Skip to main content

Solid-State Fermentation: Special Physiology of Fungi

  • Reference work entry
  • First Online:
Fungal Metabolites

Abstract

The evolution of higher fungi and actinomycetes took place on solid growth substrates, so these microorganisms are perfectly adapted to grow in a solid environment. This implies that their cultivation in liquid culture may impair their metabolic efficiencies. However, conventional technology for the production of valuable fungal products is liquid submerged fermentation. In recent times, solid-state fermentation has become an alternative industrial production system to produce enzymes, primary and secondary metabolites. There are several advantages in employing many solid-state fermentation processes over the conventional submerged fermentation ones, like higher yields of secondary metabolites or enzymes. Moreover, certain enzymes and secondary metabolites can only be produced in solid-state fermentation. The main advantages of this culture system are related to the special physiology displayed by fungi when growing in solid culture. This chapter describes and analyzes recent advances in our understanding of this special physiology (the physiology of solid medium) and the underlying molecular mechanisms. It is also discussed how this knowledge can be applied to create novel technological advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Aw:

Water availability

cDNA:

Complementary DNA

CM:

Cellulase carboxymethyl cellulose

dsDNA:

Double-stranded DNA

GFP:

Green fluorescent protein

glaA:

Glucoamylase A

glaB:

Glucoamylase B

GSH/GSSG:

Redox balance

HSE:

Heat shock element

MSLC:

Membrane-surface liquid culture

PSM:

Physiology of solid medium

ROS:

Reactive oxygen species

SmF:

Submerged fermentation

SMs:

Secondary metabolites

SSF:

Solid-state fermentation

References

  1. Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV (1985) Engineering aspects of solid-state fermentation. Enzyme Microb Technol 7:258–265. doi:10.1016/0141-0229(85)90083-3

    Article  CAS  Google Scholar 

  2. Pandey A, Scoccol CR, Larrroche C (2007) Introduction. In: Pandey A, Scoccol CR, Larrroche C (eds) Current developments in solid-state fermentation. Asitech Publishers/Springer, New Delhi/Heidelberg/Berlin

    Google Scholar 

  3. Takamine J (1894a) Preparing and making taka-koji. US Patent 525,820

    Google Scholar 

  4. Takamine J (1894b) Process of making diastatic enzyme. US Patent 525,823

    Google Scholar 

  5. Takamine J (1914) Enzymes of Aspergillus Oryzae and the application of its amyloclastic enzyme to the fermentation industry. Ind Eng Chem 6:824–828. doi:10.1021/ie50070a015

    Article  CAS  Google Scholar 

  6. Underkofler LA (1938) Production of diastatic material. US Patenet 2,291,009

    Google Scholar 

  7. Underkofler LA, Severson GM, Groening KJ, Christiansen LM (1947) Commercial production and use of mold bran. Cereal Chem 24:122

    Google Scholar 

  8. Hesseltine CW (1972) Biotechnology report: solid state fermentation. Biotechnol Bioeng 14:517–532. doi:10.1002/bit.260140402

    Article  CAS  Google Scholar 

  9. Hesseltine CW (1977) Solid state fermentation part 1. Process Biochem 12:24–27

    CAS  Google Scholar 

  10. Hesseltine CW (1977) Solid state fermentation part 2. Process Biochem 12:29–32

    CAS  Google Scholar 

  11. Singhania RR, Patel AK, Zoclo CR, Pandey A (2008) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. doi:10.1016/j.bej.2008.10.019

    Article  Google Scholar 

  12. Chen H (2013) Modern solid state fermentation. Theory and practice. Springer, The Netherlands. doi:10.1007/978-94-007-6043-1

    Book  Google Scholar 

  13. Singh SK, Szakacs G, Soccol CR, Pandey A (2007) Chapter 14: Production of enzymes by sold-state fermentation. In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Asiatech Publishers/Springer, New Delhi/Heidelberg/Berlin

    Google Scholar 

  14. Bello-Maurel V, Orliac O, Christen P (2003) Sensors and measurements in solid-state fermentation: a review. Process Biochem 38:881–896. doi:10.1016/s0032-9592(02)00093-6

    Article  Google Scholar 

  15. Suryanarayan S (2003) Current industrial practice in solid-state fermentations for secondary metabolite production: the Biocon India experience. Biochem Eng J 13:189–195. doi:10.1016/s1369-703x(02)00131-6

    Article  CAS  Google Scholar 

  16. Kalogeris E, Iniotaki F, Topakas E, Christolopoulos P, Kelos D, Macris BJ (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol 86:207–213. doi:10.1016/s0960-8524(02)00175-x

