Skip to main content

Ergot Alkaloids: Chemistry, Biosynthesis, Bioactivity, and Methods of Analysis

  • Reference work entry
  • First Online:
Fungal Metabolites

Abstract

Ergot alkaloids are indole derivatives produced by a wide range of fungi, being considered medically important because of their significant effect on the central nervous system of mammals, due to their structural similarity to neurotransmitters. They are also considered mycotoxins due to the severe toxic effects of ergot-contaminated grains on human and animal health. This chapter summarizes different aspects of ergot alkaloids concerning their chemistry, biosynthesis, and bioactivity, discussing the pharmacological activity as well as some important aspects related to their toxicity, occurrence, and regulations. Finally, an overview of analytical methods for the determination of ergot alkaloids is included, whereby high-performance liquid chromatography coupled to fluorescence or mass spectrometer detection are the most widely used methods, although other techniques such as capillary electrophoresis or immunoassays have also been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

AA:

Amino acid

AdoMet:

Adenosylmethionine

APCI:

Atmospheric pressure chemical ionization

APPI:

Atmospheric pressure photoionization

ARfD:

Acute reference dose

BGE:

Background electrolyte

CE:

Capillary electrophoresis

CMC:

Critical micellar concentration

CONTAM Panel:

Panel on Contaminants in the Food Chain

CPE:

Cloud point extraction

CZE:

Capillary zone electrophoresis

DMA:

Dimethylallyl

DMAPP:

Dimethylallyl diphosphate

DMAT:

Dimethylallyltryptophan

DMATS:

Dimethylallyltryptophan synthase

d-SPE:

Dispersive solid phase extraction

EA:

Ergot alkaloid

EC:

European Commission

EFSA:

European Food Safety Authority

ELISA:

Enzyme-linked immunosorbent assay

ESI:

Electrospray ionization

EU:

European Union

FAD:

Flavin adenine dinucleotide

FLD:

Fluorescence detection

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

HRMS:

High-resolution mass spectrometry

IT:

Ion trap

LC:

Liquid chromatography

LD50 :

Lethal dose 50 %

LLE:

Liquid–liquid extraction

LSA:

Lysergic acid amide

LSD:

Lysergic acid diethylamide

MIP:

Molecularly imprinted polymer

MS/MS:

Tandem mass spectrometry

MS:

Mass spectrometry

MT:

Methyltransferase

NIR:

Near infrared

pCEC:

Pressurized capillary electrochromatography

PSA:

Primary secondary amine

Q-TOF:

Quadrupole time of flight

QuEChERS:

Quick, easy, cheap, effective, rugged, and safe

RIA:

Radioimmunoassay

SCX:

Strong cation exchange

SPE:

solid phase extraction

TDI:

Tolerable daily intake

TLC:

Thin layer chromatography

TOF:

Time of flight

References

  1. Tudzynski P, Neubauer L (2014) Ergot alkaloids. Chapter 14. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, London

    Google Scholar 

  2. Krska R, Crews C (2008) Significance, chemistry and determination of ergot alkaloids: a review. Food Addit Contam 25:722–731

    Article  CAS  Google Scholar 

  3. Wallwey C, Li S-M (2011) Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 28:496–510

    Article  CAS  Google Scholar 

  4. Young CA, Schardl CL, Panaccione DG, Florea S, Takach JE, Charlton ND, Moore N, Webb JS, Jaromczyk J (2015) Genetics, genomics and evolution of ergot alkaloid diversity. Toxins 7:1273–1302

    Article  CAS  Google Scholar 

  5. EFSA Panel on Contaminants in the Food Chain (CONTAM) (2012) Scientific opinion on ergot alkaloids in food and feed. EFSA J 10:2798 (158 pp.)

    Article  CAS  Google Scholar 

  6. Klotz JL (2015) Activities and effects of ergot alkaloids on livestock physiology and production. Toxins 7:2801–2821

    Article  CAS  Google Scholar 

  7. EFSA (2005) Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to ergot as undesirable substance in animal feed. EFSA J 225:1–27

    Google Scholar 

  8. Komarova EL, Tolkachev ON (2001) The chemistry of peptide ergot alkaloids. Part 1. Classification and chemistry of ergot peptides. Pharm Chem J 35:504–513

    Article  CAS  Google Scholar 

  9. Kumar A, Bhansali RR (2007) Production of ergot alkaloids from Claviceps. In: Ramawat KG (ed) Biotechnology, second edition: secondary metabolites. CRC Press, Boca Raton

    Google Scholar 

  10. Crews C (2015) Analysis of ergot alkaloids. Toxins 7:2024–2050

    Article  CAS  Google Scholar 

  11. Stoll A (1920) Zur kenntnis der mutterkornalkaloide. Verh Naturf Ges 101:190–191

    Google Scholar 

  12. Buchta M, Cvak L (1999) Ergot alkaloids and other metabolites of the genus Claviceps. In: Kren V, Cvak L (eds) Ergot: the genus Claviceps. Harwood Academic Publishers, London

    Google Scholar 

  13. Flieger M, Wurst M, Shelby R (1997) Ergot alkaloids – sources, structures and analytical methods. Folia Microbiol 42:3–30

    Article  CAS  Google Scholar 

  14. Mukherjee J, Menge M (2000) Progress and prospects of ergot alkaloid research. Adv Biochem Eng Biotechnol 68:1–20

    CAS  Google Scholar 

  15. Bräse S, Gläser F, Kramer CS, Lindner S, Linsenmeier AM, Masters KS, Meister AC, Ruff BM, Zhong S (2013) Ergot alkaloids. Chapter 4. In: The chemistry of mycotoxins. Springer, Wien

    Chapter  Google Scholar 

  16. Wallwey C, Li S-M (2012) Production, detection, and purification of clavine-type ergot alkaloids. In: Keller NP, Turner G (eds) Fungal secondary metabolism. Methods and protocols, vol 944, Methods in molecular biology. Humana Press, New York

    Google Scholar 

  17. Powell RG, Flattner RD, Yates SG (1990) Ergobalansine, a new ergot-type peptide alkaloid isolated from Cenchrus echinatus (sandbur grass) infected with Balansia obtecta, and produced in liquid cultures of B. obtecta and Balansia cyperi. J Nat Prod 53:1272–1279

