Skip to main content

Impact of Mycotoxins on Human Health

  • Reference work entry
  • First Online:
Fungal Metabolites

Abstract

Mycotoxins are secondary metabolites produced by filamentous fungi which contaminate a large fraction of the world’s food, mainly staple foods such as corn, cereals, groundnuts, and tree nuts, besides meat, milk, and eggs. This worldwide contamination of foods is an enormous problem to human populations, principally in less industrialized countries and in the rural areas of some developed countries. The adverse effects of mycotoxins on human health can be both acute and chronic, provoking problems such as liver cancer, reduction of immunity, alterations in the protein metabolism, gangrene, convulsions, and respiratory problems, among others. The economic impact of mycotoxins in foods includes increased health care costs and premature deaths. Some factors which influence the presence of mycotoxins in foods are related to environmental conditions, such as storage, that can be controlled without too much expense. The cleaning of contaminated foods, on the hand, is economically costly and rarely implemented, so it tends to be carried out mainly in developing countries. Aflatoxins, ergot alkaloids, ochratoxins, 3-nitropropionic acid, fumonisins, trichothecenes, and zearelenone, are the most important economically, although dozens of other mycotoxins can also be associated with human health risks. Despite international attempts to improve and implement legislation to control the presence of mycotoxins in foods, its implementation has been ineffective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AF:

Aflatoxins

BEN:

Balkan endemic nephropathy

CTN:

Citrinin

DAS:

Diacetoxyscirpenol

DON:

Deoxynivalenol

F:

Fumonisins

FUS-X:

Fusarenon X

HBV:

Hepatitis B virus

HT-2:

Toxin HT-2

IPH:

Idiopathic pulmonary hemosiderosis

LEM:

Equine leucoencephalomalacia

LSD:

Lysergic acid diethyl amide

NIV:

Nivalenol

OTA:

Ochratoxin A

T-2:

Toxin T-2

TCT:

Trichothecene

ZEN:

Zearalenone

References

  1. Blout WP (1961) Turkey “X” disease. Turkeys 9:52–57

    Google Scholar 

  2. Richard JL (2007) Some major mycotoxins and their mycotoxicoses– an overview. Int J Food Microbiol 119:3–10. doi:10.1016/j.ijfoodmicro.2007.07.019

    Article  CAS  Google Scholar 

  3. Marasas WFO, Nelson PO (1987) Mycotoxicology. The Pennsylvania State University Press, University Park, p 102

    Google Scholar 

  4. Dinis AM, Lino CM, Pena AS (2007) Ochratoxin A in nephropathic patients from two cities of central zone in Portugal. J Pharm Biomed Anal 44:553–557

    Article  CAS  Google Scholar 

  5. FAO (Food and Agriculture Organization of the United Nations) (2003) Manual on the application of the HACCP system in mycotoxin prevention and control. FAO Food Nutr Pap 73:1–124

    Google Scholar 

  6. Betina V (1984) Mycotoxins: production, isolation, separation, and purification. Elsevier, Amsterdam, p 528

    Google Scholar 

  7. Bhat RV, Krishnamachari KA (1977) Follow-up study of aflatoxic hepatitis in parts of western India. Indian J Med Res 66:55–58

    CAS  Google Scholar 

  8. Smith J, Wesselink C, Parr J, Sprosen JM, Fowke EA, Towers NR, Laboyrie LD (1995) Effect of zearalenone on ewe pregnancy rates. In: Toxinology and food safety. Toxinology and Food Safety Research Group, Ruakura Research Centre, Hamilton

    Google Scholar 

  9. Jarvis BB (2002) Chemistry and toxicology of molds isolated from water-damaged buildings. Mycotoxins and food safety. Adv Expt Med Biol 504:43–52

    Article  CAS  Google Scholar 

  10. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi:10.1128/CMR.16.3.497-516.2003

    Article  CAS  Google Scholar 

  11. CAST (2003) Mycotoxins: risks in plant, animal and human systems, report no. 139. Council for Agricultural Science and Technology, Ames

    Google Scholar 

  12. Shephard GS (2008) Impact of mycotoxins on human health in developing countries. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(2):146–151. doi:10.1080/02652030701567442

    Article  CAS  Google Scholar 

  13. Freire FCO, Kozakiewicz Z, Paterson RRM (1999) Mycoflora and mycotoxins of Brazilian cashew kernels. Mycopathologia 145:95–103

