Skip to main content

Dynamic Damage Propagation with Memory: A State-Based Model

  • Living reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

A model for dynamic damage propagation is developed using nonlocal potentials. The model is posed using a state-based peridynamic formulation. The resulting evolution is seen to be well posed. At each instant of the evolution, we identify a damage set. On this set, the local strain has exceeded critical values either for tensile or hydrostatic strain, and damage has occurred. The damage set is nondecreasing with time and is associated with damage state variables defined at each point in the body. We show that a rate form of energy balance holds at each time during the evolution. Away from the damage set, we show that the nonlocal model converges to the linear elastic model in the limit of vanishing nonlocal interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171, 65–78 (2011)

    Article  Google Scholar 

  • F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012)

    Article  Google Scholar 

  • F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling, Handbook of Peridynamic Modeling (CRC Press, BOCA Ratone, 2016)

    Google Scholar 

  • K. Dayal, K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)

    Article  MathSciNet  Google Scholar 

  • Q. Du, Y. Tao, X. Tian, A peridynamic model of fracture mechanics with bond-breaking. J Elast. (2017). https://doi.org/10.1007/s10659-017-9661-2

  • E. Emmrich, D. Phust, A short note on modeling damage in peridynamics. J. Elast. 123, 245–252 (2016)

    Article  MathSciNet  Google Scholar 

  • E. Emmrich, O. Weckner, On the well-posedness of the linear peridynamic model and its convergencee towards the Navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)

    Article  MathSciNet  Google Scholar 

  • J.T. Foster, S.A. Silling, W. Chen, An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9, 675–688 (2011)

    Article  Google Scholar 

  • W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures. Nuclear Eng. Des. 237, 1250–1258 (2007)

    Article  Google Scholar 

  • Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)

    Article  Google Scholar 

  • P. K. Jha, R. Lipton, Numerical analysis of peridynamic models in Hölder space, arXiv preprint arXiv:1701.02818 (2017)

    Google Scholar 

  • R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117, 21–50 (2014)

    Article  MathSciNet  Google Scholar 

  • R. Lipton, Cohesive dynamics and brittle fracture. J. Elast. 124(2), 143–191 (2016)

    Google Scholar 

  • R. Lipton, S. Silling, R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics. arXiv preprint arXiv:1602.00247 (2016)

    Google Scholar 

  • R. Lipton, E. Said, P.K. Jha, Free damage propagation with memory. J. Elast. To appear in J. Elasticity (2018)

    Google Scholar 

  • T. Mengesha, Q. Du, Nonlocal constrained value problems for a linear peridynamic Navier equation. J. Elast. 116, 27–51 (2014)

    Article  MathSciNet  Google Scholar 

  • E. Oterkus, I. Guven, E. Madenci, Fatigue failure model with peridynamic theory,in IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, June 2010, pp. 1–6

    Google Scholar 

  • K. Pham, J.J. Marigo, From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Contin. Mech. Thermodyn. 25, 147–171 (2013)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  • S.A. Silling, E. Askari, Peridynamic model for fatigue cracking. Sandia Report, SAND2014-18590, 2014

    Google Scholar 

  • S.A. Silling, F. Bobaru, Peridynamic modeling of membranes and fibers. Int. J. Nonlinear Mech. 40, 395–409 (2005)

    Article  Google Scholar 

  • S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)

    Article  MathSciNet  Google Scholar 

  • S. Silling, O. Weckner, E. Askari, F. Bobaru, Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)

    Article  Google Scholar 

  • O. Weckner, R. Abeyaratne, The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)

    Article  MathSciNet  Google Scholar 

  • O. Weckner, E. Emmrich, Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar. J. Comput. Appl. Mech, 6, 311–319 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon the work supported by the U S Army Research Laboratory and the U S Army Research Office under contract/grant number W911NF1610456.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lipton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lipton, R., Said, E., Jha, P.K. (2018). Dynamic Damage Propagation with Memory: A State-Based Model. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-22977-5_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22977-5_45-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22977-5

  • Online ISBN: 978-3-319-22977-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics