Skip to main content

Processing and Applications of Remotely Sensed Data

  • Reference work entry
  • First Online:

Abstract

Digital image processing, post-processing, and data integration techniques as applied to airborne and satellite remotely sensed data for the purpose of extracting useful Earth resources information will be discussed in this chapter. Image preprocessing and data reduction tools are described in the previous chapter. The concepts discussed in this chapter include:

  • Image processing techniques such as unsupervised image classifications, supervised image classifications, neural network classifiers, simulated annealing classifiers, and fuzzy logic classification systems

  • The most widely accepted indices and land use/land cover classification schemes

  • Post-processing techniques such as filtering and change detection

  • Accuracy assessment and validation of results

  • Data integration and spatial modeling including examples of integration of remotely sensed data with other conventional survey and map form data for Earth observation purposes

*Dr. Halil Cakir did not contribute to this article as an employee of the US Environmental Protection Agency nor does this article reflect the views of this agency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • S.G. Aaronoff, The minimum accuracy value as an index of classification accuracy. Photogramm. Eng. Remote Sens. 57(5), 501–509 (1985)

    Google Scholar 

  • J.R. Anderson, E. Hardy, J. Roach, R. Witmer, A land use and land cover classification system for use with remote sensing data, US Geological Survey Professional Paper 964, Washington, DC, 1976, p. 28ff

    Google Scholar 

  • E.A. Blaisdell, Harcourt Brace Javanovich (Harcourt Brace Javanovich, New York, 1993), p. 653ff

    Google Scholar 

  • T. Celik, Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009)

    Article  Google Scholar 

  • V. Cerny, Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 45–51 (1985) MathSciNet

    Article  MathSciNet  Google Scholar 

  • S.B. Cho, J.H. Kim, Combining multiple neural networks by fuzzy integral for robust classification. IEEE Trans. Syst. Man Cybern. 25(2), 380–384 (1995)

    Article  Google Scholar 

  • J.A. Cohen, A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)

    Article  Google Scholar 

  • R.G. Congalton, K. Green, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (Lewis, Boca Raton, 1999). 137 p

    Google Scholar 

  • R.G. Congalton, R.G. Oderwald, R.A. Mead, Assessing landsat classification accuracy using discrete multivariate statistical techniques. Photogramm. Eng. Remote Sens. 49(12), 1671–1678 (1983)

    Google Scholar 

  • L.M. Cowardin, V. Carter, F.C. Golet, E.T. LaRoe, Classification of Wetlands and Deepwater Habitats of the United States (U.S. Fish and Wildlife Service, Washington, DC, 1979), p. 103ff. FWS/OBS-79/31

    Google Scholar 

  • X. Dai, S. Khorram, A new automated land cover change detection system for remotely-sensed imagery based on artificial neural networks, in Proceedings of the IEEE/IGARSS 1997 International Geoscience and Remote Sensing Symposium, Singapore, 1997a

    Google Scholar 

  • X. Dai, S. Khorram, in Proceedings of the IEEE/IGARSS 1997 International Geoscience and Remote Sensing Symposium, Singapore, 1997b

    Google Scholar 

  • X. Dai, S. Khorram, Data fusion using artificial neural networks: a case study on multitemporal change analysis. Comput. Environ. Urban Syst. 23, 19–31 (1999)

    Article  Google Scholar 

  • A. Das, B.K. Chakrabarti, Quantum annealing and related optimization methods. Lect. Notes Phys. 679, 239–257 (2005)

    Article  MATH  Google Scholar 

  • J. De Vincente, J. Lanchares, J. Hermida, Placement by thermodynamic simulated annealing. Phys. Lett. A 317, 415–423 (2003)

    Article  MATH  Google Scholar 

  • J.R. Dobson, E.A. Bright, R.L. Ferguson, D.W. Field, L.L. Wood, K.D. Haddad, H. Iredale, J.R. Jensen, V. Klemas, R.J. Orth, J. P. Thomas, NOAA Coastal Change Analysis Program (C-CAP). Guidance for Regional Implementation. National Oceanic & Atmospheric Administration, Washington, DC, NMFS 123 (1995) p. 92ff

    Google Scholar 

  • A.S. Elfishawy, S.B. Kesler, Adaptive algorithms for change detection in image sequence. Signal Process. 23, 179–191 (1991)