    Article  CAS  Google Scholar 

  17. Barrios-González J, Mejía A (2007) Production of antibiotics and other commercially valuable secondary metabolites. In: Pandey A, Larroche C, Soccol CR, Rodríguez-León JA (eds) Current developments in solid-state fermentation. Springer Science/Asiatech Publishers, New York/New Delhi

    Google Scholar 

  18. Barrios-González J, Mejía A (2009) Microbial strains for the production of antibiotics and other commercially valuable secondary metabolites by solid-state fermentation. In: Pandey A, Larroche C, Soccol CR, Dussap CG (eds) New horizons in biotechnology. Asiatech Publishers, New Delhi

    Google Scholar 

  19. Acuña-Arguelles ME, Gutierrez-Rojas M, Viniegra-Gonzalez G, Favela-Torres E (1995) Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl Microbiol Biotechnol 43:808–814. doi:10.1007/bf02431912

    Article  Google Scholar 

  20. Diaz-Godinez G, Soriano-Santos J, Augur C, Viniegra-Gonzalez G (2001) Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. J Ind Microbiol Biotechnol 26:271–275. doi:10.1038/sj.jim.7000113

    Article  CAS  Google Scholar 

  21. Ooijkaas LP, Weber FJ, Buitelaar RM, Tramper J, Rinzema A (2000) Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol 18:356–360. doi:10.1016/s0167-7799(00)01466-9

    Article  CAS  Google Scholar 

  22. Rahardjo YSP, Korona D, Haemers S, Weber FJ, Tramper J, Rinzema A (2004) Limitations of membrane cultures as a model solid-state fermentation system. Lett Appl Microbiol 39:504–508. doi:10.1111/j.1472-765X.2004.01614.x

    Article  CAS  Google Scholar 

  23. Barrios-González J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185. doi:10.1016/j.procbio.2011.11.016

    Article  Google Scholar 

  24. Sanchez S, Demain AL (2008) Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1:283–319. doi:10.1111/j.1751-7915.2007.00015.x

    Article  CAS  Google Scholar 

  25. Sauer M, Porro D, Mattanovich D, Branduardi P (2007) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108. doi:10.1016/j.tibtech.2007.11.006

    Article  Google Scholar 

  26. Deker M (2003) SSF: an overview. In: Arora DK (ed) Handbook of fungal biotechnology, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  27. Soccol CR, Vandenbergh LPS, Rodríguez C, Bianchi A, Larroche C, Pandey A (2007) Chapter 10: Production of organic acids by solid-state fermentation. In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Asiatech Publishers/Springer, Heidelberg/Berlin/New Delhi

    Google Scholar 

  28. CN 101050471 A (New technique for producing lactic acid through solid state fermenting dregs of potato by Rhizopus Of Rice (2007) www.chnpat.Com China Patents http://www.chnpat.com/CN43/200710022019.html

  29. Tsai YCh, Huang MC, Lin SF, Su YC (2001) Method for the production of itaconic acid using Aspergillus terreus solid state fermentation. USA Patent US 6171831 B1

    Google Scholar 

  30. Krishna C (2005) Solid-state fermentation systems – an overview. Crit Rev Biotechnol 25:1–30. doi:10.1080/07388550590925383

    Article  CAS  Google Scholar 

  31. Elinbaum S, Ferreyra H, Ellenrieder G, Cuevas C (2002) Production of Aspergillus terreus alpha-l-rhamnosidase by solid state fermentation. Lett Appl Microbiol 34:67–71. doi:10.1046/j.1472-765x.2002.01039.x

    Article  CAS  Google Scholar 

  32. Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38. doi:10.1038/sj.jim.2900470

    Article  CAS  Google Scholar 

  33. Tsuchiya K, Nagashima T, Yamamoto Y, Gomi K, Kitamoto K, Kumagai C et al (1994) High level secretion of calf chymosin using a glucoamylase–prochymosin fusion gene in Aspergillus oryzae. Biosci Biotechnol Biochem 58:895–899. doi:10.1271/bbb.58.895

    Article  CAS  Google Scholar 

  34. Singh SK, Szacaks G, Soccol CR, Pandey A (2008) Production of enzymes by solid-state fermentation. In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Springer, New York. doi:10.1007/978-0-387-75213-6

    Google Scholar 

  35. Hölker U, Lenz J (2005) Solid-state fermentation are there any biotechnological advantages? Curr Opin Microbiol 8:301–306. doi:10.1016/j.mib.2005.04.006