    Article  CAS  Google Scholar 

  14. Rocha MEB, Freire FCO, Maia FEF, Guedes MIF, Rondina D (2014) Mycotoxins and their effects on human and animal health. Food Control 36:159–165. doi:10.1016/j.foodcont.2013.08.021

    Article  CAS  Google Scholar 

  15. Resanović RD, Vučićević MZ, Trailović JBNI, Maslić – Strižak DN, Jaćević VM (2013) Mycotoxins and their effect on human health. J Nat Sci Matica Srpska Novi Sad 124:315–324. doi:10.2298/ZMSPN1324315R

    Article  Google Scholar 

  16. Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31:71–82. doi:10.1093/carcin/bgp264

    Article  CAS  Google Scholar 

  17. Frisvad JC, Nielsen KF, Samson RA (2006) Recommendations concerning the chronic problem of misidentification of mycotoxigenic fungi associated with foods and feeds. Adv Exp Med Biol 571:33–46

    Article  CAS  Google Scholar 

  18. Samson RA (2001) Current fungal taxonomy and mycotoxins. In: de Koe WJ, Samson RA, Van Egmond HP, Gilbert J, Sabino M (eds) Mycotoxins and phycotoxins in perspective at the turn of the century. Proceedings of the X international IUPAC symposium, mycotoxins and phycotoxins, Guaruja-Sao Paulo, May 21–25 2000, W. J. de Koe, Wageningen

    Google Scholar 

  19. Jennessen J, Nielsen KF, Houbraken J, Lyhne EK, Schnürer J, Frisvad JC, Samson RA (2005) Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. J Agric Food Chem 53:1833–1840

    Article  CAS  Google Scholar 

  20. Li FQ, Toyazaki N, Yoshizawa T (2001) Production of alternaria mycotoxins by Alternaria alternata isolated from weather-damaged wheat. J Food Prot 64:567–571

    Article  CAS  Google Scholar 

  21. Al-Sheikh HM (2015) LAMP-PCR detection of ochratoxigenic Aspergillus species collected from peanut kernel. Genet Mol Res 14:634–644. doi:10.4238/2015.January.30.5

    Article  CAS  Google Scholar 

  22. Sabater-Vilar M, Maas RF, De Bosschere H, Ducatelle R, Fink-Gremmels J (2004) Patulin produced by an Aspergillus clavatus isolated from feed containing malting residues associated with a lethal neurotoxicosis in cattle. Mycopathologia 158:419–426

    Article  CAS  Google Scholar 

  23. Pellegrino M, Alonso V, Vissio C, Larriestra A, Chiacchiera SM, Bogni C, Cavaglieri L (2013) Gliotoxinogenic Aspergillus fumigatus in the dairy herd environment. Mycotoxin Res 29:71–78. doi:10.1007/s12550-013-0162-2

    Article  CAS  Google Scholar 

  24. Soares C, Calado T, Venâncio A (2013) Mycotoxin production by Aspergillus niger aggregate strains isolated from harvested maize in three Portuguese regions. Rev Iberoam Micol 30:9–13. doi:10.1016/j.riam.2012.05.002

    Article  Google Scholar 

  25. Goto T, Wicklow DT, Ito Y (1996) Aflatoxin and cyclopiazonic acid production by a sclerotium-producing Aspergillus tamarii strain. Appl Environ Microbiol 62:4036–4038

    CAS  Google Scholar 

  26. Kim NY, Lee JH, Lee I, Ji GE (2014) An evaluation of aflatoxin and cyclopiazonic acid production in Aspergillus oryzae. J Food Prot 77:1010–1016. doi:10.4315/0362-028X.JFP-13-448

    Article  CAS  Google Scholar 

  27. Cai S, Zhu T, Du L, Zhao B, Li D, Gu Q (2011) Sterigmatocystins from the deep-sea-derived fungus Aspergillus versicolor. J Antibiot 64:193–196. doi:10.1038/ja.2010.154

    Article  CAS  Google Scholar 

  28. López TA, Campero CM, Chayer R, Hoyos M (1997) Ergotism and photosensitization in swine produced by the combined ingestion of Claviceps purpurea sclerotia and Ammi majus seeds. J Vet Diagn Invest 9:68–71. doi:10.1177/104063879700900112

