Skip to main content

Different Shades of Fungal Metabolites: An Overview

  • Reference work entry
  • First Online:
Fungal Metabolites

Abstract

Fungi can be found in almost all types of habitats. Its several thousand species are very diverse in morphological characters with plethora of secondary metabolites. These secondary metabolites make some of the fungi our friend as well as foe. Many of these secondary metabolites exhibit harmful effect being mycotoxins. Fungi are notoriously known as food spoiler, causing damage to cooked food and grains, and as plant pathogen, causing various severe diseases. However, fungi are beneficial to mankind as producer of antibiotics, food colorant, enzymes, and as a nutritious food. Today many industries are based on fungi or fungal products. Fungi are believed to be the future microbial cell factories for the production of food grade pigments, enzymes, and pharmaceuticals. Owing to the increasing demand of these products, the large-scale production can be achieved by using modern tools of biotechnology and appropriate use of fermentation physiology. Heterologous expression of secondary metabolite production or even manipulation of physical and chemical growth factors can enhance the desired product yield with improved functionality. But still, there is a vast scope for improved production and search for novel fungal metabolites which will render our safe future against resistance-developing bacteria and other dreaded diseases. In this brief review, we present a global scenario of fungal metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Seyedsayamdost MR, Clardy J (2014) Natural products and synthetic biology. ACS Synth Biol 3:745–747

    Article  CAS  Google Scholar 

  2. Chapman and Hall (2015) The dictionary of natural products online. CRC Press. Available at: http://dnp.chemnetbase.com. Boca Raton, NY, USA

  3. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62:5–16

    Article  CAS  Google Scholar 

  4. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Article  Google Scholar 

  5. Stoppacher N, Kluger B, Zeilinger S et al (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbial Methods 81:187–193

    Article  CAS  Google Scholar 

  6. Velišek J, Cejpek K (2011) Pigments of higher fungi – a review. Czech J Food Sci 29:87–102

    Google Scholar 

  7. Dufosse L, Fouillaud M, Caro Y et al (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61

    Article  CAS  Google Scholar 

  8. Stoev SD (2015) Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ Toxicol Pharmacol 39:794–809

    Article  CAS  Google Scholar 

  9. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. Article ID 376387

    Google Scholar 

  10. Colla LM, Ficantha AMM, Rizzardi J et al (2015) Production and characterization of lipases by two new isolates of Aspergillus through solid-state and submerged fermentation. BioMed Res Int. Article ID 725959

    Google Scholar 

  11. Beckmann AM, Barrow RA (2014) Fungal metabolites as pharmaceuticals. Aust J Chem 67:827–843

    Article  CAS  Google Scholar 

  12. Kramer R, Abraham W-R (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37

    Article  CAS  Google Scholar 

  13. Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163:150–160

    Article  CAS  Google Scholar 

  14. Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  Google Scholar 

  15. Blackwell M, Hibbett DS, Taylor JW, Spatafora JW (2006) Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98:829–837

    Article  Google Scholar 

  16. Lee SY, Kim M, Kim SH et al (2016) Transcriptomic analysis of the white rot fungus Polyporus brumalis provides insight into sesquiterpene biosynthesis. Microbiol Res 182:141–149

    Article  CAS  Google Scholar 

  17. Talapatra SK, Talapatra B (2015) Biosynthesis of terpenoids: the oldest natural products. In: Chemistry of plant natural products. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  18. Rohmer M, Seemann M, Horbach S et al (1996) Glyceraldehyde 3-Phosphate and pyruvate as precursors of isoprene units in an alternative non-Mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  19. Tsunematsu Y, Ishiuchi K, Hotta K, Watanabe K (2013) Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products. Nat Prod Rep 30:1139–1149

    Article  CAS  Google Scholar 

  20. Li M, Borodina I (2015) Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res 15:1–12

    Article  Google Scholar 

  21. Nielsen J (2013) Production of biopharmaceutical proteins by yeast advances through metabolic engineering. Bioengineered 4:207–211

    Article  Google Scholar 

  22. Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi-are we expecting too much? Front Microbiol 5:75