    Article  Google Scholar 

  36. Barrios-González J, Fernández FJ, Tomasini A (2003) Production of microbial secondary metabolites and strain improvement. Indian J Biotecnol Special Issue: Microbial Biotechnology 2:322–333

    Google Scholar 

  37. Barrios-González J, Tomasini A, Fernández FJ, Mejía A (2004) Production of antibiotics. In: Pandey A (ed) Encyclopedia on bioresource technology. The Haworth Press, New York

    Google Scholar 

  38. Barrios-González J, Mejía A (1996) Production of secondary metabolites by solid-state fermentation. Biotecnol Ann Rev 2:85–121. doi:10.1016/s1387-2656(08)70007-3

    Article  Google Scholar 

  39. Balakrishnan K, Pandey A (1996) Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 55:365–372

    CAS  Google Scholar 

  40. Robinson T, Singh D, Nigam P (2001) Solid-state fermentation a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289. doi:10.1007/s002530000565

    Article  CAS  Google Scholar 

  41. Liu BL, Tzeng YM (1999) Water content and water activity for the production of cyclodepsipeptides in solid-state fermentation by Metrhizium anisopliae. Biotechnol Lett 21:657–661. doi:10.1023/A:1005562632616

    Article  CAS  Google Scholar 

  42. Segreth MP, Bonnefoy A, Bronstrup M, Kanuf M, Schummer D, Toti L et al (2003) Conisetin a novel tetramic from Coniochaeta ellipsoidea DSM 13856. J Antibiot 56:114–122. doi:10.7164/antibiotics.56.114

    Article  Google Scholar 

  43. Bigelis R, He H, Yang H, Chang LP, Greenstein M (2006) Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J Ind Microbiol Biotechnol 33:815–826. doi:10.1007/s10295-006-0126-z

    Article  CAS  Google Scholar 

  44. Barrios-González J, Tomasini A, Viniegra-González G, López L (1988) Penicillin production by solid state fermentation. Biotechnol Lett 10:793–798. doi:10.1007/bf01027575

    Article  Google Scholar 

  45. Cuadra T, Fernández FJ, Tomasini A, Barrios-González J (2007) Influence of pH regulation and nutrient content on cephalosporin C production in solidstate fermentation by Acremonium chrysogenum C10. Lett Appl Microbiol 46:216–220. doi:10.1111/j.1472.765x.2007.02285.x

    Article  Google Scholar 

  46. López-Calleja AC, Cuadra T, Barrios-González J, Fierro F, Fernández FJ (2012) Solid-state and submerged fermentation show different gene expression profiles in Cephalosporin C production by Acremonium chysogenum. J Mol Microbiol Biotechnol 22:126–134. doi:10.1159/00038987

    Article  Google Scholar 

  47. Domínguez M, Mejía A, Barrios-González J (2000) Respiration studies of penicillin solid-state fermentation. J Biosci Bioeng 89:409–413. doi:10.1016/s1389-1723(00)89099-x

    Article  Google Scholar 

  48. Domínguez M, Mejía A, Revah S, Barrios-González J (2001) Optimization of bagasse, nutrients and initial moisture ratios on the yield of penicillin in solid-state fermentation. World J Microbiol Biotechnol 17:751–756. doi:10.1023/a:10129233814261

    Article  Google Scholar 

  49. Barrios-González J, Castillo TE, Mejía A (1993) Development of high penicillin producing strains for solid state fermentation. Biotechnol Adv 11:525–537. doi:10.1016/0734750(93)90021-e

    Article  Google Scholar 

  50. Rahardjo YSP, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24:161–179. doi:10.1016/j.biotecadv.2005.09.002

    Article  CAS  Google Scholar 

  51. Oostra J, le Comte EP, van den Heuvel JC, Tramper J, Rinzema A (2001) Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol Bioeng 75:13–24. doi:10.1002/bit.10222

    Article  CAS  Google Scholar 

  52. Ruijter GJ, Visser J, Rinzema A (2004) Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation. Microbiology 150:1095–1101. doi:10.1099/mic.0.26723-0

    Article  CAS  Google Scholar 

  53. Barrios-González J, Baños JG, Covarrubias AA, Garay-Arroyo A (2008) Lovastatin biosynthetic genes of Aspergillus terreus are differentially expressed in solidstate and in liquid submerged fermentation. Appl Microbiol Biotechnol 79:179–186. doi:10.1007/s00253-008-1409-2