    Article  CAS  Google Scholar 

  18. Uhlig S, Petersen D (2008) Lactam ergot alkaloids (ergopeptams) as predominant alkaloids in sclerotia of Claviceps purpurea from Norwegian wild grasses. Toxicon 52:175–185

    Article  CAS  Google Scholar 

  19. Müller C, Kemmlein S, Klaffke H, Krauthause W, Preiss-Weigert A, Wittkowski R (2009) A basic tool for risk assessment: a new method for the analysis of ergot alkaloids in rye and selected rye products. Mol Nutr Food Res 53:500–507

    Article  CAS  Google Scholar 

  20. Lehner AF, Craig M, Fannin N, Bush L, Tobin T (2005) Electrospray [+] tandem quadrupole mass spectrometry in the elucidation of ergot alkaloids chromatographed by HPLC: screening of grass or forage samples for novel toxic compounds. J Mass Spectrom 40:1484–1502

    Article  CAS  Google Scholar 

  21. Hafner M, Sulyok M, Schuhmacher R, Crews C, Krska R (2008) Stability and epimerisation behaviour of ergot alkaloids in various solvents. World Mycotoxin J 1:67–78

    Article  CAS  Google Scholar 

  22. Rutschmann J, Stadler PA (1978) Chemical background. In: Berde B, Schild HO (eds) Ergot alkaloids and related compounds. Springer, Berlin

    Google Scholar 

  23. Maulding HV, Zoglio MA (1970) Physical chemistry of ergot alkaloids and derivatives. Ionization constants of several medicinally active bases. J Pharm Sci 59:700–701

    Article  CAS  Google Scholar 

  24. Scott P (2007) Analysis of ergot alkaloids – a review. Mycotoxin Res 23:113–121

    Article  CAS  Google Scholar 

  25. Saxton JE (1960) The indole alkaloids. In: Manske RHF (ed) The alkaloids: chemistry and physiology, vol 7. Academic, London

    Google Scholar 

  26. McPhail AT, Sim GA, Frey AJ, Ott H (1966) Fungal metabolites. Part V. X-ray determination of the structure and stereochemistry of new isomers of the ergot alkaloids of the peptide type. J Chem Soc B 377–395

    Google Scholar 

  27. Smith DJ, Shappell NW (2002) Technical note: epimerization of ergopeptine alkaloids in organic and aqueous solvents. J Anim Sci 80:1616–1622

    Article  CAS  Google Scholar 

  28. Andrae K, Merkel S, Durmaz V, Fackeldey K, Köppen R, Weber M, Koch M (2014) Investigation of the ergopeptide epimerization process. Computation 2:102–111

    Article  Google Scholar 

  29. Lauber U, Schnaufer R, Gredziak M, Kiesswetter Y (2005) Analysis of rye grains and rye meals for ergot alkaloids. Mycotoxin Res 21:258–262

    Article  CAS  Google Scholar 

  30. Ware GM, Price G, Carter L, Eitenmiller RR (2000) Liquid chromatographic preparative method for isolating ergot alkaloids, using a particle-loaded membrane extracting disk. J AOAC Int 83:1395–1399

    CAS  Google Scholar 

  31. Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids-biology and molecular biology. Alkaloids Chem Biol 63:45–86

    Article  CAS  Google Scholar 

  32. Panaccione DG (2010) Ergot alkaloids. In: Hofrichter M (ed) The mycota X. Springer, Berlin

    Google Scholar 

  33. Gerhards N, Neubauer L, Tudzynski P, Li S-M (2014) Biosynthetic pathways of ergot alkaloids. Toxins 6:3281–3295

    Article  CAS  Google Scholar 

  34. Hulvova H, Galuszka P, Frebortova J, Frebort I (2013) Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol Adv 31:79–89

    Article  CAS  Google Scholar 

  35. Lorenz N, Wilson EV, Machado C, Schardl CL, Tudzynski P (2007) Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis. Appl Environ Microbiol 73:7185–7191

    Article  CAS  Google Scholar 

  36. Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma LJ, Leger RJS, Zhao GP, Pei Y, Feng MG, Xia Y, Wang C (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:1–18

    Article  CAS  Google Scholar 

  37. Kozlovsky AG, Zhelifonova VP, Antipova TV, Zelenkova NF (2011) Physiological and biochemical characteristics of the genus Penicillium fungi as producers of ergot alkaloids and quinocitrinins. Appl Biochem Microbiol 47:426–430

    Article  CAS  Google Scholar 

  38. Ge HM, Yu ZG, Zhang J, Wu JH, Tan RX (2009) Bioactive alkaloids from endophytic Aspergillus fumigatus. J Nat Prod 72:753–755

    Article  CAS  Google Scholar 

  39. Kozlovsky AG, Zhelifonova VP, Antipova TV (2013) Fungi of the genus Penicillium as producers of physiologically active compounds. Appl Biochem Microbiol 49:1–10

    Article  CAS  Google Scholar 

  40. Wallwey C, Heddergott C, Xie X, Brakhage AA, Li SM (2012) Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthrodermataceae. Microbiology 158:1634–1644

    Article  CAS  Google Scholar 

  41. Jakubczyk D, Cheng JZ, O’Connor SE (2014) Biosynthesis of the ergot alkaloids. Nat Prod Rep 31:1328–1338

    Article  CAS  Google Scholar 

  42. Beaulieu WT, Panaccione DG, Hazekamp CS, Mckee MC, Ryan KL, Clay K (2013) Differential allocation of seed-borne ergot alkaloids during early ontogeny of morning glories (Convolvulaceae). J Chem Ecol 39:919–930

    Article  CAS  Google Scholar 

  43. Markert A, Steffan N, Ploss K, Hellwig S, Steiner U, Drewke C, Li SM, Boland W, Leistner E (2008) Biosynthesis and accumulation of ergoline alkaloids in a mutualistic association between Ipomoea asarifolia (Convolvulaceae) and a Clavicipitalean fungus. Plant Physiol 147:296–305

    Article  CAS  Google Scholar 

  44. Schardl CL, Young CA, Pan J, Florea S, Takach JE, Panaccione DG, Farman ML, Webb JS, Jaromczyk J, Charlton ND, Nagabhyru P, Chen L, Shi C, Leuchtmann A (2013) Currencies of mutualisms: sources of alkaloid genes in vertically transmitted epichloae. Toxins 5:1064–1088