    Google Scholar 

  23. Khan MA, Tania M, Liu R, Rahman MM (2013) Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med 10:1–6

    Article  Google Scholar 

  24. Wasson RG (1968) Divine mushroom of immortality. New York Press, New York

    Google Scholar 

  25. Panda AK, Swain KC (2011) Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. J Ayurveda Integr Med 2:9–13

    Article  Google Scholar 

  26. Tuli HS, Sandhu SS, Sharma AK (2014) Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 4:1–12

    Article  Google Scholar 

  27. Wu JY (2015) Polysaccharide-protein complexes from edible fungi and applications. In: Ramawat KG, Me’rillon J-M (eds) Polysaccharides. Springer International Publishing, Switzerland

    Google Scholar 

  28. Wachtel-Galor S, Yuen J, Buswell JA, Benzie IFF (2011) Ganoderma lucidum(Lingzhi or Reishi) a medicinal mushroom. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press, Boca Raton

    Chapter  Google Scholar 

  29. Clardy J, Fischbach M, Currie C (2009) The natural history of antibiotics. Curr Biol 19:437–441

    Article  CAS  Google Scholar 

  30. Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  CAS  Google Scholar 

  31. Donadio S, Maffioli S, Monciardini P et al (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 63:423–430

    Article  CAS  Google Scholar 

  32. Hancock RE (2007) The end of an era? Nat Rev Drug Discov 6:26–29

    Article  CAS  Google Scholar 

  33. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  CAS  Google Scholar 

  34. Devi A, Jayant M, Balkrishan K (2006) Isolation and identification of marine actinomycetes and their potential antimicrobial activities. Pak J Biol Sci 9:470–472

    Article  Google Scholar 

  35. Procopio RE, Silva IR, Martins MK, Azevedo JL, Araujo JM (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16:466–471

    Article  Google Scholar 

  36. Gohel SD, Sharma AK, Dangar KG, Thakrar FJ, Singh SP (2015) Antimicrobial and bioactive potential of Haloalkaliphilic actinobacteria. In: Maheswari DK, Saraf M (eds) Halophiles, sustainable development and biodiversity, vol 6. Springer International Publishing, Switzerland

    Google Scholar 

  37. Stodůlková E, Man P, Kuzma M et al (2015) A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378. Folia Microbiol (Praha) 60:259–267

    Article  CAS  Google Scholar 

  38. Huang X, Huang H, Li H et al (2013) Asperterpenoid A, a new sesterterpenoid as an inhibitor of Mycobacterium tuberculosis protein tyrosine phosphatase B from the culture of Aspergillus sp. 16-5c. Org Lett 15:721–723

    Article  CAS  Google Scholar 

  39. Xiao Z, Lin S, Tan C et al (2015) Asperlones A and B, dinaphthalenone derivatives from a mangrove endophytic fungus Aspergillus sp. 16-5C. Mar Drugs 13:366–378

    Article  CAS  Google Scholar 

  40. Chen X, Li C, Cui C et al (2014) Nine new and five known polyketides derived from a deep sea-sourced Aspergillus sp. Mar Drugs 12:3116–3137

    Article  CAS  Google Scholar 

  41. von Bargen KW, Niehaus E-M, Bergander K et al (2013) Structure elucidation and antimalarial activity of Apicidin F: an apicidin-like compound produced by Fusarium fujikuroi. J Nat Prod 76:2136–2140

    Article  CAS  Google Scholar 

  42. Campos FF, Sales PA, Romanha AJ et al (2015) Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Mem Inst Oswaldo Cruz 110:65–74

    Article  Google Scholar 

  43. Subramani R, Kumar R, Prasad P, Aalbersberg W (2013) Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp. Asian Pac J Trop Biomed 3:291–296

    Article  CAS  Google Scholar 

  44. Wu G, Sun X, Yu G et al (2014) Cladosins A–E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J Nat Prod 77:270–275

    Article  CAS  Google Scholar 

  45. Feng Y, Ren F, Niu S et al (2014) Guanacastane diterpenoids from the plant endophytic fungus Cercospora sp. J Nat Prod 77:873–881

    Article  CAS  Google Scholar 

  46. Zilla MK, Qadri M, Pathania AS et al (2013) Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta. Phytochemistry 95:291–297

