Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J Nat Prod 74(4):900–907

    Article  CAS  Google Scholar 

  9. Bose U, Hodson MP, Shaw PN, Fuerst JA, Hewavitharana AK (2014) Bacterial production of the fungus-derived cholesterol-lowering agent mevinolin. Biomed chromatog 28(9):1163–1166

    Article  CAS  Google Scholar 

  10. Chun J, Hartung H-P (2010) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33(2):91–101

    Article  CAS  Google Scholar 

  11. McCormack PL, Perry CM (2005) Caspofungin: a review of its use in the treatment of fungal infections. Drugs 65(14):2049–2068

    Article  CAS  Google Scholar 

  12. Gao S-S, Li X-M, Li C-S, Proksch P, Wang B-G (2011) Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg Med Chem Lett 21(10):2894–2897

    Article  CAS  Google Scholar 

  13. Tarman K, Lindequist U, Wende K, Porzel A, Arnold N, Wessjohann LA (2011) Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of indonesian marine habitats. Mar Drugs 9(3):294–306

    Article  CAS  Google Scholar 

  14. Zhang D, Satake M, Fukuzawa S, Sugahara K, Niitsu A, Shirai T et al (2012) Two new indole alkaloids, 2-(3,3-dimethylprop-1-ene)-costaclavine and 2-(3,3-dimethylprop-1-ene)-epicostaclavine, from the marine-derived fungus Aspergillus fumigatus. J Nat Med 66(1):222–226

    Article  CAS  Google Scholar 

  15. Bhatnagar I, Kim S-K (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8(10):2673–2701

    Article  CAS  Google Scholar 

  16. Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ, Baral SR et al (2012) Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc Natl Acad Sci U S A 109(39):15835–15840

    Article  CAS  Google Scholar 

  17. Leary D, Vierros M, Hamon G, Arico S, Monagle C (2009) Marine genetic resources: a review of scientific and commercial interest. Mar Policy 33(2):183–194

    Article  Google Scholar 

  18. Liu X, Ashforth E, Ren B, Song F, Dai H, Liu M et al (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot 63:415–422

    Article  CAS  Google Scholar 

  19. Demunshi Y, Chugh A (2010) Role of traditional knowledge in marine bioprospecting. Biodivers Conserv 19(11):3015–3033

    Article  Google Scholar 

  20. Wildman HG (1999) Pharmaceutical bioprospecting and its relationship to the conservation and utilization of bioresources. Phuket, Thailand, IUPAC

    Google Scholar 

  21. Slobodian L, Kinna R, Kambu A, Ognibene L (2015) Bioprospecting in the global commons: legal issues brief. United Nations Environment Programme – Division of Environmental Law and Conventions. Available at: https://www.unep.org/delc/Portals/119/Biosprecting-Issuepaper.pdf

  22. Beattie AJ, Hay M, Magnusson B, de Nys R, Smeathers J, Vincent JFV (2011) Ecology and bioprospecting. Austral Ecol 36(3):341–356

    Article  Google Scholar 

  23. Abida H, Ruchaud S, Rios L, Humeau A, Probert I, De Vargas C et al (2013) Bioprospecting marine plankton. Mar Drugs 11(11):4594–4611

    Article  CAS  Google Scholar 

  24. Postec A, Lesongeur F, Pignet P, Ollivier B, Querellou J, Godfroy A (2007) Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 11(6):747–757

    Article  Google Scholar 

  25. McMinn A, Müller MN, Martin A, Ryan KG (2014) The response of Antarctic sea ice algae to changes in pH and CO2. PLoS One 9(1):e86984

    Article  Google Scholar 

  26. McMinn A, Pankowski A, Delfatti T (2005) Effect of hyperoxia on the growth and photosynthesis of polar sea ice microalgae. J Phycol 41(4):732–741

    Article  Google Scholar 

  27. Synnes M (2007) Bioprospecting of organisms from the deep sea: scientific and environmental aspects. Clean Techn Environ Policy 9(1):53–59

    Article  Google Scholar 

  28. Mayer AMS, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD et al (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265

    Article  CAS  Google Scholar 

  29. Jobstvogt N, Hanley N, Hynes S, Kenter J, Witte U (2014) Twenty thousand sterling under the sea: estimating the value of protecting deep-sea biodiversity. Ecol Econ 97:10–19

    Article  Google Scholar 

  30. Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S et al (2008) Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS One 3:e2744

    Article  Google Scholar 

  31. Leal MC, Puga J, Serôdio J, Gomes NCM, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades – where and what are we bioprospecting? PLoS One 7:e30580