    Article  CAS  Google Scholar 

  45. Scandola M, Games DE, Costa C, Allegri G, Bertazzo A, Curcuruto O, Traldi P (1994) Structural study of alkaloids from Securidaca longipedunculata roots II. Isolation and characterization by supercritical fluid chromatography/mass spectrometry. J Heterocycl Chem 31:219–224

    Article  CAS  Google Scholar 

  46. Kucht S, Gross J, Hussein Y, Grothe T, Keller U, Basar S, Konig WA, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625

    Article  CAS  Google Scholar 

  47. Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82

    Article  CAS  Google Scholar 

  48. Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28:299–314

    Article  Google Scholar 

  49. Lorenz N, Haarmann T, Pazoutová S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1932

    Article  CAS  Google Scholar 

  50. Young JC, Chen ZJ (1982) Variability in the content and composition of alkaloid found in Canadian ergot. III. Triticale and barley. J Environ Sci Health B 17:93–107

    Article  CAS  Google Scholar 

  51. Mainka S, Dänicke S, Böhme H, Ueberschär K-H, Liebert F (2007) On the alkaloid content of ergot (Claviceps purpurea). Landbauforschung Volkenrode 57:51–59

    CAS  Google Scholar 

  52. Appelt M, Ellner FM (2009) Investigations into the occurrence of alkaloids in ergot and single sclerotia from the 2007 and 2008 harvests. Mycotoxin Res 25:95–101

    Article  CAS  Google Scholar 

  53. Franzmann C, Wachter J, Dittmer N, Humpf HU (2010) Ricinoleic acid as a marker for ergot impurities in rye and rye products. J Agric Food Chem 58:4223–4229

    Article  CAS  Google Scholar 

  54. Pažoutová S (2002) The evolutionary strategy of Claviceps. In: White F, Bacon CW, Hywel-Jones NL (eds) Clavicipitalean fungi: evolutionary biology, chemistry, biocontrol and cultural impacts. Marcel Dekker, New York

    Google Scholar 

  55. Tudzynski P, Tenberge KB, Oeser B (1995) Claviceps purpurea. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant diseases. Pergamon Press/Elsevier, Oxford

    Google Scholar 

  56. Molloy JB, Moore CJ, Bruyeres AG, Murray SA, Blaney BJ (2003) Determination of dihydroergosine in sorghum ergot using an immunoassay. J Agric Food Chem 51:3916–3919

    Article  CAS  Google Scholar 

  57. Krishnamachari KA, Bhat RV (1976) Poisoning by ergoty bajra (pearl millet) in man. Indian J Med Res 64:1624–1628

    CAS  Google Scholar 

  58. Banks GT, Mantle PG, Szczyrbak CA (1974) Large-scale production of clavine alkaloids by Claviceps fusiformis. J Gen Microbiol 82:345–361

    Article  CAS  Google Scholar 

  59. Agurell S, Ramstad E (1965) A new ergot alkaloid from Mexican maize ergot. Acta Pharm Suec 2:231–238

    CAS  Google Scholar 

  60. Lee SL, Floss HG, Heinstein P (1976) Purification and properties of dimethylallylpyrophosphate: tryptophan dimethylallyl transferase, the first enzyme of ergot alkaloid biosynthesis in Claviceps sp. SD 58. Arch Biochem Biophys 177:84–94

    Article  CAS  Google Scholar 

  61. Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593–605

    Article  CAS  Google Scholar 

  62. Metzger U, Schall C, Zocher G, Unsöld I, Stec E, Li SM, Heide L, Stehle T (2009) The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci U S A 106:14309–14314

    Article  CAS  Google Scholar 

  63. Hassam SB, Floss HG (1981) Biosynthesis of ergot alkaloids. Incorporation of (17R)-[17-3H]- and (17S)-[17-3H] chanoclavine-I into elymoclavine by Claviceps. J Nat Prod 44:756–758

    Article  CAS  Google Scholar 

  64. Abea M, Ohmomoa S, Ōhashia T, Tabuchia T (1969) Isolation of chanoclavine-(1) and two new interconvertible alkaloids, rugulovasine A and B, from the cultures of Penicillium concavo-rugulosum. Agric Biol Chem 33:469–471

    Article  Google Scholar 

  65. Robinson SL, Panaccione DG (2015) Diversification of ergot alkaloids in natural and modified fungi. Toxins 7:201–218

    Article  CAS  Google Scholar 

  66. Lorenz N, Olšovská J, Šulc M, Tudzynski P (2010) The alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes the chanoclavine-I-synthase, an FAD-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine-I. Appl Environ Microbiol 76:1822–1830

    Article  CAS  Google Scholar 

  67. Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2011) Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211

    Article  CAS  Google Scholar 

  68. Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2010) An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl Environ Microbiol 76:3898–3903

    Article  CAS  Google Scholar 

  69. Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010) Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc 132:12835–12837

    Article  CAS  Google Scholar 

  70. Matuschek M, Wallwey C, Wollinsky B, Xie X, Li SM (2012) In vitro conversion of chanoclavine-I aldehyde to the stereoisomers festuclavine and pyroclavine controlled by the second reduction step. RSC Adv 2:3662–3669

    Article  CAS  Google Scholar 

  71. Xie X, Wallwey C, Matuschek M, Steinbach K, Li SM (2011) Formyl migration product of chanoclavine-I aldehyde in the presence of the old yellow enzyme FgaOx3 from Aspergillus fumigatus: a NMR structure elucidation. Magn Reson Chem 49:678–681

    Article  CAS  Google Scholar 

  72. Wallwey C, Matuschek M, Xie X-L, Li S-M (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org Biomol Chem 8:3500–3508

    Article  CAS  Google Scholar 

  73. Matuschek M, Wallwey C, Xie X, Li SM (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328–4335

    Article  CAS  Google Scholar 

  74. Liu X, Wang L, Steffan N, Yin WB, Li SM (2009) Ergot alkaloid biosynthesis in Aspergillus fumigatus: FgaAT catalyses the acetylation of fumigaclavine B. ChemBioChem 10:2325–2328

    Article  CAS  Google Scholar 

  75. Maier W, Schumann B, Gröger D (1988) Microsomal oxygenases involved in ergoline alkaloid biosynthesis of various Claviceps strains. J Basic Microbiol 28:83–93

    Article  CAS  Google Scholar 

  76. Haarmann T, Ortel I, Tudzynski P, Keller U (2006) Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways. ChemBioChem 7:645–652

    Article  CAS  Google Scholar 

  77. Walzel B, Riederer B, Keller U (1997) Mechanism of alkaloid cyclopeptide synthesis in the ergot fungus Claviceps purpurea. Chem Biol 4:223–230

    Article  CAS  Google Scholar 

  78. Ortel I, Keller U (2009) Combinatorial assembly of simple and complex d-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. J Biol Chem 284:6650–6660

    Article  CAS  Google Scholar 

  79. Barrow KD, Mantle PG, Quigley FR (1974) Biosynthesis of dihydroergot alkaloids. Tetrahedron Lett 16:1557–1560

    Article  Google Scholar 

  80. Blaney BJ, Maryam R, Murray S-A, Ryley MJ (2003) Alkaloids of the sorghum ergot pathogen (Claviceps africana): assay methods for grain and feed and variation between sclerotia/sphacelia. Aust J Agric Res 54:167–175

    Article  CAS  Google Scholar 

  81. Stoll A, Hofman A (1965) The ergot alkaloids. In: Manske RHF (ed) The alkaloids: chemistry and physiology, vol 8. Academic, London

    Google Scholar 

  82. Berde B, Stürmer E (1978) Introduction to the pharmacology of ergot alkaloids and related compounds. In: Berde B, Schild HO (eds) Ergot alkaloids and related compounds. Springer, Berlin

    Chapter  Google Scholar 

  83. Stadler PA, Giger R (1984) Ergot alkaloids and their derivatives in medical chemistry and therapy. In: Krosgard-Larson P, Christensen CH, Kofod H (eds) Natural products and drug development. Munksgaard, Copenhagen

    Google Scholar 

  84. Hart C (1999) Forged in St. Anthony’s fire: drugs for migraine. Mod Drug Discovery 2:20–31

    CAS  Google Scholar 

  85. Gröger D (1972) Ergot. In: Kadis S, Ciegler A, Ajl SJ (eds) Microbial toxins, volume VIII: fungal toxins. Academic, London

    Google Scholar 

  86. Görnemann T, Jähnichen S, Schurad B, Latté KP, Horowski R, Tack J, Flieger M, Pertz HH (2008) Pharmacological properties of a wide array of ergolines at functional alpha1-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmakol 376:321–330

    Article  CAS  Google Scholar 

  87. Villalon CM, de Vries P, Rabelo G, Centurion D, Sanchez-Lopez A, Saxena PR (1999) Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and α2-adrenoceptors. Br J Pharmacol 126:585–594

    Article  CAS  Google Scholar 

  88. Willems EW, Trion M, de Vries P, Heiligers JOC, Villalon CM, Saxena PR (1999) Pharmacological evidence that α1- and α2-adrenoceptors mediate vasoconstriction of carotid arteriovenous anastomoses in anaesthetized pigs. Br J Pharmacol 127:1263–1271

    Article  CAS  Google Scholar 

  89. Tfelt-Hansen PC, Koehler PJ (2008) History of the use of ergotamine and dihydroergotamine in migraine from 1906 and onward. Cephalalgia 28:877–886

    Article  CAS  Google Scholar 

  90. de Groot AN, van Dongen PW, Vree TB, Hekster YA, van Roosmalen J (1998) Ergot alkaloids. Current status and review of clinical pharmacology and therapeutic use compared with other oxytocics in obstetrics and gyneacology. Drugs 56:523–535

    Article  Google Scholar 

  91. Wadworth AN, Crisp P (1992) Co-dergocrine mesylate: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in age-related cognitive decline. Drugs Aging 2:153–173

    Article  CAS  Google Scholar 

  92. Ninomiya I, Klguchl T (1990) Ergot alkaloids. In: Brossi A (ed) The alkaloids, vol 38. Academic, San Diego

    Google Scholar 

  93. Eich E, Eichberg D, Miiller WEG (1984) Clavines. New antibiotics with cytostatic activity. Biochem Pharmacol 33:523–526

    Article  CAS  Google Scholar 

  94. Eich E, Becker C, Eichberg D, Maidhof A, Miiller WEG (1986) Clavines as antitumor agents. Part 5. In vitro activity of semisynthetic festuclavines. Pharmazie 41:156–157

    CAS  Google Scholar 

  95. Mrusek M, Seo E-J, Greten HJ, Simon M, Efferth T (2015) Identification of cellular and molecular factors determining the response of cancer cells to six ergot alkaloids. Investig New Drugs 33:32–44

    Article  CAS  Google Scholar 

  96. Fanchamps A (1978) Introduction to the pharmacology of ergot alkaloids and related compounds. In: Berde B, Schild HO (eds) Some compounds with hallucinogenic activity. Springer, Berlin

    Chapter  Google Scholar 

  97. Barrett A, Morgan L, Raggatt PR, Hobbs JR (1976) Bromocriptine in the treatment of advanced breast cancer. Clin Oncol 2:373–377

    CAS  Google Scholar 

  98. Thobois S (2006) Proposed dose equivalence for rapid switch between dopamine receptor agonists in Parkinson’s disease: a review of the literature. Clin Ther 28:1–12

    Article  CAS  Google Scholar 

  99. Moubarak AS, Piper EL, Johnson ZB, Flieger M (1996) HPLC method for detection of ergotamine, ergosine, and ergine after intravenous injection of a single dose. J Agric Food Chem 44:146–148

    Article  CAS  Google Scholar 

  100. Van Dongen PWJ, de Groot ANJA (1995) History of ergot alkaloids from ergotism to ergometrine. Eur J Obstet Gynecol Reprod Biol 60:109–116

    Article  Google Scholar 

  101. Eadie MJ (2003) Convulsive ergotism: epidemics of the serotonin syndrome? Lancet Neurol 2:429–434

    Article  CAS  Google Scholar 

  102. Handeland K, Vikøren T (2005) Presumptive gangrenous ergotism in free-living moose and a roe deer. J Wildl Dis 41:636–642