    Article  CAS  Google Scholar 

  47. Miao FP, Li XD, Liu XH et al (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs 10:131–139

    Article  CAS  Google Scholar 

  48. Prabpai S, Wiyakrutta S, Sriubolmas N, Kongsaeree P (2015) Antimycobacterial dihydronaphthalenone from the endophytic fungus Nodulisporium sp. of Antidesma ghaesembilla. Phytochem Lett 13:375–378

    Article  CAS  Google Scholar 

  49. Kawaguchi M, Uchida R, Ohte S et al (2013) New dinapinone derivatives, potent inhibitors of triacylglycerol synthesis in mammalian cells, produced by Talaromyces pinophilus FKI-3864. J Antibiot (Tokyo) 66:179–189

    Article  CAS  Google Scholar 

  50. Fan Y-Q, Li P-H, Chao Y-X (2015) Alkaloids with cardiovascular effects from the marine-derived fungus Penicillium expansum Y32. Mar Drugs 13:6489–6504

    Article  CAS  Google Scholar 

  51. Nguyen VT, Lee JS, Qian ZJ et al (2014) Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs 12:69–87

    Article  CAS  Google Scholar 

  52. Wang K, Bao L, Xiong W et al (2015) Lanostane triterpenes from the Tibetan medicinal mushroom Ganoderma leucocontextum and their inhibitory effects on HMG-CoA reductase and α-Glucosidase. J Nat Prod 78:1977–1989

    Article  CAS  Google Scholar 

  53. Santiago C, Sun L, Munro MH, Santhanam J (2014) Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum: biological activity and structure. Asian Pac J Trop Biomed 4:627–632

    Article  CAS  Google Scholar 

  54. Julianti E, Lee JH, Liao L et al (2013) New polyaromatic metabolites from a marine-derived fungus Penicillium sp. Org Lett 15:1286–1289

    Article  CAS  Google Scholar 

  55. Han J-J, Bao L, He L-W et al (2013) Phaeolschidins A–E, five hispidin derivatives with antioxidant activity from the fruiting body of Phaeolus schweinitzii collected in the Tibetan plateau. J Nat Prod 76:1448–1453

    Article  CAS  Google Scholar 

  56. Li YX, Himaya SWA, Dewapriya P et al (2014) Anti-proliferative effects of isosclerone isolated from marine fungus Aspergillus fumigatus in MCF-7 human breast cancer cells. Process Biochem 49:2292–2298

    Article  CAS  Google Scholar 

  57. Zhao Q, Chen GD, Feng XL et al (2015) Nodulisporiviridins A-H, bioactive viridins from Nodulisporium sp. J Nat Prod 78:1221–1230

    Article  CAS  Google Scholar 

  58. Kim KS, Cui X, Lee DS et al (2013) Anti-inflammatory effect of neoechinulin A from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-κB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 18:13245–13259

    Article  CAS  Google Scholar 

  59. Hemberger Y, Xu J, Wray V et al (2013) Pestalotiopens A and B:stereochemically challenging flexible sesquiterpene- cyclopaldic acid hybrids from Pestalotiopsis sp. Chem A Eur J 19:15556–15564

    Article  CAS  Google Scholar 

  60. Zhao YY, Chao X, Zhang YM et al (2010) Cytotoxic steroids from Polyporus umbellatus. Planta Med 76:1755–1758

    Article  CAS  Google Scholar 

  61. Ding Z, Zhang L, Fu J et al (2015) Phenylpyropenes E and F: new meroterpenes from the marine-derived fungus Penicillium concentricum ZLQ-69. J Antibiot (Tokyo). doi:10.1038/ja.2015.64

    Google Scholar 

  62. Liu Y, Yang Q, Xia G et al (2015) Polyketides with α-Glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J Nat Prod 78:1816–1822

    Article  CAS  Google Scholar 

  63. Liang W-L, Le X, Li H-J et al (2014) Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri. Mar Drugs 12:5657–5676

    Article  CAS  Google Scholar 

  64. Tadpetch K, Chukong C, Jeanmard L et al (2015) Cytotoxic naphthoquinone and a new succinate ester from the soil fungus Fusarium solani PSU-RSPG227. Phytochem Lett 11:106–110