    Article  Google Scholar 

  29. L'vova LS, Sedova IB, Kizlenko OI, Tutel’ian VA (2003) Production of fumonisins by Fusarium moniliforme strains isolated from corn grain. Prikl Biokhim Mikrobiol 39:222–227

    Google Scholar 

  30. Li C, Zuo C, Deng G, Kuang R, Yang Q, Hu C, Sheng O, Zhang S, Ma L, Wei Y, Yang J, Liu S, Biswas MK, Viljoen A, Yi G (2013) Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS One 26:e70226. doi:10.1371/journal.pone.0070226

    Article  CAS  Google Scholar 

  31. Kuhnem PR, Del Ponte EM, Dong Y, Bergstrom GC (2015) Fusarium graminearum isolates from wheat and maize in New York show similar range of aggressiveness and toxigenicity in cross-species pathogenicity tests. Phytopathology 105:441–448. doi:10.1094/PHYTO-07-14-0208-R

    Article  CAS  Google Scholar 

  32. Jeswal P, Kumar D (2015) Mycobiota and natural incidence of aflatoxins, ochratoxin A, and citrinin in Indian spices confirmed by LC-MS/MS. Int J Microbiol 2015:1–8. doi:10.1155/2015/242486

    Article  CAS  Google Scholar 

  33. Ndagijimana M, Chaves-López C, Corsetti A, Tofalo R, Sergi M, Paparella A, Guerzoni ME, Suzzi G (2008) Growth and metabolites production by Penicillium brevicompactum in yoghurt. Int J Food Microbiol 127:276–283. doi:10.1016/j.ijfoodmicro.2008.07.019

    Article  CAS  Google Scholar 

  34. Doores S (1983) The microbiology of apples and apple products. Crit Rev Food Sci Nutr 19(2):133–49

    Article  CAS  Google Scholar 

  35. Sonjak S, Ličen M, Frisvad JC, Gunde-Cimerman N (2011) Salting of dry-cured meat – a potential cause of contamination with the ochratoxin A-producing species Penicillium nordicum. Food Microbiol 28:1111–1116. doi:10.1016/j.fm.2011.02.007

    Article  CAS  Google Scholar 

  36. Wawrzyniak J, Waśkiewicz A (2014) Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:139–148. doi:10.1080/19440049.2013.861933

    Article  CAS  Google Scholar 

  37. Wu MT, Ayres C, Koehler PE (1974) Production of citrinin by Penicillium viridicatum on country-cured ham. Appl Microbiol 27:427–428

    CAS  Google Scholar 

  38. Kuhn DM, Ghannoum MA (2003) Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 1:144–172. doi:10.1128/CMR.16.1.144-172.2003

    Article  Google Scholar 

  39. Purokivi MK, Hirvonen MR, Randell JT, Roponen M, Meklin T, Nevalainen A, Husman T, Tukiainen HO (2001) Changes in pro-inflammatory cytokines in association with exposure to moisture-damaged building microbes. Eur J Epidemiol 18:951–958. doi:10.1183/09031936.01.00201201

    CAS  Google Scholar 

  40. Vesper SJ, Vesper MJ (2002) Stachylysin may be a cause of hemorrhaging in humans exposed to Stachybotrys chartarum. Infect Immun 70:2065–2069. doi:10.1128/IAI.70.4.2065-2069.2002

    Article  CAS  Google Scholar 

  41. Pitt JI (2000) Toxigenic fungi and mycotoxins. Br Med Bull 56:184–192

    Article  CAS  Google Scholar 

  42. Williams KC, Blaney BJ, Magee MH (1989) Responses of pigs fed wheat naturally infected with Fusarium graminearum and containing the mycotoxins 4-deoxyruvalenol and zearalenone. Aust J Agric Res 40:1095–1105

    Google Scholar 

  43. Stoloff L (1977) Aflatoxins – an overview. In: Rodncks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox, Park Forest South

    Google Scholar 

  44. Carnaghan RB, Hartley RD, O’Kelly J (1963) Toxicity and fluorescence properties of the aflatoxins. Nature 200:1101

    Article  CAS  Google Scholar 

  45. Eaton DL, Groopman JD (1994) The toxicology of the aflatoxins: human health, veterinary, and agricultural significance. Academic, London