    Article  Google Scholar 

  54. Miranda RU, Gómez-Quiroz LE, Mejía A, Barrios-González J (2012) Oxidative sate in idiophase links reactive oxygen species (ROS) and lovastatin biosynthesis: differences and similarities in submerged-and solid-sate fermentations. Fungal Biol 117:85–93. doi:10.1016/j.funbio.2012.12.001

    Article  Google Scholar 

  55. Baños JG, Tomasini A, Szakács G, Barrios-González J (2009) High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng 108:105–110. doi:10.1007/s00253-008-1409-2

    Article  Google Scholar 

  56. Barrios-González J, Banos JG, Tomasini A, Mejfa A (2008). Procedimiento para la producción de lovastatina por fermentación sólida en soporte inerte artificial. Patent PA/a/2004/012778

    Google Scholar 

  57. Ávila N, Barrios-González J (2015) Environmental Cues that induce physiology of solid medium: a study on lovastatin production by Aspergillus terreus. Submitted for publication

    Google Scholar 

  58. Aguirre J, Ríos-Momberg M, Hewitt M, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 3:111–118. doi:10.1016/j.tim.2005.01.007

    Article  Google Scholar 

  59. Aguirre J, Hansberg W, Navarro R (2006) Fungal responses to reactive oxygen species. Med Mycol 44:101–107. doi:10.1080/13693780600900080

    Article  Google Scholar 

  60. Miranda RU, Gómez-Quiroz LE, Mendoza M, Pérez-Sánchez A, Fierro F, Barrios-González J (2014) Reactive oxygen species regulate lovastatin biosynthesis in Aspergillus terreus during submerged and solid-state fermentation. Fungal Biol 118:879–989. doi:10.1016/j.funbio.2014.09.002

    Article  Google Scholar 

  61. Pérez T, Mejía A, Barrios-González J (2015) Amplification of laeA gene in Aspergillus terreus: a strategy to generate lovastatin-overproducing strains for solid-state fermentation. Int J Curr Microbiol App Sci 4:537–555

    Google Scholar 

  62. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139. doi:10.1016/j.biotechadv.2011.09.012

    Article  CAS  Google Scholar 

  63. Narahara H, Koyama Y, Yoshida T, Pichanakura S, Ueda R, Taguchi H (1982) Growth and enzyme production in a solid-culture of Aspergillus oryzae. J Ferment Technol 60:311–319

    CAS  Google Scholar 

  64. Hata Y, Ishida H, Kojima Y, Ichikawa E, Kawato A, Suginami K et al (1997) Comparison of two glucoamylases produced by Aspergillus oryzae in solid-state culture (koji) and submerged culture. J Ferment Bioeng 84:532–537. doi:10.1016/s0922-338x(97)81907

    Article  CAS  Google Scholar 

  65. Ishida H, Hata Y, Ichikawa E, Kawato A, Suginami K, Imaysu S (1998) Regulation of the glucoamylase encoding gene (glaB), expressed in solid state culture (koji) of Aspergillus oryzae. J Ferment Bioeng 86:301–307. doi:10.1016/s0922-338x(98)80134-7

    Article  CAS  Google Scholar 

  66. Ishida H, Hata Y, Kawato A, Abe Y, Suginami K, Imayasu S (2000) Identification of functional elements that regulate the glucoamylase-encoding gene (glaB) expressed in solid state culture of Aspergillus oryzae. Curr Genet 37:373–379. doi:10.1007/s002940000118

    Article  CAS  Google Scholar 

  67. Kitano H, Kataoka Furukawa K, Hara S (2002) Specific expression and temperature dependent expression of the acid protease-encoding gene (pepA) in Aspergillus oryzae in solid-state culture (rice-koji). J Biosci Bioeng 93:563–567. doi:10.1016/s1389-1723(02)80238-9

    Article  CAS  Google Scholar 

  68. Te Biesebeke R, Levin A, Sagt C, Bartels J, Goosen T, Ram A et al (2005) Identification of growth phenotype-related genes in Aspergillus oryzae by heterologous macroarray and suppression subtractive hybridization in solid-state and submerged cultivated Aspergillus oryzae. Mol Genet Genomics 273:33–42. doi:10.1007/s00438-004-1082-9

    Article  Google Scholar 

  69. Maeda H, Sano M, Maruyama Y, Tanno T, Akao T, Totsuka Y et al (2004) Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Appl Microbiol Biotechnol 65:74–83. doi:10.1016/s1389-1723(02)80238-9

    Article  CAS  Google Scholar 

  70. Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K et al (2007) Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions. DNA Res 14:47–57. doi:10.1093/dnares/dsm008