    Article  CAS  Google Scholar 

  65. Peng J, Zhang X, Du L et al (2014) Sorbicatechols A and B, antiviral sorbicillinoids from the marine-derived fungus Penicillium chrysogenum PJX-17. J Nat Prod 77:424–428

    Article  CAS  Google Scholar 

  66. Xiao J, Zhang Q, Gao YQ et al (2014) Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J Agric Food Chem 62:3584–3590

    Article  CAS  Google Scholar 

  67. Bu YY, Yamazaki H, Takahashi O et al (2015) Penicyrones A and B, an epimeric pair of α-pyrone-type polyketides produced by the marine-derived Penicillium sp. J Antibiot (Tokyo). doi:10.1038/ja.2015.82

    Google Scholar 

  68. Scudamore KA, Livesey CT (1998) Occurrence and significance of mycotoxins in forage crops and silage: a review. J Sci Food Agric 77:1–17

    Article  CAS  Google Scholar 

  69. Kabak B, Dobson ADW, Var I (2006) Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr 46:593–619

    Article  CAS  Google Scholar 

  70. Bryden WL (2012) Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Anim Feed Sci Technol 173:134–158

    Article  CAS  Google Scholar 

  71. Smith JE, Moss MO (1985) Mycotoxins: formation, analysis and significance. Wiley, Chichester

    Google Scholar 

  72. Joffe AZ (1978) Fusanum poae and F. sporotncbioides as principal causal agents of alimentary toxic aleukia. In: Wylhe TD, Morehouse LG (eds) Mycotoxic fungi, mycotoxins, mycotoxicoses: an encyclopedic handbook, vol 3. Marcel Dekker, New York

    Google Scholar 

  73. Klich MA, Mullaney EJ, Daly CB, Cary JW (2000) Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by Aspergillus tamarii and A. ochraceoroseus. Appl Microbiol Biotechnol 53:605–609

    Article  CAS  Google Scholar 

  74. Peterson SW, Ito Y, Horn BW, Goto T (2001) Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A nomius. Mycologia 93:689–703

    Article  CAS  Google Scholar 

  75. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  Google Scholar 

  76. Allcroft R, Carnaghan RBA (1962) Groundnut toxicity. Aspergillus flavus toxin (aflatoxin) in animal products: preliminary communication. Vet Rec 74:863–864

    Google Scholar 

  77. Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31(1):71–82

    Article  CAS  Google Scholar 

  78. Frobish RA, Bradley BD, Wagner DD et al (1986) Aflatoxin residues in milk of dairy cows after ingestion of naturally contaminated grain. J Food Prot 49:781–785

    Article  CAS  Google Scholar 

  79. Campbell TC (1983) Mycotoxins. In: Wynder EE (ed) Environmental aspects of cancer: the role of macro and micro components of foods. Food and Nutrition Press, Westport

    Google Scholar 

  80. Dirheimer G (1998) Recent advances in the genotoxicity of mycotoxins. Rev Med Vet 149:605–616

    CAS  Google Scholar 

  81. Coulombe RA, Guarisco JA, Klein PJ, Hall JO (2005) Chemoprevention of aflatoxicosis in poultry by dietarybutylated hydroxytoluene. Anim Feed Sci Technol 121:217–225

    Article  CAS  Google Scholar 

  82. Wyllie TD, Morehouse LG (1977) Mycotoxic fungi, mycotoxins, mycotoxicoses. Marcel Dekker, New York

    Google Scholar 

  83. Al-Anati L, Petzinger E (2006) Immunotoxic activity of ochratoxin A. J Vet Pharmacol Ther 29:79–90

    Article  CAS  Google Scholar 

  84. Sweeney MJ, Dobson AD (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 43:141–158

    Article  CAS  Google Scholar 

  85. Duarte SC, Lino CM, Pena A (2010) Mycotoxin food and feed regulation and the specific case of ochratoxin A: a review of the worldwide status. Food Addit Contam Part A 27:1440–1450

    Article  CAS  Google Scholar 

  86. Jorgensen K (1998) Survey of pork, poultry, coffee, beer and pulses for ochratoxin A. Food Addit Contam 15:550–554

    Article  CAS  Google Scholar 

  87. Bau M, Bragulat MR, Abarca ML et al (2005) Ochratoxigenic species from Spanish wine grapes. Int J Food Microbiol 98:125–130

