Skip to main content

Fungal Protease Inhibitors

  • Reference work entry
  • First Online:
  • 2476 Accesses

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Fungi constitute an enormous unexplored pool of protease inhibitors. Only a handful of fungal protease inhibitors have been exhaustively characterized, but they reveal great versatility and many unique features and novel types of inhibitory mechanisms. Small molecule and protein inhibitors of all catalytic classes of proteases have been identified in fungi, those that target serine proteases predominating. As important regulators of proteases, the function and potential applications of protease inhibitors are intimately connected with those of proteases they inhibit. In this chapter, both small molecule and protein protease inhibitors from fungi are described, including their biochemical characteristics, inhibitory mechanisms, and biological functions together with their potential for application in the fields of biotechnology, crop protection, and medicine.

This is a preview of subscription content, log in via an institution.

Abbreviations

ACE:

Angiotensin I-converting enzyme

AFLEI:

Aspergillus flavus elastase inhibitor

AFUEI:

Aspergillus fumigatus elastase inhibitor

BIR:

Baculoviral inhibitor of apoptosis protein repeat

CVPI:

Coriolus versicolor pepsin inhibitor

E-64:

l-N-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane

GLPIA2:

Ganoderma lucidum proteinase A inhibitor 2

IAP:

Inhibitor of apoptosis

LeSPI:

Lentinula edodes serine protease inhibitor

PDB:

Protein Data Bank

POIA:

Pleurotus ostreatus proteinase A inhibitor

References

  1. Kudryavtseva OA, Dunaevsky YE, Kamzolkina OV, Belozersky MA (2008) Fungal proteolytic enzymes: Features of the extracellular proteases of xylotrophic basidiomycetes. Microbiology 77(6):643–653

    Article  CAS  Google Scholar 

  2. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597–635

    CAS  Google Scholar 

  3. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283(45):30433–30437

    Article  CAS  Google Scholar 

  4. Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220(2):183–197

    Article  CAS  Google Scholar 

  5. Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171(5):299–323

    Article  CAS  Google Scholar 

  6. Maeda H (1996) Role of microbial proteases in pathogenesis. Microbiol Immunol 40(10):685–699

    Article  CAS  Google Scholar 

  7. Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292(5–6):405–419

    Article  CAS  Google Scholar 

  8. Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290(Pt 1):205–218

    Article  CAS  Google Scholar 

  9. Rawlings ND, Barrett AJ, Bateman A (2011) Asparagine peptide lyases: a seventh catalytic type of proteolytic enzymes. J Biol Chem 286(44):38321–38328

    Article  CAS  Google Scholar 

  10. Barrett AJ (2001) Proteolytic enzymes: nomenclature and classification. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes: a practical approach, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  11. Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42(Database issue):D503–509

    Article  CAS  Google Scholar 

  12. Sabotič J, Kos J (2012) Microbial and fungal protease inhibitors–current and potential applications. Appl Microbiol Biotechnol 93(4):1351–1375

    Article  CAS  Google Scholar 

  13. Sharma R (2012) Enzyme inhibition: mechanisms and scope. In: Sharma R (ed) Enzyme inhibition and bioapplications. InTech, Rijeka

    Chapter  Google Scholar 

  14. Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378(Pt 3):705–716

    Article  CAS  Google Scholar 

  15. Salvesen G, Nagase H (1989) Inhibition of proteolytic enzymes. In: Benyou RJ, Bond JS (eds) Proteolytic enzymes: a practical approach. IRL Press, Oxford

    Google Scholar 

  16. Rawlings ND, Barrett AJ, Bateman A (2014) Using the MEROPS database for proteolytic enzymes and their inhibitors and substrates. Current Protoc Bioinformatics 48:1.25.1–1.25.33

    Article  Google Scholar 

  17. Farady CJ, Craik CS (2010) Mechanisms of macromolecular protease inhibitors. Chembiochem 11(17):2341–2346

    Article  CAS  Google Scholar 

  18. Engh RA, Huber R, Bode W, Schulze AJ (1995) Divining the serpin inhibition mechanism: a suicide substrate 'springe'? Trends Biotechnol 13(12):503–510

    Article  CAS  Google Scholar 

  19. Pike RN, Bottomley SP, Irving JA, Bird PI, Whisstock JC (2002) Serpins: finely balanced conformational traps. IUBMB Life 54(1):1–7

    Article  CAS  Google Scholar 

  20. Renko M, Sabotič J, Turk D (2012) Beta-trefoil inhibitors–from the work of Kunitz onward. Biol Chem 393(10):1043–1054

    Article  CAS  Google Scholar 

  21. Schechter I, Berger A (1967) On the size of the active site in proteases I. Papain. Biochem Biophys Res Commun 27(2):157–162

    Article  CAS  Google Scholar 

  22. Krowarsch D, Cierpicki T, Jelen F, Otlewski J (2003) Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 60(11):2427–2444

    Article  CAS  Google Scholar 

  23. Hanada K, Tamai M, Yamagishi M, Ohmura S, Sawada J, Tanaka I (1978) Isolation and characterization of E-64, a new thiol protease inhibitor. Agric Biol Chem 42(3):523–528