    Article  CAS  Google Scholar 

  32. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev 8(1):69–85

    CAS  Google Scholar 

  33. Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas – current status and microbiological implications. Appl Microbiol Biotechnol 59(2–3):125–134

    CAS  Google Scholar 

  34. Montaser R, Luesch H (2011) Marine natural products: a new wave of drugs? Future Med Chem 3(12):1475–1489

    Article  CAS  Google Scholar 

  35. Bowler C, Karl DM, Colwell RR (2009) Microbial oceanography in a sea of opportunity. Nature 459:180–184

    Article  CAS  Google Scholar 

  36. Duarte K, Rocha-Santos TAP, Freitas AC, Duarte AC (2012) Analytical techniques for discovery of bioactive compounds from marine fungi. TrAC Trends Anal Chem 34:97–110

    Article  CAS  Google Scholar 

  37. Leston S, Nunes M, Rosa J, Lemos MFL, Ramos F, Pardal MA (2014) Chapter 2 – prospection, collection, and preservation of marine samples. Compr Anal Chem 65:15–33

    Article  CAS  Google Scholar 

  38. Zhang Y, Arends JBA, Van de Wiele T, Boon N (2011) Bioreactor technology in marine microbiology: from design to future application. Biotechnol Adv 29(3):312–321

    Article  CAS  Google Scholar 

  39. Parkes RJ, Sellek G, Webster G, Martin D, Anders E, Weightman AJ et al (2009) Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ Microbiol 11(12):3140–3153

    Article  CAS  Google Scholar 

  40. Leal MC, Calado R, Sheridan C, Alimonti A, Osinga R (2013) Coral aquaculture to support drug discovery. Trends Biotechnol 31(10):555–561

    Article  CAS  Google Scholar 

  41. Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18(6):499–514

    Article  CAS  Google Scholar 

  42. Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li S et al (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70(1–3):15–25

    Article  CAS  Google Scholar 

  43. Dawson MN, Raskoff KA, Jacobs DK (1998) Field preservation of marine invertebrate tissue for DNA analyses. Mol Mar Biol Biotechnol 7(2):145–152

    CAS  Google Scholar 

  44. Siebert K, Busl M, Asmus I, Freund J, Muscholl-Silberhorn A, Wirth R (2004) Evaluation of methods for storage of marine macroorganisms with optimal recovery of bacteria. Appl Environ Microbiol 70(10):5912–5915

    Article  CAS  Google Scholar 

  45. Dhorajiya B, Malani M, Dholakiya B (2012) Extraction and preservation protocol of anti-cancer agents from marine world. Chem Sci J 2012(CSJ-38):1–12

    Google Scholar 

  46. Penesyan A, Kjelleberg S, Egan S (2010) Development of novel drugs from marine surface associated microorganisms. Mar Drugs 8(3):438–459

    Article  CAS  Google Scholar 

  47. Justino CIL, Duarte K, Freitas AC, Duarte AC, Rocha-santos T (2014) Chapter 3 – classical methodologies for preparation of extracts and fractions. Compr Anal Chem 65:35–57

    Article  CAS  Google Scholar 

  48. Yun K, Kondempudi CM, Choi HD, Kang JS, Son BW (2011) Microbial mannosidation of bioactive chlorogentisyl alcohol by the marine-derived fungus Chrysosporium synchronum. Chem Pharm Bull 59(4):499–501

    Article  CAS  Google Scholar 

  49. Sarker SD, Latif Z, Gray AI (2005) Natural products isolation. In: Sarker SD, Latif Z, Gray AI (eds) Natural products isolation, vol 20, 2nd edn. Humana Press, Totowa, pp 1–25

    Chapter  Google Scholar 

  50. Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N (2011) Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol 153:191–222

    Google Scholar 

  51. Blunt JW, Copp BR, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26(2):170–244

    Article  CAS  Google Scholar 

  52. He J-Z, Ru Q-M, Dong D-D, Sun P-L (2012) Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules 17(4):4373–4387

    Article  CAS  Google Scholar 

  53. Ohkawa Y, Miki K, Suzuki T, Nishio K, Sugita T, Kinoshita K et al (2010) Antiangiogenic metabolites from a marine-derived fungus. Hypocrea vinosa. J Nat Prod 73(4):579–582

    Article  CAS  Google Scholar 

  54. Bhakuni DS, Rawat DS (2005) Separation and isolation techniques. In: Bhakuni DS, Rawat DS (eds) Bioactive marine natural products. Springer Netherlands, New Delhi, pp 64–79