    Article  CAS  Google Scholar 

  88. Khoury A, Atoui A (2010) Ochratoxin A: general overview and actual molecular status. Toxins 2:461–493

    Article  CAS  Google Scholar 

  89. Stoev SD, Denev SA (2013) Porcine/chicken or human nephropathy as the result of joint mycotoxins interaction. Toxins 5:1503–1530

    Article  CAS  Google Scholar 

  90. Gelderblom WC, Jaskiewicz K, Marasas WF et al (1988) Fumonisins – novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811

    CAS  Google Scholar 

  91. Riley RT, Wang E, Schroeder JJ et al (1996) Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat Toxins 4:3–15

    Article  CAS  Google Scholar 

  92. Stoev SD (2010) Studies on carcinogenic and toxic effects of ochratoxin A in chicks. Toxins 2:649–664

    Article  CAS  Google Scholar 

  93. Stoev SD (2013) Food safety and increasing hazard ofmycotoxin occurrence in foods and feeds. Crit Rev Food Sci Nutr 53:887–901

    Article  CAS  Google Scholar 

  94. Tanaka T, Hasegawa A, Yamamoto S et al (1988) Worldwide contamination of cereals by the Fusarium mycotoxins nivalenol, deoxynivalenol, and zearalenone. 1. Survey of 19 countries. J Agric Food Chem 36:979–983

    Article  CAS  Google Scholar 

  95. CCFAC (2000) Codex committee on food additives and contaminants. Joint FAO/WHO expert committee on food additives: position paper on zearalenone. Publication CCFAC 00/19. Codex Alimentarius Commission, Rome

    Google Scholar 

  96. Christensen CM, Nelson GH, Mirocha CJ (1965) Effect on the white rat uterus of a toxic substance isolated from Fusarium. Appl Environ Microbiol 13:653–659

    CAS  Google Scholar 

  97. Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167:101–134

    Article  CAS  Google Scholar 

  98. Creppy EE (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127:19–28

    Article  CAS  Google Scholar 

  99. Zinedine A, Soriano JM, Moltó JC, Mañes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    Article  CAS  Google Scholar 

  100. Ahamed S, Foster JS, Bukovsky A, Wimalasena J (2001) Signal transduction through the ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Mol Carcinog 30:88–98

    Article  CAS  Google Scholar 

  101. Belhassena H, Jiménez-Díazb I, Arrebolab JP et al (2015) Zearalenone and its metabolites in urine and breast cancer risk: a case–control study in Tunisia. Chemosphere 128:1–6

    Article  CAS  Google Scholar 

  102. Ozsoy N, Selmanoglu G, Kockaya EA et al (2008) Effect of patulin on the interdigitating dendritic cells (IDCs) of rat thymus. Cell Biochem Funct 26:192–196

    Article  CAS  Google Scholar 

  103. Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins 2:613–631

    Article  CAS  Google Scholar 

  104. Saxena N, Ansari KM, Kumar R et al (2009) Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p(53) and p(21/WAF1) proteins in skin of mice. Toxicol Appl Pharmacol 234:192–201

    Article  CAS  Google Scholar 

  105. Anslow WK, Raistrick H, Smith G (1943) Antifungal substances from moulds. Part I. Patulin, a metabolic product of Penicillium patulum Banier and Penicillium expansum (Link). Thom Trans Soc Chem Ind 62:236

    Article  CAS  Google Scholar 

  106. Van Luijk A (1938) Antagonism of Penicillium spp. versus Pythium debaryanum. Chron Bot 4:210–211

    Google Scholar 

  107. Chain E, Florey HW, Jennings MA (1942) An antibacterial substance produced by Penicillium claviforme. Br J Exp Pathol 23:202–205

    CAS  Google Scholar 

  108. Bergel F, Morrison AL, Klein R et al (1943) An antibiotic substance from Aspergillus clavatus and Penicillium claviforme and its probable identity with patulin. Nature 152:750

    Article  CAS  Google Scholar 

  109. Philpot FJ (1943) A penicillin-like substance from Aspergillus giganteus Wehm. Nature 152:725

    Article  CAS  Google Scholar 

  110. Andersen B, Smedsgaard J, Frisvad JC (2004) Penicillium expansum:consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J Agric Food Chem 52:2421–2428