    Article  Google Scholar 

  103. Mohamed R, Gremaud E, Tabet JC, Guy PA (2006) Mass spectral characterization of ergot alkaloids by electrospray ionization, hydrogen/deuterium exchange, and multiple stage mass spectrometry: usefulness of precursor ion scan experiments. Rapid Commun Mass Spectrom 20:2787–2799

    Article  CAS  Google Scholar 

  104. Kokkonen M, Jestoi M (2010) Determination of ergot alkaloids from grains with UPLC-MS/MS. J Sep Sci 33:2322–2327

    Article  CAS  Google Scholar 

  105. Floss HG, Cassady JM, Robbers JE (1973) Influence of ergot alkaloids on pituitary prolactin and prolactin-dependent processes. J Pharm Sci 62:699–715

    Article  CAS  Google Scholar 

  106. Fuller JG (1968) The day of St. Anthony’s fire. Signet, New York

    Google Scholar 

  107. Bhat RV, Roy DN, Tulpule PG (1976) The nature of alkaloids of ergoty pearl millet or bajra and its comparison with alkaloids of ergoty rye and ergoty wheat. Toxicol Appl Pharmacol 36:11–17

    Article  CAS  Google Scholar 

  108. Demeke T, Kidane Y, Wuhib E (1979) Ergotism – a report on an epidemic, 1977–78. Ethiop Med J 17:107–113

    CAS  Google Scholar 

  109. Urga K, Debella A, Medihn YW, Agata N, Bayu A, Zewdie W (2002) Laboratory studies on the outbreak of gangrenous ergotism associated with consumption of contaminated barley in Arsi, Ethiopia. Ethiop J Heal Dev 16:317–323

    Google Scholar 

  110. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  Google Scholar 

  111. Hogg RA (1991) Poisoning of cattle fed ergotised silage. Vet Rec 129:313–314

    Article  CAS  Google Scholar 

  112. Porter JK (1995) Analysis of endophyte toxins: fescue and other grasses toxic to livestock. J Anim Sci 73:871–880

    Article  CAS  Google Scholar 

  113. Miles CO, Lane GA, Di Menna ME, Garthwaite I, Piper EL, Ball OJ-P, Latch GCM, Allen JM, Hunt MB, Bush LP, Min FK, Fletcher I, Harris PS (1996) High levels of ergonovine and lysergic acid amide in toxic Achnatherum inebrians accompanying infection by an Acremonium-like endophytic fungus. J Agric Food Chem 44:1285–1290

    Article  CAS  Google Scholar 

  114. Uhlig S, Vikoren T, Ivanova L, Handeland K (2007) Ergot alkaloids in Norwegian wild grasses: a mass spectrometric approach. Rapid Commun Mass Spectrom 21:1651–1660

    Article  CAS  Google Scholar 

  115. Griffith RW, Grauwiler J, Hodel C, Leist KH, Matter B (1978) Toxicologic considerations. In: Berde B, Schild HO (eds) Ergot alkaloids and related compounds. Springer, Berlin

    Google Scholar 

  116. Korn AK, Gross M, Usleber E, Thom N, Köhler K, Erhardt G (2014) Dietary ergot alkaloids as a possible cause of tail necrosis in rabbits. Mycotoxin Res 30:241–250

    Article  CAS  Google Scholar 

  117. Mulac D, Humpf H-U (2011) Cytotoxicity and accumulation of ergot alkaloids in human primary cells Dennis. Toxicology 282:112–121

    Article  CAS  Google Scholar 

  118. Larson BT, Harmon DL, Piper EL, Griffis LM, Bush LP (1999) Alkaloid binding and activation of D2 dopamine receptors in cell culture. J Anim Sci 77:942–947

    Article  CAS  Google Scholar 

  119. Larson BT, Samford MD, Camden JM, Piper EL, Kerley MS, Paterson JA, Turner JT (1995) Ergovaline binding and activation of D2 dopamine receptors in GH4ZR7 cells. J Anim Sci 73:1396–1400

    Article  CAS  Google Scholar 

  120. Oda T, Kume T, Izumi Y, Takada-Takatori Y, Niidome T, Akaike A (2008) Bromocriptine, a dopamine D(2) receptor agonist with the structure of the amino acid ergot alkaloids, induces neurite outgrowth in PC12 cells. Eur J Pharmacol 598:27–31

    Article  CAS  Google Scholar 

  121. Mulac D, Lepski S, Ebert F, Schwerdtle T, Humpf HU (2013) Cytotoxicity and fluorescence visualization of ergot alkaloids in human cell lines. J Agric Food Chem 61:462–471

    Article  CAS  Google Scholar 

  122. Zhang X, Nan Z, Li C, Gao K (2014) Cytotoxic effect of ergot alkaloids in Achnatherum inebrians infected by the Neotyphodium gansuense endophyte. J Agric Food Chem 62:7419–7422

    Article  CAS  Google Scholar 

  123. Strickland JR, Looper ML, Matthews JC, Rosenkrans JF, Flythe MD, Brown KR (2011) Board-invited review: St. Anthony’s fire in livestock: causes, mechanisms, and potential solutions. J Anim Sci 89:1603–1626

    Article  CAS  Google Scholar 

  124. Porter JK, Thompson FN Jr (1992) Effects of fescue toxicosis on reproduction in livestock. J Anim Sci 70:1594–1603

    Article  CAS  Google Scholar 

  125. Varga L, Lutterbeck PM, Pryor JS, Wenner R, Erb H (1972) Suppression of puerperal lactation with an ergot alkaloid: a double-blind study. Br Med J 2:743–744

    Article  CAS  Google Scholar 

  126. Kopinski JS, Blaney BJ, Downing JA, McVeigh JF, Murray SA (2007) Feeding sorghum ergot (Claviceps africana) to sows before farrowing inhibits milk production. Aust Vet J 85:169–176

    Article  CAS  Google Scholar 

  127. Kopinski JS, Blaney BJ, Murray SA, Downing JA (2008) Effect of feeding sorghum ergot (Claviceps africana) to sows during mid-lactation on plasma prolactin and litter performance. J Anim Physiol Anim Nutr 92:554–561

    Article  CAS  Google Scholar 

  128. Zeilmaker GH, Carlsen RA (1962) Experimental studies on the effect of ergocornine methanesulphonate on the luteotrophic function of the rat pituitary gland. Acta Endocrinol 41:321–335