    CAS  Google Scholar 

  24. Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102(12):4639–4750

    Article  CAS  Google Scholar 

  25. Sato N, Horiuchi T, Hamano M, Sekine H, Chiba S, Yamamoto H, Yoshioka T, Kimura I, Satake M, Ida Y (1996) Kojistatin A, a new cysteine protease inhibitor produced by Aspergillus oryzae. Biosci Biotechnol Biochem 60(10):1747–1748

    Article  CAS  Google Scholar 

  26. Shindo K, Suzuki H, Okuda T (2002) Paecilopeptin, a new cathepsin S inhibitor produced by Paecilomyces carneus. Biosci Biotechnol Biochem 66(11):2444–2448

    Article  CAS  Google Scholar 

  27. Kimura T, Tsuchiya K, Omura S (1984) Prohisin, new thiol protease inhibitor produced by Cephalosporium sp. KM 388. Agric Biol Chem 48(6):1685–1686

    CAS  Google Scholar 

  28. Singh SB, Cordingley MG, Ball RG, Smith JL, Dombrowski AW, Goetz MA (1991) Structure and stereochemistry of thysanone - a novel human rhinovirus 3c-protease inhibitor from Thysanophora penicilloides. Tetrahedron Lett 32(39):5279–5282

    Article  CAS  Google Scholar 

  29. Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T, Ohnuki T, Komatsubara S (2000) TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093 - Taxonomy, production, isolation, and biological activities. J Antibiotics 53(2):105–109

    Article  CAS  Google Scholar 

  30. Basse N, Piguel S, Papapostolou D, Ferrier-Berthelot A, Richy N, Pagano M, Sarthou P, Sobczak-Thepot J, Reboud-Ravaux M, Vidal J (2007) Linear TMC-95-based proteasome inhibitors. J Med Chem 50(12):2842–2850

    Article  CAS  Google Scholar 

  31. Desvergne A, Genin E, Marechal X, Gallastegui N, Dufau L, Richy N, Groll M, Vidal J, Reboud-Ravaux M (2013) Dimerized linear mimics of a natural cyclopeptide (TMC-95A) are potent noncovalent inhibitors of the eukaryotic 20S proteasome. J Med Chem 56(8):3367–3378

    Article  CAS  Google Scholar 

  32. Groll M, Gallastegui N, Marechal X, Le Ravalec V, Basse N, Richy N, Genin E, Huber R, Moroder L, Vidal J, Reboud-Ravaux M (2010) 20S proteasome inhibition: designing noncovalent linear peptide mimics of the natural product TMC-95A. ChemMedChem 5(10):1701–1705

    Article  CAS  Google Scholar 

  33. Groll M, Gotz M, Kaiser M, Weyher E, Moroder L (2006) TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. Chem Biol 13(6):607–614

    Article  CAS  Google Scholar 

  34. Groll M, Huber R (2004) Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach. Biochim Et Biophys Acta-Mol Cell Res 1695(1–3):33–44

    Article  CAS  Google Scholar 

  35. Kaiser M, Groll M, Renner C, Huber R, Moroder L (2002) The core structure of TMC-95A is a promising lead for reversible proteasome inhibition. Angew Chem Int Ed Engl 41(5):780–3

    Article  CAS  Google Scholar 

  36. Dolan SK, O'Keeffe G, Jones GW, Doyle S (2015) Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends Microbiol 23(7):419–428

    Article  CAS  Google Scholar 

  37. Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C (2012) Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 93(2):467–472

    Article  CAS  Google Scholar 

  38. Hatabu T, Hagiwara M, Taguchi N, Kiyozawa M, Suzuki M, Kano S, Sato K (2006) Plasmodium falciparum: The fungal metabolite gliotoxin inhibits proteasome proteolytic activity and exerts a plasmodicidal effect on Plasmodium falciparum. Exp Parasitol 112(3):179–183

    Article  CAS  Google Scholar 

  39. Kroll M, Arenzana-Seisdedos F, Bachelerie F, Thomas D, Friguet B, Conconi M (1999) The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome. Chem Biol 6(10):689–698

    Article  CAS  Google Scholar 

  40. Liu DZ, Wang F, Liao TG, Tang JG, Steglich W, Zhu HJ, Liu JK (2006) Vibralactone: A lipase inhibitor with an unusual fused beta-lactone produced by cultures of the basidiomycete Boreostereum vibrans. Org Lett 8(25):5749–5752

    Article  CAS  Google Scholar 

  41. Chen HP, Zhao ZZ, Yin RH, Yin X, Feng T, Li ZH, Wei K, Liu JK (2014) Six new vibralactone derivatives from cultures of the fungus Boreostereum vibrans. Nat Product Bioprospect 4(5):271–276

    Article  CAS  Google Scholar 

  42. Zeiler E, Braun N, Bottcher T, Kastenmuller A, Weinkauf S, Sieber SA (2011) Vibralactone as a tool to study the activity and structure of the ClpP1P2 complex from Listeria monocytogenes. Angew Chem Int Ed Engl 50(46):11001–11004

    Article  CAS  Google Scholar 

  43. Hwang JS, Song KS, Kim WG, Lee TH, Koshino H, Yoo ID (1997) Polyozellin, a new inhibitor of prolyl endopeptidase from Polyozellus multiplex. J Antibiot 50(9):773–777

    Article  CAS  Google Scholar 

  44. Kim SI, Park IH, Song KS (2002) kynapcin-13 and −28, new benzofuran prolyl endopeptidase inhibitors from Polyozellus multiplex. J Antibiot 55(7):623–628

    Article  CAS  Google Scholar 

  45. Lee HJ, Rhee IK, Lee KB, Yoo ID, Song KS (2000) Kynapcin-12, a new p-terphenyl derivative from Polyozellus multiplex, inhibits prolyl endopeptidase. J Antibiot 53(7):714–719

    Article  CAS  Google Scholar 

  46. Song KS, Raskin I (2002) A prolyl endopeptidase-inhibiting benzofuran dimer from Polyozellus multiflex. J Nat Prod 65(1):76–78

    Article  CAS  Google Scholar 

  47. Eble TE, Hanson FR (1951) Fumagillin, an antibiotic from Aspergillus fumigatus H-3. Antibiotics Chemother 1(1):54–58

    CAS  Google Scholar 

  48. Furness MS, Robinson TP, Ehlers T, Hubbard RB, Arbiser JL, Goldsmith DJ, Bowen JP (2005) Antiangiogenic agents: studies on fumagillin and curcumin analogs. Curr Pharm Des 11(3):357–373

    Article  CAS  Google Scholar 

  49. Lefkove B, Govindarajan B, Arbiser JL (2007) Fumagillin: an anti-infective as a parent molecule for novel angiogenesis inhibitors. Expert Rev Anti Infect Ther 5(4):573–579

    Article  CAS  Google Scholar 

  50. van den Heever JP, Thompson TS, Curtis JM, Ibrahim A, Pernal SF (2014) Fumagillin: an overview of recent scientific advances and their significance for apiculture. J Agric Food Chem 62(13):2728–2737

    Article  CAS  Google Scholar 

  51. Dunaevsky YE, Popova VV, Semenova TA, Beliakova GA, Belozersky MA (2014) Fungal inhibitors of proteolytic enzymes: classification, properties, possible biological roles, and perspectives for practical use. Biochimie 101C:10–20

    Article  CAS  Google Scholar 

  52. Steenbakkers PJ, Irving JA, Harhangi HR, Swinkels WJ, Akhmanova A, Dijkerman R, Jetten MS, van der Drift C, Whisstock JC, Op den Camp HJ (2008) A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Mycol Res 112(Pt 8):999–1006

    Article  CAS  Google Scholar 

  53. Kojima S, Deguchi M, Miura K (1999) Involvement of the C-terminal region of yeast proteinase B inhibitor 2 in its inhibitory action. J Mol Biol 286(3):775–785

    Article  CAS  Google Scholar 

  54. Kojima S, Minagawa T, Miura K (1997) The propeptide of subtilisin BPN' as a temporary inhibitor and effect of an amino acid replacement on its inhibitory activity. FEBS Lett 411(1):128–132

    Article  CAS  Google Scholar 

  55. Lenney JF (1975) Three yeast proteins that specifically inhibit yeast proteases A, B, and C. J Bacteriol 122(3):1265–1273

    CAS  Google Scholar 

  56. Magni G, Drewniak M, Santarelli I, Huang CY (1986) Reexamination of the activation of yeast proteinase B at pH 5: loss of inhibition effect of proteinase B inhibitors. Biochem Int 12(4):557–565

    CAS  Google Scholar 

  57. Maier K, Muller H, Holzer H (1979) Purification and molecular characterization of two inhibitors of yeast proteinase B. J Biol Chem 254(17):8491–8497

    CAS  Google Scholar 

  58. Maier K, Muller H, Tesch R, Witt I, Holzer H (1979) Amino acid sequence of yeast proteinase B inhibitor 1 comparison with inhibitor 2. Biochem Biophys Res Commun 91(4):1390–1398

    Article  CAS  Google Scholar 

  59. Schu P, Suarez Rendueles P, Wolf DH (1991) The proteinase yscB inhibitor (PB12) gene of yeast and studies on the function of its protein product. Eur J Biochem 197(1):1–7

    Article  CAS  Google Scholar 

  60. Slusarewicz P, Xu ZY, Seefeld K, Haas A, Wickner WT (1997) I-2(B) is a small cytosolic protein that participates in vacuole fusion. Proc Natl Acad Sci U S A 94(11):5582–5587

    Article  CAS  Google Scholar 

  61. Xu ZY, Mayer A, Muller E, Wickner W (1997) A heterodimer of thioredoxin and I-2(B) cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J Cell Biol 136(2):299–306

    Article  CAS  Google Scholar 

  62. Dohmae N, Takio K, Tsumuraya Y, Hashimoto Y (1995) The complete amino acid sequences of two serine proteinase inhibitors from the fruiting bodies of a basidiomycete, Pleurotus ostreatus. Arch Biochem Biophys 316(1):498–506

    Article  CAS  Google Scholar 

  63. Kojima S, Hisano Y (2002) Requirement for hydrophobic Phe residues in Pleurotus ostreatus proteinase A inhibitor 1 for stable inhibition. Protein Eng 15(4):325–329

    Article  CAS  Google Scholar 

  64. Kojima S, Hisano Y, Miura K (2001) Alteration of inhibitory properties of Pleurotus ostreatus proteinase A inhibitor 1 by mutation of its C-terminal region. Biochem Biophys Res Commun 281(5):1271–1276

    Article  CAS  Google Scholar 

  65. Kojima S, Iwahara A, Hisano Y, Yanai H (2007) Effects of hydrophobic amino acid substitution in Pleurotus ostreatus proteinase A inhibitor 1 on its structure and functions as protease inhibitor and intramolecular chaperone. Protein Eng Des Sel 20(5):211–217

    Article  CAS  Google Scholar 

  66. Kojima S, Iwahara A, Yanai H (2005) Inhibitor-assisted refolding of protease: a protease inhibitor as an intramolecular chaperone. FEBS Lett 579(20):4430–4436

    Article  CAS  Google Scholar 

  67. Sasakawa H, Yoshinaga S, Kojima S, Tamura A (2002) Structure of POIA1, a homologous protein to the propeptide of subtilisin: implication for protein foldability and the function as an intramolecular chaperone. J Mol Biol 317(1):159–167

    Article  CAS  Google Scholar 

  68. Beaufour M, Godin F, Vallee B, Cadene M, Benedetti H (2012) Interaction proteomics suggests a new role for the Tfs1 protein in yeast. J Proteome Res 11(6):3211–3218

    Article  CAS  Google Scholar 

  69. Boy-Marcotte E, Lagniel G, Perrot M, Bussereau F, Boudsocq A, Jacquet M, Labarre J (1999) The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33(2):274–283

    Article  CAS  Google Scholar 

  70. Bruun AW, Svendsen I, Sorensen SO, Kielland-Brandt MC, Winther JR (1998) A high-affinity inhibitor of yeast carboxypeptidase Y is encoded by TFS1 and shows homology to a family of lipid binding proteins. Biochemistry 37(10):3351–3357

    Article  CAS  Google Scholar 

  71. Fukada H, Mima J, Nagayama M, Kato M, Ueda M (2007) Biochemical analysis of the yeast proteinase inhibitor (IC) homolog ICh and its comparison with IC. Biosci Biotechnol Biochem 71(2):472–480

    Article  CAS  Google Scholar 

  72. Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273(35):22480–22489

    Article  CAS  Google Scholar 

  73. Mima J, Fukada H, Nagayama M, Ueda M (2006) Specific membrane binding of the carboxypeptidase Y inhibitor I(C), a phosphatidylethanolamine-binding protein family member. FEBS J 273(23):5374–5383

    Article  CAS  Google Scholar 

  74. Mima J, Hayashida M, Fujii T, Narita Y, Hayashi R, Ueda M, Hata Y (2005) Structure of the carboxypeptidase Y inhibitor IC in complex with the cognate proteinase reveals a novel mode of the proteinase-protein inhibitor interaction. J Mol Biol 346(5):1323–1334

    Article  CAS  Google Scholar 

  75. Mima J, Kondo T, Hayashi R (2002) N-terminal acetyl group is essential for the inhibitory function of carboxypeptidase Y inhibitor (I(C)). FEBS Lett 532(1–2):207–210

    Article  CAS  Google Scholar 

  76. Mima J, Narita Y, Chiba H, Hayashi R (2003) The multiple site binding of carboxypeptidase Y inhibitor (IC) to the cognate proteinase. Implications for the biological roles of the phosphatidylethanolamine-binding protein. J Biol Chem 278(32):29792–29798

    Article  CAS  Google Scholar 

  77. Avanzo Caglič P, Renko M, Turk D, Kos J, Sabotič J (2014) Fungal beta-trefoil trypsin inhibitors cnispin and cospin demonstrate the plasticity of the beta-trefoil fold. Biochim Biophys Acta 1844(10):1749–1756

    Article  CAS  Google Scholar 

  78. Sabotič J, Bleuler-Martinez S, Renko M, Avanzo Caglič P, Kallert S, Štrukelj B, Turk D, Aebi M, Kos J, Künzler M (2012) Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of Coprinopsis cinerea fruiting bodies. J Biol Chem 287(6):3898–3907

    Article  CAS  Google Scholar 

  79. Avanzo P, Sabotič J, Anžlovar S, Popovič T, Leonardi A, Pain RH, Kos J, Brzin J (2009) Trypsin-specific inhibitors from the basidiomycete Clitocybe nebularis with regulatory and defensive functions. Microbiology 155(Pt 12):3971–3981

    Article  CAS  Google Scholar 

  80. Sabotič J, Trček T, Popovič T, Brzin J (2007) Basidiomycetes harbour a hidden treasure of proteolytic diversity. J Biotechnol 128(2):297–307

    Article  CAS  Google Scholar 

  81. Odani S, Tominaga K, Kondou S, Hori H, Koide T, Hara S, Isemura M, Tsunasawa S (1999) The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete, Lentinus edodes. Eur J Biochem 262(3):915–923

    Article  CAS  Google Scholar 

  82. Okumura Y, Ogawa K, Uchiya K (2007) Characterization and primary structure of elastase inhibitor, AFLEI, from Aspergillus flavus. Nihon Ishinkin Gakkai Zasshi (Jpn J Med Mycol) 48(1):13–18

    Article  CAS  Google Scholar 

  83. Okumura Y, Ogawa K, Uchiya K, Komori Y, Nonogaki T, Nikai T (2008) Biological properties of elastase inhibitor, AFLEI from Aspergillus flavus. Nihon Ishinkin Gakkai Zasshi (Jpn J Med Mycol) 49(2):87–93

    Article  CAS  Google Scholar 

  84. Okumura Y, Ogawa K, Uchiya K, Nikai T (2006) Isolation and characterization of a novel elastase inhibitor, AFLEI from Aspergillus flavus. Nippon Ishinkin Gakkai Zasshi 47(3):219–224

    Article  CAS  Google Scholar 

  85. Okumura Y, Ogawa K, Nikai T (2004) Elastase and elastase inhibitor from Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger. J Med Microbiol 53(Pt 5):351–354

    Article  CAS  Google Scholar 

  86. Okumura Y, Matsui T, Ogawa K, Uchiya K, Nikai T (2008) Biochemical properties and primary structure of elastase inhibitor AFUEI from Aspergillus fumigatus. J Med Microbiol 57(Pt 7):803–808

    Article  CAS  Google Scholar 

  87. Sakuma M, Imada K, Okumura Y, Uchiya K, Yamashita N, Ogawa K, Hijikata A, Shirai T, Homma M, Nikai T (2013) X-ray structure analysis and characterization of AFUEI, an elastase inhibitor from Aspergillus fumigatus. J Biol Chem 288(24):17451–17459

    Article  CAS  Google Scholar 

  88. Brzin J, Rogelj B, Popovič T, Štrukelj B, Ritonja A (2000) Clitocypin, a new type of cysteine proteinase inhibitor from fruit bodies of mushroom Clitocybe nebularis. J Biol Chem 275(26):20104–20109

    Article  CAS  Google Scholar 

  89. Sabotič J, Galeša K, Popovič T, Leonardi A, Brzin J (2007) Comparison of natural and recombinant clitocypins, the fungal cysteine protease inhibitors. Protein Expr Purif 53(1):104–111

    Article  CAS  Google Scholar 

  90. Sabotič J, Gaser D, Rogelj B, Gruden K, Štrukelj B, Brzin J (2006) Heterogeneity in the cysteine protease inhibitor clitocypin gene family. Biol Chem 387(12):1559–1566

    Article  CAS  Google Scholar 

  91. Sabotič J, Kilaru S, Budič M, Gašparič MB, Gruden K, Bailey AM, Foster GD, Kos J (2011) Protease inhibitors clitocypin and macrocypin are differentially expressed within basidiomycete fruiting bodies. Biochimie 93:1685–1693

    Article  CAS  Google Scholar 

  92. Renko M, Sabotič J, Mihelič M, Brzin J, Kos J, Turk D (2010) Versatile loops in mycocypins inhibit three protease families. J Biol Chem 285(1):308–316

    Article  CAS  Google Scholar 

  93. Sabotič J, Popovič T, Puizdar V, Brzin J (2009) Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. FEBS J 276(16):4334–4345

    Article  CAS  Google Scholar 

  94. Rooney HC, Van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308(5729):1783–1786

    Article  CAS  Google Scholar 

  95. Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA (2008) Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 20(4):1169–1183

    Article  CAS  Google Scholar 

  96. van Esse HP, Van't Klooster JW, Bolton MD, Yadeta KA, van Baarlen P, Boeren S, Vervoort J, de Wit PJ, Thomma BP (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20(7):1948–1963

    Article  CAS  Google Scholar 

  97. Van't Klooster JW, Van der Kamp MW, Vervoort J, Beekwilder J, Boeren S, Joosten MH, Thomma BP, De Wit PJ (2011) Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2-triggered Cf-2-mediated hypersensitive response. Mol Plant Pathol 12(1):21–30

    Article  Google Scholar 

  98. Dreyer T, Valler MJ, Kay J, Charlton P, Dunn BM (1985) The selectivity of action of the aspartic-proteinase inhibitor IA3 from yeast (Saccharomyces cerevisiae). Biochem J 231(3):777–779

    Article  CAS  Google Scholar 

  99. Green TB, Ganesh O, Perry K, Smith L, Phylip LH, Logan TM, Hagen SJ, Dunn BM, Edison AS (2004) IA3, an aspartic proteinase inhibitor from Saccharomyces cerevisiae, is intrinsically unstructured in solution. Biochemistry 43(14):4071–4081

    Article  CAS  Google Scholar 

  100. Phylip LH, Lees WE, Brownsey BG, Bur D, Dunn BM, Winther JR, Gustchina A, Li M, Copeland T, Wlodawer A, Kay J (2001) The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from Saccharomyces cerevisiae. J Biol Chem 276(3):2023–2030

    Article  CAS  Google Scholar 

  101. Schu P, Wolf DH (1991) The proteinase yscA-inhibitor, IA3, gene. Studies of cytoplasmic proteinase inhibitor deficiency on yeast physiology. FEBS Lett 283(1):78–84

    Article  CAS  Google Scholar 

  102. Winterburn TJ, Wyatt DM, Phylip LH, Bur D, Harrison RJ, Berry C, Kay J (2007) Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide. J Biol Chem 282(9):6508–6516

    Article  CAS  Google Scholar 

  103. Li M, Phylip LH, Lees WE, Winther JR, Dunn BM, Wlodawer A, Kay J, Gustchina A (2000) The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix. Nat Struct Biol 7(2):113–117

    Article  CAS  Google Scholar 

  104. Narayanan R, Ganesh OK, Edison AS, Hagen SJ (2008) Kinetics of folding and binding of an intrinsically disordered protein: the inhibitor of yeast aspartic proteinase YPrA. J Am Chem Soc 130(34):11477–11485

    Article  CAS  Google Scholar 

  105. Nunez de Castro I, Holzer H (1976) Studies on the proteinase-A inhibitor I3A from yeast. Hoppe Seylers Z Physiol Chem 357(5):727–734

    Article  CAS  Google Scholar 

  106. Padron-Garcia JA, Alonso-Tarajano M, Alonso-Becerra E, Winterburn TJ, Ruiz Y, Kay J, Berry C (2009) Quantitative structure activity relationship of IA(3)-like peptides as aspartic proteinase inhibitors. Proteins 75(4):859–869

    Article  CAS  Google Scholar 

  107. Saheki T, Matsuda Y, Holzer H (1974) Purification and characterization of macromolecular inhibitors of proteinase A from yeast. Eur J Biochem 47(2):325–332

    Article  CAS  Google Scholar 

  108. Lukanc T, Brzin J, Kos J, Sabotič J (2016) Trypsin-specific inhibitors from the wild mushrooms Macrolepiota procera, Armillaria mellea and Amanita phalloides. Acta Biochim Pol 63(3):425–428

    Google Scholar 

  109. Zuchowski J, Jaszek M, Grzywnowicz K (2009) Novel trypsin inhibitors from the white rot fungus Abortiporus biennis. Partial purification and characterization. Biochemistry-(Mosc) 74(2):226–230

    Article  CAS  Google Scholar 

  110. Ali PP, Sapna K, Mol KR, Bhat SG, Chandrasekaran M, Elyas KK (2014) Trypsin inhibitor from edible mushroom Pleurotus floridanus active against proteases of microbial origin. Appl Biochem Biotechnol 173(1):167–178

    Article  CAS  Google Scholar 

  111. Mandal K, Pentelute BL, Tereshko V, Thammavongsa V, Schneewind O, Kossiakoff AA, Kent SB (2009) Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods. Protein Sci 18(6):1146–1154

    Article  CAS  Google Scholar 

  112. Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980

    Article  CAS  Google Scholar 

  113. Rothan HA, Mohamed Z, Suhaeb AM, Abd Rahman N, Yusof R (2013) Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide. OMICS 17(11):560–567

    Article  CAS  Google Scholar 

  114. Choi HS, Cho HY, Yang HC, Ra KS, Suh HJ (2001) Angiotensin I-converting enzyme inhibitor from Grifola frondosa. Food Res Int 34(2–3):177–182

    Article  CAS  Google Scholar 

  115. Geng XR, Tian GT, Zhang WW, Zhao YC, Zhao LY, Ryu M, Wang HX, Ng TB (2015) Isolation of an angiotensin i-converting enzyme inhibitory protein with antihypertensive effect in spontaneously hypertensive rats from the edible wild mushroom Leucopaxillus tricolor. Molecules 20(6):10141–10153

    Article  CAS  Google Scholar 

  116. Jang JH, Jeong SC, Kim JH, Lee YH, Ju YC, Lee JS (2011) Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem 127(2):412–418

    Article  CAS  Google Scholar 

  117. Kang MG, Kim YH, Bolormaa Z, Kim MK, Seo GS, Lee JS (2013) Characterization of an antihypertensive angiotensin I-converting enzyme inhibitory peptide from the edible mushroom Hypsizygus marmoreus. Biomed Res Int

    Google Scholar 

  118. Lau CC, Abdullah N, Shuib AS (2013) Novel angiotensin I-converting enzyme inhibitory peptides derived from an edible mushroom, Pleurotus cystidiosus OK Miller identified by LC-MS/MS. BMC Complement Alternat Med 13:313

    Article  CAS  Google Scholar 

  119. Lee DH, Kim JH, Park JS, Choi YJ, Lee JS (2004) Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides 25(4):621–627

    Article  CAS  Google Scholar 

  120. Ohtsuru M, Horio H, Masui H (2000) Angiotensin I-converting enzyme inhibitory peptides from pepsin digest of maitake (Grifola frondosa). Food Sci Technol Res 6(1):9–11

    Article  CAS  Google Scholar 

  121. Tran HB, Yamamoto A, Matsumoto S, Ito H, Igami K, Miyazaki T, Kondo R, Shimizu K (2014) Hypotensive effects and angiotensin-converting enzyme inhibitory peptides of reishi (Ganoderma lingzhi) auto-digested extract. Molecules 19(9):13473–13485