    Google Scholar 

  55. Grosso C, Valentão P, Ferreres F, Andrade PB (2015) Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs 13(5):3182–3230

    Article  CAS  Google Scholar 

  56. Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal 13(2):105–113

    Article  CAS  Google Scholar 

  57. Veggi PC, Martinez J, Meireles MAA (2013) Fundamentals of microwave extraction. In: Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds. Springer US, New York, pp 15–52

    Google Scholar 

  58. Madej K (2009) Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds. TrAC Trends Anal Chem 28(4):436–446

    Article  CAS  Google Scholar 

  59. Zou T-B, Jia Q, Li H-W, Wang C-X, Wu H-F (2013) Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. Mar Drugs 11(5):1644–1655

    Article  CAS  Google Scholar 

  60. Joana Gil-Chávez G, Villa JA, Fernando Ayala-Zavala J, Basilio Heredia J, Sepulveda D, Yahia EM et al (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Saf 12:5–23

    Article  Google Scholar 

  61. Farré M, Pérez S, Gonçalves C, Alpendurada MF, Barceló D (2010) Green analytical chemistry in the determination of organic pollutants in the aquatic environment. TrAC Trends Anal Chem 29(11):1347–1362

    Article  Google Scholar 

  62. Duarte K, Justino CIL, Pereira R, Freitas AC, Gomes AM, Duarte AC et al (2014) Green analytical methodologies for the discovery of bioactive compounds from marine sources. Trends Environ Anal Chem 3–4:43–52

    Article  Google Scholar 

  63. Smith RM (2006) Superheated water: the ultimate green solvent for separation science. Anal Bioanal Chem 385(3):419–421

    Article  CAS  Google Scholar 

  64. Asl AH, Khajenoori M (2013) Subcritical water extraction. In: Nakajima H (ed) Mass transfer – advances in sustainable energy and environment oriented numerical modeling. InTech, Rijeka, Croatia, pp 459–487

    Google Scholar 

  65. Duarte K, Justino CIL, Gomes AM, Rocha-Santos T, Duarte AC (2014) Chapter 4 – green analytical methodologies for preparation of extracts and analysis of bioactive compounds. Compr Anal Chem 65:59–78

    Article  CAS  Google Scholar 

  66. Wolf D, Siems K (2007) Burning the hay to find the needle – data mining strategies in natural product dereplication. CHIMIA Int J Chem 61(6):339–345

    Article  CAS  Google Scholar 

  67. Wang X, Mao Z-G, Song B-B, Chen C-H, Xiao W-W, Hu B et al (2013) Advances in the study of the structures and bioactivities of metabolites isolated from mangrove-derived fungi in the South China Sea. Mar Drugs 11(10):3601–3616

    Article  CAS  Google Scholar 

  68. Smetanina OF, Yurchenko AN, Pivkin MV, Yurchenko EA, Afiyatullov SS (2011) Isochromene metabolite from the facultative marine fungus Penicillium citrinum. Chem Natu Compd 47(1):118–119

    Article  CAS  Google Scholar 

  69. Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA et al (2010) Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 33(2):231–235

    Article  CAS  Google Scholar 

  70. Otsuka H (2005) Purification by solvent extraction using partition coefficient. In: Sarker SD, Latif Z, Gray AI (eds) Natural products isolation, vol 20, 2nd edn. Humana Press, Totowa, pp 269–73

    Google Scholar 

  71. Chen Y, Mao W, Gao Y, Teng X, Zhu W, Chen Y et al (2013) Structural elucidation of an extracellular polysaccharide produced by the marine fungus Aspergillus versicolor. Carbohydr Polym 93(2):478–483

    Article  CAS  Google Scholar 

  72. Smetanina OF, Yurchenko AN, Kalinovskii AI, Berdyshev DV, Gerasimenko AV, Pivkin MV et al (2011) Biologically active metabolites from the marine isolate of the fungus Myceliophthora lutea. Chem Natu Compd 47(3):385–390

    Article  CAS  Google Scholar 

  73. Shushni MAM, Singh R, Mentel R, Lindequist U (2011) Balticolid: a new 12-membered macrolide with antiviral activity from an ascomycetous fungus of marine origin. Mar Drugs 9(5):844–851

    Article  CAS  Google Scholar 

  74. Song F, Dai H, Tong Y, Ren B, Chen C, Sun N et al (2010) Trichodermaketones A-D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii. J Nat Prod 73(5):806–810

    Article  CAS  Google Scholar 

  75. Martis EA, Radhakrishnan R, Badve RR (2011) High-throughput screening: the hits and leads of drug discovery- an overview. J Appl Pharm Sci 1(1):02–10

    Google Scholar 

  76. Glaser KB, Mayer AMS (2009) A renaissance in marine pharmacology: from preclinical curiosity to clinical reality. Biochem Pharmacol 78(5):440–448

    Article  CAS  Google Scholar 

  77. Santos CMM, Silva AMS (2014) Chapter 7 – nuclear magnetic resonance spectroscopy for structural characterization of bioactive compounds. Compr Anal Chem 65:149–191

    Article  CAS  Google Scholar 

  78. Tilvi S, Majik MS, Singh KS (2014) Chapter 8 – mass spectrometry for determination of bioactive compounds. Compr Anal Chem 65:193–218

    Article  CAS  Google Scholar 

  79. Regina MBO, Duarte ACD (2014) Chapter 9 – chromatography coupled to various detectors as a tool for separation and determination of bioactive compounds. Compr Anal Chem 65:219–252

    Article  Google Scholar 

  80. Paasch S, Brunner E (2010) Trends in solid-state NMR spectroscopy and their relevance for bioanalytics. Anal Bioanal Chem 398(6):2351–2362

    Article  CAS  Google Scholar 

  81. Malerod H, Lundanes E, Greibrokk T (2010) Recent advances in on-line multidimensional liquid chromatography. Anal Methods 2:110–122

    Article  CAS  Google Scholar 

  82. Meinert C, Meierhenrich UJ (2012) A new dimension in separation science: comprehensive two-dimensional gas chromatography. Angew Chem 51(42):10460–10470

    Article  CAS  Google Scholar 

  83. Chen Y, Cai X, Pan J, Gao J, Li J, Yuan J et al (2009) Structure elucidation and NMR assignments for three anthraquinone derivatives from the marine fungus Fusarium sp. (No. ZH-210). Magn Reson Chem 47(4):362–365

    Article  CAS  Google Scholar 

  84. Ito T, Odake T, Katoh H, Yamaguchi Y, Aoki M (2011) High-throughput profiling of microbial extracts. J Nat Prod 74(5):983–988

    Article  CAS  Google Scholar 

  85. Koehn FE (2008) High impact technologies for natural products screening. Prog Drug Res 65(175):177–210

    Google Scholar 

  86. Mitova MI, Murphy AC, Lang G, Blunt JW, Cole ALJ, Ellis G et al (2008) Evolving trends in the dereplication of natural product extracts. 2. The isolation of chrysaibol, an antibiotic peptaibol from a New Zealand sample of the mycoparasitic fungus Sepedonium chrysospermum. J Nat Prod 71(9):1600–1603

    Article  CAS  Google Scholar 

  87. Shi S-Y, Zhang Y-P, Jiang X-Y, Chen X-Q, Huang K-L, Zhou H-H et al (2009) Coupling HPLC to on-line, post-column (bio)chemical assays for high-resolution screening of bioactive compounds from complex mixtures. TrAC Trends Anal Chem 28(7):865–877

    Article  CAS  Google Scholar 

  88. Freitas AC, Montalvão SIGHM, Duarte AC, Rocha-Santos T (2014) Chapter 10 – Online combination of bioassays with chemical and structural characterization for detection of bioactive compounds. Compr Anal Chem 65:253–278

    Article  CAS  Google Scholar 

  89. Giera M, Irth H (2011) Simultaneous screening and chemical characterization of bioactive compounds using LC-MS-based technologies (Affinity chromatography). In: Brack W (ed) Effect-directed analysis of complex environmental contamination, vol 15. Springer, Berlin/Heidelberg, pp 119–41

    Chapter  Google Scholar 

  90. Potterat O, Hamburger M (2013) Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays. Nat Prod Rep 30(4):546–564

    Article  CAS  Google Scholar 

  91. Kool J, Giera M, Irth H, Niessen WMA (2011) Advances in mass spectrometry-based post-column bioaffinity profiling of mixtures. Anal Bioanal Chem 399(8):2655–2668

    Article  CAS  Google Scholar 

  92. Malherbe CJ, de Beer D, Joubert E (2012) Development of on-line high performance liquid chromatography (HPLC)-biochemical detection methods as tools in the identification of bioactives. Int J Mol Sci 13(3):3101–3133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana R. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Gomes, A.R., Duarte, A.C., Rocha-Santos, T.A.P. (2017). Analytical Techniques for Discovery of Bioactive Compounds from Marine Fungi. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_9

Download citation

Publish with us

Policies and ethics