    Article  CAS  Google Scholar 

  111. Kwon O, Soung NK, Thimmegowda NR et al (2012) Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell Signal 24:943–950

    Article  CAS  Google Scholar 

  112. Wu TS, Liao YC, Yu FY et al (2008) Mechanism of patulin-induced apoptosis in human leukemia cells (HL-60). Toxicol Lett 183:105–111

    Article  CAS  Google Scholar 

  113. Boussabbeh M, Salem IB, Prola A (2015) Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicol Sci 144:328–337

    Article  CAS  Google Scholar 

  114. Ueno Y (1983) General toxicology. In: Ueno Y (ed) Trichothecenes: chemical, biological, and toxicological aspects. Elsevier, New York

    Google Scholar 

  115. Abouzied MM, Azcona-Olivera JI, Braselton WE, Pestka JJ (1991) Immunochemical assessment of mycotoxins in 1989 grain foods: evidence for deoxynivalenol (vomitoxin) contamination. Appl Environ Microbiol 57:672–677

    CAS  Google Scholar 

  116. Wissgott U, Bortlik K (1996) Prospects for new natural food colorants. Trends Food Sci Technol 7:298–302

    Article  CAS  Google Scholar 

  117. Pagano MC, Dhar PP (2015) Fungal pigments: an overview. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal biomolecules: sources, applications and recent developments. Wiley, New Jersey, USA

    Google Scholar 

  118. Hajjaj H, Blanc P, Groussac E et al (2000) Kinetic analysis of red pigment and citrinin by Monascus rubber as a function of organic acid accumulation. Enzyme Microb Technol 27:619–625

    Article  CAS  Google Scholar 

  119. Spiteller P (2015) Chemical ecology of fungi. Nat Prod Rep 32:971–993

    Article  CAS  Google Scholar 

  120. Firn RD, Jones CG (2003) Natural products – a simple model to explain chemical diversity. Nat Prod Rep 20:382–391

    Article  CAS  Google Scholar 

  121. Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440

    Article  CAS  Google Scholar 

  122. Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    Article  CAS  Google Scholar 

  123. Kang B, Zhang X, Wu Z et al (2014) Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzyme Microb Technol 55:50–57

    Article  CAS  Google Scholar 

  124. Caro Y, Anamale L, Fouillaud M et al (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193

    Article  CAS  Google Scholar 

  125. Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:109–123

    Article  CAS  Google Scholar 

  126. Bechtold T (2009) Natural colorants -quinoid, naphthoquinoid and anthraquinoid dyes. In: Bechtold T, Mussak R (eds) Handbook of natural colorants. Wiley, Chichester

    Chapter  Google Scholar 

  127. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 8:24

    Article  CAS  Google Scholar 

  128. Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. J Agric Food Chem 56:9981–9989

    Article  CAS  Google Scholar 

  129. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2012) Production of monascus-like pigments. European patent EP 2010/2262862 A2

    Google Scholar 

  130. Anyaogu DC, Mortensen UH (2015) Heterologous production of fungal secondary metabolites in Aspergilli. Front Microbiol 6:77

    Article  Google Scholar 

  131. Bicas JL, Marostica MR, Barros FFC et al (2013) Bioadditives produced by fermentation. In: Soccol CR, Pandey A, Larroche C (eds) Fermentation processes engineering in the food industry. CRC press, Boca Raton

    Google Scholar 

  132. Aguiar TQ, Silva R, Domingues L (2015) Ashbya gossypii beyond industrial riboflavin production: a historical perspective and emerging biotechnological applications. Biotechnol Adv. doi:10.1016/j.biotechadv.2015.10.001

    Google Scholar 

  133. Roukas T (2015) The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Crit Rev Biotechnol (preprint) 15:1–10. doi:10.3109/07388551.2014.989424

    Article  CAS  Google Scholar 

  134. Sardaryan E (2002) Strain of the microorganism Penicillium oxalicum var. Armeniaca and its application. US Patent 6,340,586 B1

    Google Scholar 

  135. Quirce S, Cuevas M, Diez-Gomez ML et al (1992) Respiratory allergy to Aspergillus derived enzymes in bakers asthma. J Allergy Clin Immunol 90:970–978