    Article  CAS  Google Scholar 

  122. Tian Y, Zhang K (2005) Purification and characteristic of proteinase inhibitor GLPIA2 from Ganoderma lucidum by submerged fermentation. Se Pu 23(3):267–269

    CAS  Google Scholar 

  123. Zhang GQ, Zhang QP, Sun Y, Tian YP, Zhou ND (2012) Purification of a novel pepsin inhibitor from Coriolus versicolor and its biochemical properties. J Food Sci 77(3):C293–297

    Article  CAS  Google Scholar 

  124. Menon V, Rao M (2012) A low-molecular-mass aspartic protease inhibitor from a novel Penicillium sp.: implications in combating fungal infections. Microbiology 158(Pt 7):1897–1907

    Article  CAS  Google Scholar 

  125. Ali R, Zaidi ZH (1985) Isolation of the first trypsin inhibitor from the genus Aspergillus. Biosci Rep 5(8):697–700

    Article  CAS  Google Scholar 

  126. Gzogyan LA, Proskuryakov MT, Ievleva EV, Valueva TA (2005) Trypsin-like proteinases and trypsin inhibitors in fruiting bodies of higher fungi. Appl Biochem Microbiol 41(6):538–541

    Article  CAS  Google Scholar 

  127. Vetter J (2000) Trypsin inhibitory activity of basidiomycetous mushrooms. Eur Food Res Technol 211:346–348

    Article  CAS  Google Scholar 

  128. Doljak B, Stegnar M, Urleb U, Kreft S, Umek A, Ciglaric M, Strukelj B, Popovic T (2001) Screening for selective thrombin inhibitors in mushrooms. Blood Coagul Fibrinolysis 12(2):123–128

    Article  CAS  Google Scholar 

  129. Ali PPM, Sapna K, Mol KRR, Bhat SG, Chandrasekaran M, Elyas KK (2014) Trypsin inhibitor from edible mushroom Pleurotus floridanus active against proteases of microbial origin. Appl Biochem Biotechnol 173(1):167–178

    Article  CAS  Google Scholar 

  130. Zuchowski J, Grzywnowicz K (2006) Partial purification of proteinase K inhibitors from liquid-cultured mycelia of the white rot basidiomycete Trametes versicolor. Curr Microbiol 53(4):259–264

    Article  CAS  Google Scholar 

  131. Gettins PG (2002) Serpin structure, mechanism, and function. Chem Rev 102(12):4751–4804

    Article  CAS  Google Scholar 

  132. Huntington JA (2011) Serpin structure, function and dysfunction. J Thromb Haemost 9(Suppl 1):26–34

    Article  CAS  Google Scholar 

  133. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7(5):216

    Article  CAS  Google Scholar 

  134. OCuiv P, Gupta R, Goswami HP, Morrison M (2013) Extending the cellulosome paradigm: the modular Clostridium thermocellum cellulosomal serpin PinA is a broad-spectrum inhibitor of subtilisin-like proteases. Appl Environ Microbiol 79(19):6173–6175

    Article  CAS  Google Scholar 

  135. Matern H, Hoffmann M, Holzer H (1974) Isolation and characterization of the carboxypeptidase Y inhibitor from yeast. Proc Natl Acad Sci U S A 71(12):4874–4878

    Article  CAS  Google Scholar 

  136. Matern H, Barth R, Holzer H (1979) Chemical and physical properties of the carboxypeptidase Y-inhibitor from Baker's yeast. Biochim Biophys Acta 567(2):503–510

    Article  CAS  Google Scholar 

  137. Sabotič J, Ohm RA, Künzler M (2016) Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 100(1):91–111

    Google Scholar 

  138. Okumura Y, Suzukawa M, Uchiya K, Ogawa K, Komori Y, Yamashita N, Nikai T (2013) Characterization and identification of partial amino acid sequence of a novel elastase inhibitor, Asnidin from Aspergillus nidulans. Med Mycol J 54(3):279–284

    Article  CAS  Google Scholar 

  139. Mueller AN, Ziemann S, Treitschke S, Assmann D, Doehlemann G (2013) Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog 9(2)

    Google Scholar 

  140. Reed JC, Bischoff JR (2000) BIRinging chromosomes through cell division - And survivin' the experience. Cell 102(5):545–548

    Article  CAS  Google Scholar 

  141. Walter D, Wissing S, Madeo F, Fahrenkrog B (2006) The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci 119(9):1843–1851

    Article  CAS  Google Scholar 

  142. Owsianowski E, Walter D, Fahrenkrog B (2008) Negative regulation of apoptosis in yeast. Biochim Biophys Acta 1783(7):1303–1310

    Article  CAS  Google Scholar 

  143. Misas-Villamil JC, van der Hoorn RA (2008) Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol 11(4):380–388

    Article  CAS  Google Scholar 

  144. Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, Gu C, Ilyas M, Win J, Kamoun S, van der Hoorn RA (2010) An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol 154(4):1794–1804

    Article  CAS  Google Scholar 

  145. Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RA, Kamoun S (2009) Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci U S A 106(5):1654–1659

    Article  CAS  Google Scholar 

  146. Grzywnowicz K, Zaluski D, Walczynski T, Prendecka M, SmOLarz H (2010) Natural inhibitors of metalloproteinases from fungi and herbs - new bioactive extracts of pharmacological potential. AnnaLes UMCS - POLOnia sec DDD 23(2, 6):41–45