    CAS  Google Scholar 

  129. Schams D, Reinhardt V, Karg H (1972) Effects of 2-BR-alpha-ergocryptine on plasma prolactin level during parturition and onset of lactation in cows. Experientia 28:697–699

    Article  CAS  Google Scholar 

  130. Walner BM, Booth NH, Robbins JD, Bacon CW, Porter JK, Kiser TE, Wilson R, Johnson B (1983) Effect of an endophytic fungus isolated from toxic pasture grass on serum prolactin concentrations in the lactating cow. Am J Vet Res 44:1317–1322

    Google Scholar 

  131. Bernard N, Jantzem H, Becker M, Pecriaux C, Bénard-Laribière A, Montastruc JL, Descotes J, Vial T, French Network of Regional Pharmacovigilance Centres (2015) Severe adverse effects of bromocriptine in lactation inhibition: a pharmacovigilance survey. BJOG 122:1244–1251

    Article  CAS  Google Scholar 

  132. Malysheva S, Larionova D, Diana Di Mavungu J, De Saeger S (2014) Pattern and distribution of ergot alkaloids in cereals and cereal products from European countries. World Mycotoxin J 7:217–230

    Article  CAS  Google Scholar 

  133. Storm ID, Have Rasmussen P, Strobel BW, Hansen HCB (2008) Ergot alkaloids in rye flour determined by solid-phase cation-exchange and high-pressure liquid chromatography with fluorescence detection. Food Addit Contam 25:338–346

    Article  CAS  Google Scholar 

  134. Crews C, Anderson WAC, Rees G, Krska R (2009) Ergot alkaloids in some rye-based UK cereal products. Food Addit Contam Part B Surveill 2:79–85

    Article  CAS  Google Scholar 

  135. Reinhold L, Reinhardt K (2011) Mycotoxins in foods in Lower Saxony (Germany): results of official control analyses performed in 2009. Mycotoxin Res 27:137–143

    Article  Google Scholar 

  136. Masloff S (2006) Ergot alkaloids in foods. III. Ergot alkaloids in cereals and cereal products. J Verbr Lebensm 1:153–154

    Article  CAS  Google Scholar 

  137. Fajardo JE, Dexter JE, Roscoe MM, Nowicki TW (1995) Retention of ergot alkaloids in wheat during processing. Cereal Chem 72:291–298

    CAS  Google Scholar 

  138. Bryła M, Szymczyk K, Jędrzejczak R, Roszko M (2015) Application of liquid chromatography/ion trap mass spectrometry technique to determine ergot alkaloids in grain products. Food Technol Biotechnol 53:18–28

    Article  CAS  Google Scholar 

  139. Lombaert GA, Pellaers P, Roscoe V, Mankotia M, Neil R, Scott PM (2003) Mycotoxins in infant cereal foods from the Canadian retail market. Food Addit Contam 20:494–504

    Article  CAS  Google Scholar 

  140. Bürk G, Hobel W, Richt A (2006) Ergot alkaloids in cereal products: results from the Bavarian health and food safety authority. Mol Nutr Food Res 50:437–442

    Article  CAS  Google Scholar 

  141. Schoch C, Schlatter C (1985) Gesundheitsrisiken durch mutterkorn in getreide. Mitt Geb Lebensmittelunters Hyg 76:631–644

    CAS  Google Scholar 

  142. European Commission (2012) Commission Recommendation of 15 March 2012 on the monitoring of the presence of ergot alkaloids in feed and food. Off J Eur Union L77:20–21

    Google Scholar 

  143. Fanali S, Flieger M, Steinerova N, Nardi A (1992) Use of cyclodextrins for the enantioselective separation of ergot alkaloids by capillary zone electrophoresis. Electrophoresis 13:39–43

    Article  CAS  Google Scholar 

  144. Aboul-Enein HY, Bakr SA (1997) Simultaneous determination of caffeine and ergotamine in pharmaceutical dosage formulation by capillary electrophoresis. J Liq Chromatogr Relat Technol 20:47–55

    Article  CAS  Google Scholar 

  145. Ma Y, Meyer KG, Afzal D, Agena EA (1993) Isolation and quantification of ergovaline from Festuca arundinacea (tall fescue) infected with the fungus Acremonium coenophialum by high-performance capillary electrophoresis. J Chromatogr A 652:535–538

    Article  CAS  Google Scholar 

  146. Frach K, Blaschke G (1998) Separation of ergot alkaloids and their epimers and determination in sclerotia by capillary electrophoresis. J Chromatogr A 808:247–252

    Article  CAS  Google Scholar 

  147. Kvasnicka F, Bíba B, Cvak L (2005) Capillary zone electrophoresis separation of enantiomers of lisuride. J Chromatogr A 1066:255–258

    Article  CAS  Google Scholar 

  148. Himmelsbach M, Ferdig M, Rohrer T (2014) Analysis of paspalic acid, lysergic acid, and iso-lysergic acid by capillary zone electrophoresis with UV- and quadrupole time-of-flight mass spectrometric detection. Electrophoresis 35:1329–1333

    Article  CAS  Google Scholar 

  149. Felici E, Wang CC, Fernández LP, Gomez MR (2015) Simultaneous separation of ergot alkaloids by capillary electrophoresis after cloud point extraction from cereal samples. Electrophoresis 36:341–347

    Article  CAS  Google Scholar 

  150. Müller C, Klaffke HS, Krauthause W, Wittkowski R (2006) Determination of ergot alkaloids in rye and rye flour. Mycotoxin Res 22:197–200

    Article  Google Scholar 

  151. Köppen R, Rasenko T, Merkel S, Mönch B, Koch B (2013) Novel solid-phase extraction for epimer-specific quantitation of ergot alkaloids in rye flour and wheat germ oil. J Agric Food Chem 61:10699–10707

    Article  CAS  Google Scholar 

  152. Ruhland M, Tischler J (2008) Determination of ergot alkaloids in feed by HPLC. Mycotoxin Res 24:73–79

    Article  CAS  Google Scholar 

  153. Walker K, Duringer J, Craig AM (2015) Determination of the ergot alkaloid ergovaline in tall fescue seed and straw using a QuEChERS extraction method with high-performance liquid chromatography − fluorescence detection. J Agric Food Chem 63:4236–4242