    Google Scholar 

  46. International Agency for Research on Cancer (IARC) (1993) Ochratoxin A. Monographs on the evaluation of carcinogenic risks to humans, some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins, vol 56. International Agency for Research on Cancer, Lyon

    Google Scholar 

  47. Hendrickse RG (1985) Kwashiorkor: 50 years of myth and mystery. Do aflatoxins provide a clue? Acta Leiden 53:11–30

    CAS  Google Scholar 

  48. Ramjee G, Berjak P, Adhikari M, Dutton MF (1992) Aflatoxins and kwashiorkor in Durban, South Africa. Ann Trop Paediatr 12:241–247

    Article  CAS  Google Scholar 

  49. Griffiths BB, Rea WJ, Johnson AR, Ross GH (1996) Mitogenic effects of mycotoxins on T4 lymphocytes. Microbios 86:127–134

    CAS  Google Scholar 

  50. Atasever M, Yildirim Y, Atasever M, Tastekin A (2014) Assessment of aflatoxin M1 in maternal breast milk in Eastern Turkey. Food Chem Toxicol 66:147–149

    Article  CAS  Google Scholar 

  51. Henry SH, Bosch FX, Bowers JC (2002) Aflatoxin, hepatitis and worldwide liver cancer risks. Adv Exp Med Biol 504:229–233

    Article  CAS  Google Scholar 

  52. Shephard GS (2004) Mycotoxins worldwide: current issues in Africa. In: Barug D, Van Egmond H, Lopez-Garcia R, Van Ossenbruggen T, Visconti A (eds) Meeting the mycotoxin menace. Wageningen Academic, Wageningen

    Google Scholar 

  53. Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J, Backer L, Dahiye AM, Misore A, DeCock K, Rubin C, Kenya Aflatoxicosis Investigation Group (2005) Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ Health Perspect 113:1763–1767

    Article  CAS  Google Scholar 

  54. Andersen SJ (1995) Compositional changes in surface mycoflora during ripening of naturally fermented sausages. J Food Prot 58:426–429

    Article  Google Scholar 

  55. Saito M, Enomoto M, Tatsuno T (1971) Yellowed rice toxins: luteroskyrin and related compounds, chlorine-containing compounds and citrinin. In: Ciegler A, Kadis S, Ajl SJ (eds) Microbial toxins. Academic, New York

    Google Scholar 

  56. Flajs D, Peraica M (2009) Toxicological properties of citrinin. Arch Ind Hyg Toxicol 60:457–464

    CAS  Google Scholar 

  57. Schiff PL Jr (2006) Ergot and its alkaloids. Am J Pharm Educ 5:1–10

    Google Scholar 

  58. World Health Organization International Agency for Research on Cancer (WHO-IARC) (1993) IARC monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, Lyon

    Google Scholar 

  59. Flieger M, Wurst M, Shelby R (1997) Ergot alkaloids – sources, structures and analytical methods. Folia Microbiol 42:3–29

    Article  CAS  Google Scholar 

  60. Lorenz K (1979) Ergot on cereal grains. Crit Rev Food Sci Nutr 11:311–354

    Article  CAS  Google Scholar 

  61. Krishnamachari KA, Bhat RV (1976) Poisoning by ergoty bajra (pearl millet) in man. Indian J Med Res 64:1624–1628

    CAS  Google Scholar 

  62. Tulpule PG, Bhat RV (1978) Food toxins and their implication in human health. Indian J Med Res 168:99–108

    Google Scholar 

  63. Peraica M, Radica B, Lucivca A, Pavlovic M (1999) Toxic effects of mycotoxins in humans. Bull World Health Organ 9:754–766

    Google Scholar 

  64. Bezuidenhout CS, Gelderblom WCA, Gorst-Allman CP, Horak RM, Walter FO, Marasas WFO, Spiteller G, Vleggaar R (1988) Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun 11:743–745. doi:10.1039/C39880000743

    Article  Google Scholar 

  65. Marasas WFO, Kellerman TS, Gelderblom WCA, Coetzer JAW, Thiel PG, van der Lugt JJ (1988) Leukoencephalomalacia in a horse induced by fumonisin B, isolated from Fusarium moniliforme. Onderstepoort J Vet Res 55:197–203

    CAS  Google Scholar 

  66. Ross PF, Nelson PE, Richard JL, Osweiler GD, Rice LG, Plattner RD, Wilson TM (1990) Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl Environ Microbiol 56:3225–3226