    Article  Google Scholar 

  • G.M. Foody, Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002)

    Article  Google Scholar 

  • M.F. Goodchild, G.Q. Sun, S. Yang, Development and test of an error model for categorical data. Int. J. Geogr. Inf. Syst. 6(2), 87–104 (1992)

    Article  Google Scholar 

  • A. Hagen, Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 17, 235–249 (2003)

    Article  Google Scholar 

  • D.B. Hester, Dissertation, North Carolina State University, 2008a

    Google Scholar 

  • D.B. Hester, H.I. Cakir, S.A.C. Nelson, S. Khorram, Per-pixel classification of high spatial resolution satellite imagery for urban land cover mapping. Photogramm. Eng. Remote Sens. 74, 463–471 (2008a)

    Article  Google Scholar 

  • D.B. Hester, S.A.C. Nelson, H.I. Cakir, S. Khorram, H. Cheshire, High resolution land cover change detection based on fuzzy uncertainty analysis and change reasoning. Int. J Remote Sens. 31, 455–475 (2010)

    Article  Google Scholar 

  • R.M. Hord, Digital Image Processing of Remotely-Sensed Data (Academic, New York, 1982), p. 256

    Google Scholar 

  • A.K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, Englewood Cliffs, 1989), pp. 418–421 MATH

    MATH  Google Scholar 

  • J.R. Jensen, Introductory Digital Image Processing, 3rd edn. (Pearson Prentice Hall, Upper Saddle River, 2005), p. 316

    Google Scholar 

  • I. Kanellopoulos, G.G. Wilkinson, Strategies and best practice for neural network image classification. Int. J. Remote Sens. 18, 711–725 (1997)

    Article  Google Scholar 

  • S. Khorram, C.F. van der Wiele, F.H. Koch, S.A.C. Nelson, M.D. Potts, Principles of Applied Remote Sensing (Springer, New York, 2016), p. 307. ISBN 978-3-319-22559-3

    Book  Google Scholar 

  • S. Khorram, F. Koch, C. van der Wiele, S.A.C. Nelson, Remote Sensing, Book (Springer, New York, 2012). doi:10.1007/9781-4614-3103-9. ISBN 978-1- 4614-3102-2

    Book  Google Scholar 

  • S. Khorram, H.M. Cheshire, K. Sidrellis, Z. Nagy. Mapping and GIS Development of Land Use/Land Cover Categories for the Albemarle-Pamlico Drainage Basin (NC Department of Environmental, Health, and Natural Resources, Raleigh, NC, USA Dept. No. 91–08, 1992), p. 55ff

    Google Scholar 

  • S. Khorram, H. Cheshire, X. Dai, J. Morisette, Land cover inventory and change detection of coastal North Carolina using landsat thematic mapper data. ASPRS/ACSM Annu. Conv. Expos. 1, 245–250 (1996) Remote Sensing and Photogrammetry

    Google Scholar 

  • S. Khorram, G.S. Biging, N.R. Chrisman, D.R. Colby, R.G. Congalton, J.E. Dobson, R.L. Ferguson, M.F. Goodchild, J.R. Jensen, T.H. Mace, Accuracy Assessment of Remote Sensing-Derived Change Detection. American Society of Photogrammetry and Remote Sensing, Monograph (American Society of Photogrammetry and Remote Sensing, Bethesda, MD, 1999)

    Google Scholar 

  • S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–688 (1983) MathSciNet MATH

    Article  MathSciNet  MATH  Google Scholar 

  • V.V. Klemas, J.E. Dobson, R.L. Ferguson, K.D. Haddad, A coastal land cover classification system for the NOAA coastWatch change analysis program. J. Coast. Res. 9(3), 862–872 (1993)

    Google Scholar 

  • T. Lillesand, R. Kiefer, J. Chipman, Remote Sensing and Image Interpretation, 6th edn. (Wiley, New York, 2008), p. 763

    Google Scholar 

  • R.L. Lunetta, J.G. Lyons (eds.), Geospatial Data Accuracy Assessment. Report No. EPA/600/R-03/064 (US Environmental Protection Agency, Las Vegas, 2003), p 335