    Article  CAS  Google Scholar 

  154. Nakamichi T, Yawata A, Hojo H, Kagaya H, Kobayashi S, Chikuma T (2012) Monitoring of methylergometrine in human breast milk by solid-phase extraction and high-performance liquid chromatography with fluorimetric detection. Pharmazie 67:482–484

    CAS  Google Scholar 

  155. Diana Di Mavungu J, Malysheva SV, Sanders M, Larionova D, Robbens J, Dubruel P, Van Peteghem C, De Saeger S (2012) Development and validation of a new LC–MS/MS method for the simultaneous determination of six major ergot alkaloids and their corresponding epimers. Application to some food and feed commodities. Food Chem 135:292–303

    Article  CAS  Google Scholar 

  156. Malysheva SV, Diana Di Mavungu J, Schoeters E, Larionova DA, Goryacheva IY, De Saeger S (2013) Rapid and sensitive LC-MS/MS determination of ergot alkaloids in buffered solutions: application to in vitro testing of a clay-based mycotoxin binder. World Mycotoxin J 6:105–115

    Article  CAS  Google Scholar 

  157. Lenain P, Diana Di Mavungu J, Dubruel P, Robbens J, De Saeger S (2012) Development of suspension polymerized molecularly imprinted beads with metergoline as template and application in a solid-phase extraction procedure toward ergot alkaloids. Anal Chem 84:10411–10418

    Article  CAS  Google Scholar 

  158. Najafabadi AS, Mofid MR, Mohammadi R, Moghim S (2010) Quantification of ergovaline using HPLC and mass spectrometry in Iranian Neotyphodium infected tall fescue. Res Pharm Sci 5:135–143

    CAS  Google Scholar 

  159. Jarmusch AK, Musso AM, Shymanovich T, Jarmusch SA, Weavil MJ, Lovin ME, Ehrmann BM, Saari S, Nichols DE, Faeth SH, Cech NB (2016) Comparison of electrospray ionization and atmospheric pressure photoionization liquid chromatography mass spectrometry methods for analysis of ergot alkaloids from endophyte-infected sleepygrass (Achnatherum robustum). J Pharm Biomed Anal 117:11–17

    Article  CAS  Google Scholar 

  160. Malysheva SV, Diana Di Mavungu J, Goryacheva IY, De Saeger S (2013) A systematic assessment of the variability of matrix effects in LC-MS/MS analysis of ergot alkaloids in cereals and evaluation of method robustness. Anal Bioanal Chem 405:5595–5604

    Article  CAS  Google Scholar 

  161. Martos PA, Thompson W, Diaz GJ (2010) Multiresidue mycotoxin analysis in wheat, barley, oats, rye and maize grain by high- performance liquid chromatography-tandem mass spectrometry. World Mycotoxin J 3:205–223

    Article  CAS  Google Scholar 

  162. Liao C-D, Wong JW, Zhang K, Hayward DG, Lee NS, Trucksess MW (2013) Multi-mycotoxin analysis of finished grain and nut products using high-performance liquid chromatography − triple-quadrupole mass spectrometry. J Agric Food Chem 61:4771–4782

    Article  CAS  Google Scholar 

  163. Ezekiel CN, Bandyopadhyay R, Sulyok M, Warth B, Krska R (2012) Fungal and bacterial metabolites in commercial poultry feed from Nigeria. Food Addit Contam 29:1288–1299

    Article  CAS  Google Scholar 

  164. Zachariasova M, Dzuman Z, Veprikova Z, Hajkova K, Jiru M, Vaclavikova M, Zachariasova A, Pospichalova M, Florian M, Hajslova J (2014) Occurrence of multiple mycotoxins in European feeding stuffs, assessment of dietary intake by farm animals. Anim Feed Sci Technol 193:124–140

    Article  CAS  Google Scholar 

  165. Malachová A, Sulyok M, Beltrán E, Berthiller F, Krska R (2014) Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J Chromatogr A 1362:145–156

    Article  CAS  Google Scholar 

  166. Sulyok M, Krska R, Schuhmacher R (2010) Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chem 119:408–416

    Article  CAS  Google Scholar 

  167. Uhlig S, Eriksen GS, Hofgaard IS, Krska R, Beltrán E, Sulyok M (2013) Faces of a changing climate: semi-quantitative multi-mycotoxin analysis of grain grown in exceptional climatic conditions in Norway. Toxins 5:1682–1697

    Article  CAS  Google Scholar 

  168. Straumfors A, Uhlig S, Eriksen GS, Heldal KK, Eduard W, Krska R, Sulyok M (2015) Mycotoxins and other fungal metabolites in grain dust from Norwegian grain elevators and compound feed mills. World Mycotoxin J 8:361–373

    Article  CAS  Google Scholar 

  169. Malachova A, Dzuman Z, Veprikova Z, Vaclavikova M, Zachariasova M, Hajslova J (2011) Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market. J Agric Food Chem 59:12990–12997

    Article  CAS  Google Scholar 

  170. Arroyo-Manzanares N, Malysheva SV, Bussche JV, Vanhaecke L, Diana Di Mavungu J, De Saeger S (2014) Holistic approach based on high resolution and multiple stage mass spectrometry to investigate ergot alkaloids in cereals. Talanta 118:359–367

    Article  CAS  Google Scholar 

  171. Arroyo-Manzanares N, Diana Di Mavungu J, Uka V, Gámiz-Gracia L, García-Campaña AM, De Saeger S (2015) An integrated targeted and untargeted approach for the analysis of ergot alkaloids in cereals using UHPLC – hybrid quadrupole time-of-flight mass spectrometry. World Mycotoxin J. doi:10.3920/WMJ2015.1900

    Google Scholar 

  172. Paulke A, Kremer C, Wunder C, Wurglics M, Schubert-Zsilavecz M, Toennes SW (2014) Identification of legal highs – ergot alkaloid patterns in two Argyreia nervosa products. Forensic Sci Int 242:62–71

    Article  CAS  Google Scholar 

  173. Paulke A, Kremer C, Wunder C, Wurglics M, Schubert-Zsilavecz M, Toennes SW (2015) Studies on the alkaloid composition of the Hawaiian Baby Woodrose Argyreia nervosa, a common legal high. Forensic Sci Int 249:281–293