    CAS  Google Scholar 

  67. Shier WT (1992) Sphingosine analogs: an emerging new class of toxins that includes the fumonisins. J Toxicol Toxin Rev 11:241–257

    Article  CAS  Google Scholar 

  68. Riley RT, Wang E, Schroeder JJ, Smith ER, Plattner RD, Abbas H, Yoo HS, Merrill AH Jr (1996) Evidence for disruption of sphingohpid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat Toxins 4:5–15

    Article  Google Scholar 

  69. Merrill AH, Van Echten G, Wang E, Sandhoff K (1993) Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolip biosynthesis in cultured neuron in situ. J Biol Chem 268:2299–2306

    Google Scholar 

  70. Pozzi CR, Arcaro JRP, Júnior IA, Fagundes H, Corrêa B (2002) Aspectos relacionados à ocorrência e mecanismo de ação de fumonisinas. Ciênc Rural 32:901–907

    Article  Google Scholar 

  71. Ah-Seo J, Won Lee Y (1999) Natural occurrence of the C series of fumonisins in moldy corn. Appl Environ Microbiol 65:1331–1334

    Google Scholar 

  72. Musser SM, Plattener RD (1997) Fumonisin composition in culture of Fusarium moniliforme, Fusarium proliferatum and Fusarium nygamae. J Agric Food Chem 45:1169–1173

    Article  CAS  Google Scholar 

  73. Bucci T, Hansen DK, Laborde JB (1996) Leucoencephalomacia and hemorrhage in the brain of rabbits gavaged with mycotoxin fumonisin B1. Nat Toxins 4:51–52

    Article  CAS  Google Scholar 

  74. Fandohan P, Hell K, Marasas WFO, Winfgield MJ (2003) Infection of maize by Fusarium species and contamination with fumonisin in Africa. Afr J Biotechnol 2:570–579

    Article  CAS  Google Scholar 

  75. Harrison LR, Colvin BM, Greene JT, Newman LE, Cole JR (1990) Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Invest 2:217–221

    Article  CAS  Google Scholar 

  76. Gelderblom WCA, Jaskiewicz K, Marasas WFO, Thiel PG, Horak RM, Vleggaar R, Kirck NPJ (1988) Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811

    CAS  Google Scholar 

  77. Gelderblom WCA, Jaskiewickz K, Marasas WFO, Thiel PG (1991) Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1 in rats. Carcinogenesis 12:1247–1251

    Article  CAS  Google Scholar 

  78. Pozzi CR, Correa B, Xavier JG, Direito GM, Orsi RB, Matarazzo SV (2000) Effects of prolonged oral administration of fumonisin B1 and aflatoxin B1 in rats. Mycopathologia 151:21–27

    Article  Google Scholar 

  79. Sydenham EW, Shephard GS, Thiel PG, Marasas WFO, Stockenstrom S (1991) Fumonisin contamination of commercial corn-based human food stuffs. J Agric Food Chem 39:2014–2018

    Article  CAS  Google Scholar 

  80. Cole RJ, Kirksey JW, Cutler HG, Doupnik BL, Peckham JC (1973) Toxin from Fusarium moniliforme: effects on plants and animals. Science 179:1324–1326. doi:10.1126/science.179.4080.1324

    Article  CAS  Google Scholar 

  81. Leoni LAB, Soares LMV (2003) Survey of moniliformin in corn cultivated in the state of São Paulo and in corn products commercialized in the city of Campinas, SP. Braz J Microbiol 34:13–15. doi:10.1590/S1517-83822003000100004

    Article  CAS  Google Scholar 

  82. Van Der Merwe KJ, Steyne PS, Fourie LF, Scott DB, Theron JJ (1965) Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 205:1112–1113

    Article  Google Scholar 

  83. Teren J, Varga J, Hamari Z, Rinyu E, Kevei F (1996) Immunochemical detection of ochratoxin A in black Aspergillus strains. Mycopathologia 134:171–186

    Article  CAS  Google Scholar 

  84. Heenan CN, Shaw KJ, Pitt JI (1998) Ochratoxin A production by Aspergillus carbonarius and A. niger isolates and detection using coconut cream agar. J Food Mycol 1:67–72