    Google Scholar 

  • J.T. Morisette, S. Khorram, Exact Confidence Interval for Proportions, Photogrammetric Engineering and Remote Sensing, 66(7):875–880 (2003)

    Google Scholar 

  • NOAA, Coastal Change Analysis Program (C-CAP), (NOAA Coastal Services Center, Charleston, 2004), http://www.csc.noaa-gov/crs/lca/ccap_program.html. Accessed 22 Dec 2015

  • NSIDC (National Snow & Ice Data Center), State of the Cryosphere: is the cryosphere sending signals about climate change? Sea Ice (2012), https://nsidc.org/cryosphere/sotc/sea_ice.html. Accessed 21 Jan 2016

  • Y. Nogami, Y. Jyo, M. Yoshioka, S. Omatu, Remote sensing data analysis by Kohonen feature map and competitive learning. IEEE SMC’97 1, 524–529 (1997)

    Google Scholar 

  • D.P. Paine, J.D. Kiser, Chapter 23: mapping accuracy assessment, in Aerial Photography and Image Interpretation, 2nd edn. (Wiley, New York, 2003), pp. 465–480

    Google Scholar 

  • M. Pal, P.M. Mather, An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 86, 554–565 (2003)

    Article  Google Scholar 

  • Polar Science Center: Arctic Sea Ice Volume Anomaly, Version 2, (University of Washington 2012). http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/. Accessed 21 Jan 2016

  • F. Qiu, J.R. Jensen, Opening of black box of neural networks for remote sensing image classification. Int. J. Remote Sens. 9, 1749–1768 (2004)

    Article  Google Scholar 

  • D.E. Rumelhart, G.E. Hinton, R.J. Williams, Parallel Distributed Processing (MIT Press, Cambridge, MA, 1986)

    Google Scholar 

  • K. Rutchey, L. Velcheck, Development of an everglades vegetation map using a SPOT image and global positioning system. Photogramm. Eng. Remote Sens. 60(6), 767–775 (1994)

    Google Scholar 

  • M.J. Sabins, Convergence and consistency of fuzzy C-means/ISODATA algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 9, 661–668 (1987)

    Article  Google Scholar 

  • P.C. Shurr, Acceptance of the acceptance criteria for the simulated annealing algorithm. Math. Oper. Res 22(2), 266ff (1997)

    Article  Google Scholar 

  • S.V. Stehman, Statistical rigor and practical utility in thematic map accuracy assessment. Photogramm. Eng. Remote Sens. 67, 727–734 (2001)

    Google Scholar 

  • M. Story, R.G. Congalton, Accuracy assessment: a user’s perspective. Photogramm. Eng. Remote Sens. 52(3), 397–399 (1986)

    Google Scholar 

  • J.T. Tou, R.C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, Readings, 1977), p. 377

    Google Scholar 

  • J.L. Van Genderen, B.F. Lock, Testing land use map accuracy. Photogramm. Eng. Remote Sens. 43(9), 1135–1137 (1977)

    Google Scholar 

  • USGS, USGS National Land Cover Data (EROS Data Center, Sioux Falls, 2004), http://landcover.usgs.gov/prodescription.html. Accessed 20 Dec 2015

  • F. Wang, Integrating GIS and remote sensing image analysis systems by unifying knowledge representation scheme. IEEE Trans. Geosci. Remote Sens. 29, 656–664 (1991)

    Article  Google Scholar 

  • D.M. Winker M.A. Vaughan, A.H. Omar, Y. Hu, K.A. Powell, Z. Liu, W.H. Hunt, and S.A. Young, Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Oceanic Technol 26, 2310–2323 (2009)

    Google Scholar 

  • R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 32f (2005)

    Article  Google Scholar 

  • C. Yang, P. Chung, Knowledge-based automatic change detection positioning system for complex heterogeneous environments. J. Intell. Robotic Syst 33, 85–98 (2002). MATH

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Khorram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York (outside the USA)

About this entry

Cite this entry

Khorram, S., Nelson, S.A.C., van der Wiele, C.F., Cakir, H. (2017). Processing and Applications of Remotely Sensed Data. In: Pelton, J., Madry, S., Camacho-Lara, S. (eds) Handbook of Satellite Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-23386-4_92

Download citation

Publish with us

Policies and ethics