    Article  CAS  Google Scholar 

  136. Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  137. Baur X (2005) Enzymes as occupational and environmental respiratory sensitisers. Int Arch Occup Environ Health 78:279–286

    Article  CAS  Google Scholar 

  138. Coughlan MP (1985) Cellulases: production, properties and applications. Biochem Soc Trans 13:405–406

    Article  CAS  Google Scholar 

  139. Mandels M (1985) Applications of cellulases. Biochem Soc Trans 13:414–415

    Article  CAS  Google Scholar 

  140. Lachowsky F, Lopez M (2001) Occupational allergens. Curr Allergy Asthma Rep 1:587–593

    Article  CAS  Google Scholar 

  141. Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42

    Article  Google Scholar 

  142. Mercedes Dana M, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  CAS  Google Scholar 

  143. Kumar V, Parkhi V, Kenerley CM, Rathore KS (2009) Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta 230:277–291

    Article  CAS  Google Scholar 

  144. Rashad MM, Nooman MU (2009) Production, purification and characterization of extracellular invertase from Saccharomyses cerevisiae NRRL Y-12632 by solid-state fermentation of red carrot residue. Aust J Basic Appl Sci 3:1910–1919

    CAS  Google Scholar 

  145. Galhaup C, Goller S, Peterbauer CK et al (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    Article  CAS  Google Scholar 

  146. Call HP, Mucke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  147. Schlosser D, Grey R, Fritsche W (1997) Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Appl Microbiol Biotechnol 47:412–418

    Article  CAS  Google Scholar 

  148. Hmidet N, Nawani N, Ghorbel S (2015) Recent development in production and biotechnological application of microbial enzymes. BioMed Res Int. Article ID 280518

    Google Scholar 

  149. Nicolini C, Bruzzese D, Cambria MT et al (2013) Recombinant Laccase: I. enzyme cloning and characterization. J Cell Biochem 114:599–605

    Article  CAS  Google Scholar 

  150. Rodrigues C, Cassini STA, Antunes PWP et al (2015) Lipase and surfactant production by fungi isolated of oily residues of environmental sanitation in liquid and solid phase reactors. Int J Appl Sci Tech 5:46–54

    Google Scholar 

  151. Vaseghi Z, Najafpour GD, Mohseni S, Mahjoub S (2013) Production of active lipase by Rhizopus oryzae from sugarcane bagasse: solid state fermentation in a tray bioreactor. Int J Food Sci Technol 48:283–289

    Article  CAS  Google Scholar 

  152. Sawant R, Nagendran S (2014) Protease: an enzyme with multiple industrial applications. World J Pharm and Pharm Sci 3:568–579

    CAS  Google Scholar 

  153. Shakar S, Laxman RS (2015) Biophysicochemical characterization of an alkaline protease from Beauveria sp. MTCC 5184 with multiple applications. Appl Biochem Biotechnol 175:589–602

    Article  CAS  Google Scholar 

  154. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  Google Scholar 

  155. Halaouli S, Asther M, Sigoillot J-C et al (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232

    Article  CAS  Google Scholar 

  156. Patel SJ, Savanth VD (2015) Review on fungal xylanases and their applications. Int J Adv Res 3:311–315

    Google Scholar 

  157. Polizeli MLTM, Rizzatti ACS, Monti R et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  158. Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62

    Article  CAS  Google Scholar 

  159. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Article  CAS  Google Scholar 

  160. Green BJ, Beezhold DH (2011) Industrial fungal enzymes: an occupational allergen perspective. J Allergy. Article ID 682574

    Google Scholar 

  161. Katz ML, Mueller LV, Polyakov M, Weinstock SF (2006) Where have all the antibiotic patents gone? Nat Biotechnol 24:1529–1531

    Article  CAS  Google Scholar 

  162. Szewczyk E, Chiang Y-M, Oakley CE et al (2008) Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Appl Environ Microbiol 74:7607–7612

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishan Gopal Ramawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Goyal, S., Ramawat, K.G., Mérillon, JM. (2017). Different Shades of Fungal Metabolites: An Overview. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_34

Download citation

Publish with us

Policies and ethics