    CAS  Google Scholar 

  85. Beardall JM, Miller JD (1994) Disease in humans with mycotoxins as possible causes. In: Miller JD, Trenholm HL (eds) Mycotoxins in grains: compounds other than aflatoxin. Eagen Press, St. Paul

    Google Scholar 

  86. Kuiper–Goodman T, Scott PM (1989) Risk assessment of the mycotoxin ochratoxin A. Biomed Environ Sci 2:179–248

    Google Scholar 

  87. Pléstina R (1996) Nephrotoxicity of ochratoxin A. Food Addit Contam 13:49–50

    Google Scholar 

  88. Schlatter CH, Studer-Rohr J, Rásonyi TH (1996) Carcinogenicity and kinetic aspects of ochratoxin A. Food Addit Contam 13:43–44

    CAS  Google Scholar 

  89. Krogh P, Hald B, Plestina R, Ceovic S (1977) Balkan (endemic) nephropathy and foodborn ochratoxin A: preliminar results of survey of foodstuffs. Acta Pathol Microbiol Scand B 85:238–240

    CAS  Google Scholar 

  90. Radovanovic Z, Jankovic S, Jevremovic I (1991) Incidence of tumors of urinary organs in a focus of Balkan endemic nephropathy. Kidney Int 34:S75–S76

    CAS  Google Scholar 

  91. Marquardt RR, Frohlich AA (1992) A review of recent advances in understanding ochratoxicosis. J Anim Sci 70:3968–3988

    Article  CAS  Google Scholar 

  92. Van Egmond HP, Speijers GJA (1994) Survey of data on the incidence and levels of ochratoxin A in food and animal feed worldwide. J Nat Toxins 3:125–144

    CAS  Google Scholar 

  93. Reddy L, Bhoola K (2010) Ochratoxins – food contaminants: impact on human health. Toxins 2:771–779

    Article  CAS  Google Scholar 

  94. Caldas ED, Silva SC, Oliveira JN (2002) Aflatoxinas e ochratoxina A em alimentos e riscos para a saúde humana. Rev Saude Publica 36:319–323

    Article  Google Scholar 

  95. Prado G, Oliveira MS, Abrantes FM, Santos LG, Veloso T, Barroso ES (2000) Incidência de ochratoxina A em café torrado e moído e em café solúvel consumido na cidade de Belo Horizonte, MG. Ciênc Tecnol Aliment 20:192–196

    CAS  Google Scholar 

  96. Ciegler A, Detroy RW, Lillejoj EB (1971) Patulin, penicillic acid and other carcinogenic lactones. In: Ciegler A, Kadis S, Ajl SJ (eds) Microbial toxins. Academic, New York

    Google Scholar 

  97. Patulin CA (1977) In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox, Park Forest South

    Google Scholar 

  98. Moss MO, Long MT (2002) Fate of patulin in the presence of yeast Saccharomyces cerevisiae. Food Addit Contam 19:387–399

    Article  CAS  Google Scholar 

  99. Trucksess MW, Tang Y (2001) Solid phase extraction method for patulin in apple juice and unfiltered apple juice. Methods Mol Biol 157:205–213

    CAS  Google Scholar 

  100. Ueno Y (1983) Trichothecenes: chemical, biological and toxicological aspects. Elsevier, Amsterdam/New York

    Google Scholar 

  101. Joffee A (1986) Fusarium species: their biology and toxicology. Wiley, New York, pp 225–292

    Google Scholar 

  102. Scott PM (1989) The natural occurrence of trichothecenes. In: Beasley VR (ed) Trichothecene mycotoxicosis: pathophysiologic effects. CRC Press, Boca Raton

    Google Scholar 

  103. McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–814. doi:10.3390/toxins3070802

    Article  CAS  Google Scholar 

  104. Stafford ME, McLaughlin CS (1973) Trichodermin, a possible inhibitor of the termination process of protein synthesis. J Cell Physiol 82:121–128

    Article  CAS  Google Scholar 

  105. Wei CM, Campbell M, McLaughlin CS, Vaughan MH (1974) Binding of trichodermin to mammalian ribosomes and its inhibition by other 12,13-epoxytrichothecenes. Mol Cell Biochem 3:215–219

    Article  CAS  Google Scholar 

  106. Miller JD, ApSimon JW, Blackwell BA, Greenhalgh R, Taylor A (2001) Deoxynivalenol: a 25 year perspective on a trichothecene of agricultural importance. In: Summerell BA, Leslie JF, Back- house D, Bryden WL, Burgess LW (eds) Fusarium. Nelson E P memorial symposium. APS Press, St. Paul, pp 310–319