    Article  CAS  Google Scholar 

  174. Shelby RA, Kelley VC (1990) An immunoassay for ergotamine and related alkaloids. J Agric Food Chem 38:1130–1134

    Article  CAS  Google Scholar 

  175. Schnitzius JM, Hill NS, Thompson CS, Craig AM (2001) Semiquantitative determination of ergot alkaloids in seed, straw, and digesta samples using a competitive enzyme-linked immunosorbent assay. J Vet Diagn Investig 13:230–237

    Article  CAS  Google Scholar 

  176. Shelby RA, Kelley VC (1991) Detection of ergot alkaloids in tall fescue by competitive immunoassay with a monoclonal antibody. Food Agric Immunol 3:169–177

    Article  CAS  Google Scholar 

  177. Tunali B, Shelby RA, Morgan-Jones G, Kodan M (2000) Endophytic fungi and ergot alkaloids in native Turkish grasses. Phytoparasitica 28:375–377

    Article  Google Scholar 

  178. Ayers AW, Hill NS, Rottinghaus GE, Stuedemann JA, Thompson FN, Purinton PT, Seman DH, Dawe DL, Parks AH, Ensley D (2009) Ruminal metabolism and transport of tall fescue ergot alkaloids. Crop Sci 49:2309–2316

    Article  CAS  Google Scholar 

  179. Roberts CA, Kallenbach RL, Hill NS, Rottinghaus GE, Evans TJ (2009) Ergot alkaloid concentrations in tall fescue hay during production and storage. Crop Sci 49:1496–1502

    Article  CAS  Google Scholar 

  180. Hopkins AA, Young CA, Panaccione DG, Simpson WR, Mittal S, Bouton JH (2010) Agronomic performance and lamb health among several tall fescue novel endophyte combinations in the South-Central USA. Crop Sci 50:1552–1561

    Article  Google Scholar 

  181. Wiegand R, Klette KL, Stout PR, Gehlhausen JM (2002) Comparison of EMIT II, CEDIA, and DPC RIA assays for the detection of lysergic acid diethylamide in forensic urine samples. J Anal Toxicol 26:519–523

    Article  CAS  Google Scholar 

  182. Saitman A, Park H-D, Fitzgerald RL (2014) False-positive interferences of common urine drug screen immunoassays. J Anal Toxicol 38:387–396

    Article  CAS  Google Scholar 

  183. Agurell S, Ohlsson A (1971) Gas chromatography of ergot alkaloids. J Chromatogr 61:339–342

    Article  CAS  Google Scholar 

  184. Barrow KD, Quigley FR (1975) Ergot alkaloids II. Determination of agroclavine by gas–liquid chromatography. J Chromatogr 105:393–395

    Article  CAS  Google Scholar 

  185. Jegorov A (1999) Analytical chemistry of ergot alkaloids. In: Kren V, Cvak L (eds) Ergot: the genus Claviceps. Harwood Academic Publishers, London

    Google Scholar 

  186. Scott PM (1993) Gas chromatography of mycotoxins. In: Betina V (ed) Chromatography of mycotoxins – techniques and applications. Elsevier, Amsterdam

    Google Scholar 

  187. Bukowski N, Eaton AN (1993) The confirmation and quantitation of LSD in urine using gas-chromatography mass-spectrometry. Rapid Commun Mass Spectrom 7:106–108

    Article  CAS  Google Scholar 

  188. Musshoff F, Daldrup T (1997) Gas chromatographic mass spectrometric determination of lysergic acid diethylamide (LSD) in serum samples. Forensic Sci Int 88:133–140

    Article  CAS  Google Scholar 

  189. Nakahara Y, Kikura R, Takahashi K, Foltz RL, Mieczkowski T (1996) Detection of LSD and metabolite in rat hair and human hair. J Anal Toxicol 20:323–329

    Article  CAS  Google Scholar 

  190. Nelson CC, Foltz RL (1992) Determination of lysergic-acid diethylamide (LSD), iso-LSD, and N-demethyl-LSD in body-fluids by gas-chromatography tandem mass-spectrometry. Anal Chem 64:1578–1585

    Article  CAS  Google Scholar 

  191. Klug C, Baltes W, Kronert W, Weber R (1988) A method for the determination of ergot alkaloids in food. Z Lebensm Unters Forsch 186:108–113

    Article  CAS  Google Scholar 

  192. Kozlovsky AG, Zhelifonova VP, Antipova TV, Baskunov BP, Ivanushkina NE, Ozerskaya SM (2014) Exo-metabolites of mycelial fungi isolated in production premises of cheese-making and meat-processing plants. Food Addit Contam Part A 3:300–306

    Article  CAS  Google Scholar 

  193. Berry AJ, Games DE, Perkins JR (1986) Supercritical fluid chromatographic and supercritical fluid-mass spectrometric studies of some polar compounds. J Chromatogr 363:147–158

    Article  CAS  Google Scholar 

  194. Stahl M, Jakob A, von Brocke A, Nicholson G, Bayer E (2002) Comparison of different setups for one- and two-dimensional capillary high-performance liquid chromatography and pressurized capillary electrochromatography coupled on-line with mass spectrometry. Electrophoresis 23:2949–2962

    Article  CAS  Google Scholar 

  195. Roberts CA, Benedict HR, Hill NS, Kallenbach RL, Rottinghaus GE (2005) Determination of ergot alkaloid content in tall fescue by near- infrared spectroscopy. Crop Sci 45:778–783

    Article  CAS  Google Scholar 

  196. Vermeulen P, Pierna JAF, van Egmond HP, Zegers J, Dardenne P, Baeten V (2013) Validation and transferability study of a method based on near-infrared hyperspectral imaging for the detection and quantification of ergot bodies in cereals. Anal Bioanal Chem 405:7765–7772

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Natalia Arroyo-Manzanares received postdoctoral grant from the University of Granada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Arroyo-Manzanares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Arroyo-Manzanares, N., Gámiz-Gracia, L., García-Campaña, A.M., Diana Di Mavungu, J., De Saeger, S. (2017). Ergot Alkaloids: Chemistry, Biosynthesis, Bioactivity, and Methods of Analysis. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_1

Download citation

Publish with us

Policies and ethics