    Google Scholar 

  147. Grzywnowicz K, Walczynski T, Jaszek M (2011) Natural inhibitors of metalloproteinases from various families of MA clan from wood degrading fungi. AnnaLes UMCS - POLOnia sec DDD 24(3, 24):209–215

    Google Scholar 

  148. Markaryan A, Lee JD, Sirakova TD, Kolattukudy PE (1996) Specific inhibition of mature fungal serine proteinases and metalloproteinases by their propeptides. J Bacteriol 178(8):2211–2215

    Article  CAS  Google Scholar 

  149. Koo KC, Lee DH, Kim JH, Yu HE, Park JS, Lee JS (2006) Production and characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Pholiota adiposa. J Microbiol Biotechnol 16(5):757–763

    CAS  Google Scholar 

  150. Lau CC, Abdullah N, Shuib AS, Aminudin N (2014) Novel angiotensin I-converting enzyme inhibitory peptides derived from edible mushroom Agaricus bisporus (JE Lange) Imbach identified by LC-MS/MS. Food Chem 148:396–401

    Article  CAS  Google Scholar 

  151. Ansor NM, Abdullah N, Aminudin N (2013) Anti-angiotensin converting enzyme (ACE) proteins from mycelia of Ganoderma lucidum (Curtis) P. Karst. BMC Complement Altern Med 13:236

    Article  Google Scholar 

  152. Wang J, Wang Y, Chu XK, Hagen SJ, Han W, Wang EK (2011) Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme. PloS Comput Biol 7(4)

    Google Scholar 

  153. Sabotič J, Koruza K, Gabor B, Peterka M, Barut M, Kos J, Brzin J (2012) The value of fungal protease inhibitors in affinity chromatography. In: Magdeldin S (ed) Affinity chromatography. InTech, Rijeka

    Google Scholar 

  154. Terra WR, Ferreira C (1994) Insect digestive enzymes - properties, compartmentalization and function. Comparative Biochem Physiol B 109(1):1–62

    Article  Google Scholar 

  155. Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431(1):145–159

    Article  CAS  Google Scholar 

  156. Ryan CA (1990) Protease inhibitors in plants - genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  157. Jongsma MA, Beekwilder J (2008) Plant protease inhibitors: functional evolution for defense. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Netherlands

    Google Scholar 

  158. Jongsma MA, Beekwilder J (2011) Co-evolution of insect proteases and plant protease inhibitors. Curr Protein Pept Sci 12(5):437–447

    Article  CAS  Google Scholar 

  159. Šmid I, Gruden K, Buh Gašparič M, Koruza K, Petek M, Pohleven J, Brzin J, Kos J, Žel J, Sabotič J (2013) Inhibition of the growth of Colorado potato beetle larvae by macrocypins, protease inhibitors from the parasol mushroom. J Agric Food Chem 61(51):12499–12509

    Article  CAS  Google Scholar 

  160. Šmid I, Rotter A, Gruden K, Brzin J, Buh Gašparič M, Kos J, Žel J, Sabotič J (2015) Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pestic Biochem Physiol 122:59–66

    Article  CAS  Google Scholar 

  161. Kidrič M, Kos J, Sabotič J (2014) Proteases and their endogenous inhibitors in the plant response to abiotic stress. Botanica Serbica 38(1):139–158

    Google Scholar 

  162. Vaseva I, Sabotič J, Šuštar-Vozlič J, Meglič V, Kidrič M, Demirevska K, Simova-Stoilova L (2011) The response of plants to drought stress – the role of dehydrins, chaperones, proteases and protease inhibitors in maintaining cellular protein function. In: Neves DF, Sanz JD (eds) Droughts: new research. Nova Science Publishers Inc., New York

    Google Scholar 

  163. Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9(9):690–701

    Article  CAS  Google Scholar 

  164. Haq SK, Rabbani G, Ahmad E, Atif SM, Khan RH (2010) Protease inhibitors: a panacea? J Biochem Mol Toxicol 24(4):270–277

    Article  CAS  Google Scholar 

  165. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5(9):785–799

    Article  CAS  Google Scholar 

  166. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295(5564):2387–2392

    Article  CAS  Google Scholar 

  167. Abbenante G, Fairlie DP (2005) Protease inhibitors in the clinic. Med Chem 1(1):71–104

    Article  CAS  Google Scholar 

  168. Bialas A, Kafarski P (2009) Proteases as anti-cancer targets–molecular and biological basis for development of inhibitor-like drugs against cancer. Anticancer Agents Med Chem 9(7):728–762

    Article  CAS  Google Scholar 

  169. Cecarini V, Cuccioloni M, Mozzicafreddo M, Bonfili L, Angeletti M, Eleuteri AM (2011) Targeting proteasomes with natural occurring compounds in cancer treatment. Curr Cancer Drug Targets 11(3):307–324

    Article  CAS  Google Scholar 

  170. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8(8):739–758

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerica Sabotič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Sabotič, J., Kos, J. (2017). Fungal Protease Inhibitors. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_10

Download citation

Publish with us

Policies and ethics