    Google Scholar 

  107. Didwania N, Josh M (2013) Mycotoxins: a critical review on occurrence and significance. Int J Pharm Pharm Sci 3:1014–1019

    Google Scholar 

  108. Minervini F, Fornelli F, Flynn KM (2004) Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B1 in a human erythroleukemia cell line. Toxicol In Vitro 18:21–28

    Article  CAS  Google Scholar 

  109. Bamburg JR, Riggs NV, Strong FM (1968) The structures of toxins from two strains of Fusarium tricinctum. Tetrahedron 24:3329–3336

    Article  CAS  Google Scholar 

  110. Miller JD (2008) Mycotoxins in small grains and maize: old problems, new challenges. Food Addit Contam 25(2):219–230. doi:10.1080/02652030701744520

    Article  CAS  Google Scholar 

  111. Ueno Y (1989) Trichothecene mycotoxins: mycology, chemistry, and toxicology. Adv Food Nutr Res 3:301–353

    Google Scholar 

  112. Johnsen H, Odden E, Johnsen BA, Boyum A, Amundsen E (1988) Cytotoxicity and effects of T-2 toxin on plasma proteins involved in coagulation, fibrinolysis and kallikrein-kinin system. Arch Toxicol 3:237–240

    Article  Google Scholar 

  113. Milanez TV, Valente-Soares LM, Baptista GG (2006) Occurrence of trichothecene mycotoxins in Brazilian corn-based food products. Food Control 17:293–298. doi:10.1016/j.foodcont.2004.11.002

    Article  CAS  Google Scholar 

  114. Nelson BD (2001) Stachybotrys chartarum: the toxic indoor mold. APSnet features. Online. doi:10.1094/APSnetFeature-2001-1101

    Google Scholar 

  115. Li Y, Wang Z, Beier RC, Shen J, Smet DD, Saeger SD, Zhang S (2011) T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agric Food Chem 59:3441–3453. doi:10.1021/jf200767q

    Article  CAS  Google Scholar 

  116. Yang GH, Jarvis BB, Chung YJ, Pestka JJ (2000) Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol Appl Pharmacol 164:149–160. doi:10.1006/taap.1999.8888

    Article  CAS  Google Scholar 

  117. Bitnun A, Nosal RM (1999) Stachybotrys chartarum (atra) contamination of the indoor environment: health implications. Paediatr Child Health 4:125–129

    CAS  Google Scholar 

  118. Hurd RN (1977) Structure activity relationships in zearalenones. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox Publications, Park Forest South

    Google Scholar 

  119. Painter K (1997) Puberty signs evident in 7-and 8-year old girls. USA Today, Apr 8, P.A-1

    Google Scholar 

  120. Van Egmond HP, Dekker WH (1995) Worldwide regulations for mycotoxins in 1994. Nat Toxins 3:332–336

    Article  Google Scholar 

  121. Verardi G, Froidmont-Cörtz I (1995) Overview of community legislation in the field of official control of mycotoxins in feedingstuffs. Nat Toxins 3:248–256

    Article  CAS  Google Scholar 

  122. Van Egmond HP, Jonker MA (2004) Worldwide regulations on aflatoxins- the situation in 2002. J Toxicol Toxin Rev 23:273–293

    Article  CAS  Google Scholar 

  123. Van Egmond HP, Ronald C, Schothorst RC, Jonker MA (2007) Regulations relating to mycotoxins in food. Perspectives in a global and European context. Anal Bioanal Chem 389:147–157. doi:10.1007/s00216-007-1317-9

    Article  CAS  Google Scholar 

  124. Van Egmond HP (2004) Natural toxins: risks, regulations and the analytical situation in Europe. Anal Bioanal Chem 378:1152–1160. doi:10.1007/s00216-003-2373-4

    Article  CAS  Google Scholar 

  125. Fonseca H (2006) Legislação sobre micotoxinas. http://www.micotoxinas.com.br. Accessed Nov 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Das Chagas Oliveira Freire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Freire, F.D.C.O., da Rocha, M.E.B. (2017). Impact of Mycotoxins on Human Health. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_21

Download citation

Publish with us

Policies and ethics