    Article  CAS  Google Scholar 

  71. Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457. doi:10.1128/aem.72.5.3448-2457.2006

    Article  CAS  Google Scholar 

  72. Wang B, Guo G, Wang C, Lin Y, Wang Y, Zhao M et al (2010) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucl Acids Res 38:5075–5087. doi:10.1093/nar/gkq256

    Article  CAS  Google Scholar 

  73. Maruyama JI, Ohnuma H, Yoshikawa A, Kadokura H, Nakajima H, Kitamoto K (2000) Production and product quality assessment of human Hepatitis B virus Pre- S2 antigen in submerged and solid-state cultures of Aspergillus oryzae. J Biosci Bioeng 90:118–120. doi:10.1016/s1389(00)80045-6

    Article  CAS  Google Scholar 

  74. Li Y, Peng X, Chen H (2013) Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J Biosci Bioeng 116:493–498. doi:10.1016/j.jbiosc.2013.04.001

    Article  CAS  Google Scholar 

  75. Shoji H, Sugimoto T, Hosoi K, Shibata K, Tanabe M, Kawatsura K (2007) Simultaneous production of glucoamylase and acid-stable a-amylase using novel submerged culture of Aspergillus kawachii NBRC4308. J Biosci Bioeng 103:203–205. doi:10.1263/jbb.103.203

    Article  CAS  Google Scholar 

  76. Yasuhara A, Ogawa A, Tanaka T, Sakiyama T, Nakanishi K (1994) Production of neutral protease from Aspergillus oryzae by a novel cultivation method on a microporous membrane. Biotechnol Tech 8:249–254. doi:10.1007/bf00155416

    Article  CAS  Google Scholar 

  77. Wakisaka Y, Segawa T, Imamura K, Sakiyama T, Nakanishi K (1998) Development of a cylindrical apparatus for membrane-surface liquid culture and production of Kojic acid using Aspergillus oryzae NRRI484. J Ferment Bioeng 85:488–494. doi:10.1016/s0922-338x(98)80067-6

    Article  CAS  Google Scholar 

  78. Imanaka H, Tanaka S, Fena B, Imamura K, Nakanishi K (2010) Cultivation characteristics and gene expression profiles of Aspergillus oryzae by membrane-surface liquid culture, shaking-flask culture, and agar-plate culture. J Biosci Bioeng 109:267–273. doi:10.1016/j.jbiosc.2009.09.004

    Article  CAS  Google Scholar 

  79. Gamarra NN, Villena GK, Gutiérrez-Correa M (2010) Cellulose production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Appl Biochem Biotechnol 87:545–551. doi:10.1007/s00253-010-2540-4

    CAS  Google Scholar 

  80. Gutiérrez-Correa M, Ludena Y, Ramage G, Villena GK (2012) Recent advances on filamentous fungal biofilms for industrial uses. Appl Biochem Biotechnol 167:1235–1253. doi:10.1007/s12010-012-9555-5

    Article  Google Scholar 

  81. Zune Q, Delepierre A, Gofflot S, Bauwens J, Twizere JC, Punt PJ et al (2015) A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae. Appl Microbiol Biotechnol 99:6241–6254. doi:10.1007/s00253-015-6608-z

    Article  CAS  Google Scholar 

  82. Xu Y, Wang D, Mu XQ, Zhao GA, Zhang KC (2002) Biosynthesis of ethyl esters of shot-chain fatty acids using whole-cell lipase from Rhizopus chinensis CCTCC M201021 in non-aqueous phase. J Mol Catal B Enzyme 18:29–37. doi:10.1016/s1381-1177(02)00056-5

    Article  Google Scholar 

  83. Sun SY, Xu Y (2009) Membrane bound “synthetic lipase” specifically cultured under solid-state fermentation and submerged fermentation by Rhizopus chinensis: a comparative investigation. Bioresour Technol 100:1336–1342. doi:10.1016/j.biotech.2008.07.051

    Article  CAS  Google Scholar 

  84. Sun SY, Xu Y, Wang D (2009) Regulation of environmental factors on expression of a solid-state specific lipase (Lip1) with Rhizopus chinensis by western blot and indirect Elisa. Bioresour Technol 100:3152–3156. doi:10.1016/j.biortech.2008.11.006

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by CONACYT, México. Project CB-2013-01 222028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Barrios-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Barrios-González, J., Tarragó-Castellanos, M.R. (2017). Solid-State Fermentation: Special Physiology of Fungi. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_6

Download citation

Publish with us

Policies and ethics