Skip to main content

Optimization-Based Coupling of Local and Nonlocal Models: Applications to Peridynamics

  • Living reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

Nonlocal continuum theories such as peridynamics (Silling and Lehoucq, 2010) and physics-based nonlocal elasticity (Di Paola et al., 2009) can capture strong nonlocal effects due to long-range forces at the mesoscale or microscale. For problems where these effects cannot be neglected, nonlocal models are more accurate than classical partial differential equations (PDEs) that only consider interactions due to contact. However, the improved accuracy of nonlocal models comes at the price of a computational cost that is significantly higher than that of PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A. Abdulle, O. Jecker, A. Shapeev, An optimization based coupling method for multiscale problems. Technical Report 36.2015, EPFL, Mathematics Institute of Computational Science and Engineering, Lausanne, Dec 2015

    Google Scholar 

  • Y. Azdoud, F. Han, G. Lubineau, A morphing framework to couple non-local and local anisotropic continua. Int. J. Solids Struct. 50(9), 1332–1341 (2013)

    Article  Google Scholar 

  • M. D’Elia, P. Bochev, Optimization-based coupling of nonlocal and local diffusion models, in Proceedings of the Fall 2014 Materials Research Society Meeting, ed. by R. Lipton. MRS Symposium Proceedings (Cambridge University Press, Boston, 2014)

    Google Scholar 

  • M. D’Elia, P. Bochev, Formulation, analysis and computation of an optimization-based local-to-nonlocal coupling method. Technical Report SAND2017–1029J, Sandia National Laboratories, 2016

    Google Scholar 

  • M. D’Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions. Comput. Math. Appl. 71(11), 2218–2230 (2016)

    Article  MathSciNet  Google Scholar 

  • H.B. Dhia, G. Rateau, The Arlequin method as a flexible engineering design tool. Int. J. Numer. Methods Eng. 62(11), 1442–1462 (2005)

    Article  MATH  Google Scholar 

  • M. Di Paola, G. Failla, M. Zingales, Physically-based approach to the mechanics of strong non-local linear elasticity theory. J. Elast. 97(2), 103–130 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • M. Discacciati, P. Gervasio, A. Quarteroni, The interface control domain decomposition (ICDD) method for elliptic problems. SIAM J. Control. Optim. 51(5), 3434–3458 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Q. Du, Optimization based nonoverlapping domain decomposition algorithms and their convergence. SIAM J. Numer. Anal. 39(3), 1056–1077 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Q. Du, M.D. Gunzburger, A gradient method approach to optimization-based multidisciplinary simulations and nonoverlapping domain decomposition algorithms. SIAM J. Numer. Anal. 37(5), 1513–1541 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • P. Gervasio, J.-L. Lions, A. Quarteroni, Heterogeneous coupling by virtual control methods. Numerische Mathematik 90, 241–264 (2001). https://doi.org/10.1007/s002110100303

    Article  MATH  MathSciNet  Google Scholar 

  • M.D. Gunzburger, H.K. Lee, An optimization-based domain decomposition method for the Navier-Stokes equations. SIAM J. Numer. Anal. 37(5), 1455–1480 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • M.D. Gunzburger, J.S. Peterson, H. Kwon, An optimization based domain decomposition method for partial differential equations. Comput. Math. Appl. 37(10), 77–93 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • M.D. Gunzburger, M. Heinkenschloss, H.K. Lee, Solution of elliptic partial differential equations by an optimization-based domain decomposition method. Appl. Math. Comput. 113(2–3), 111–139 (2000)

    MATH  MathSciNet  Google Scholar 

  • F. Han, G. Lubineau, Coupling of nonlocal and local continuum models by the Arlequin approach. Int. J. Numer. Methods Eng. 89(6), 671–685 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • P. Kuberry, H. Lee, A decoupling algorithm for fluid-structure interaction problems based on optimization. Comput. Methods Appl. Mech. Eng. 267, 594–605 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • D.J. Littlewood, Roadmap for peridynamic software implementation. Report SAND2015-9013, Sandia National Laboratories, Albuquerque, 2015

    Google Scholar 

  • G. Lubineau, Y. Azdoud, F. Han, C. Rey, A. Askari, A morphing strategy to couple non-local to local continuum mechanics. J. Mech. Phys. Solids 60(6), 1088–1102 (2012)

    Article  MathSciNet  Google Scholar 

  • D. Olson, P. Bochev, M. Luskin, A. Shapeev, Development of an optimization-based atomistic-to-continuum coupling method, in Proceedings of LSSC 2013, ed. by I. Lirkov, S. Margenov, J. Wasniewski. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2014a)

    Google Scholar 

  • D. Olson, P. Bochev, M. Luskin, A. Shapeev, An optimization-based atomistic-to-continuum coupling method. SIAM J. Numer. Anal. 52(4), 2183–2204 (2014b)

    Article  MATH  MathSciNet  Google Scholar 

  • M.L. Parks, D.J. Littlewood, J.A. Mitchell, S.A. Silling, Peridigm Users’ Guide v1.0.0. SAND Report 2012-7800, Sandia National Laboratories, Albuquerque, 2012

    Google Scholar 

  • A.G. Salinger, R.A. Bartlett, Q. Chen, X. Gao, G.A. Hansen, I. Kalashnikova, A. Mota, R.P. Muller, E. Nielsen, J.T. Ostien, R.P. Pawlowski, E.T. Phipps, W. Sun, Albany: a component–based partial differential equation code built on Trilinos. SAND Report 2013-8430J, Sandia National Laboratories, Albuquerque, 2013

    Google Scholar 

  • P. Seleson, D.J. Littlewood, Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. 71(11), 2432–2448 (2016)

    Article  MathSciNet  Google Scholar 

  • P. Seleson, M.L. Parks, On the role of the influence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)

    Article  Google Scholar 

  • P. Seleson, S. Beneddine, S. Prudhomme, A force-based coupling scheme for peridynamics and classical elasticity. Comput. Mater. Sci. 66, 34–49 (2013)

    Article  Google Scholar 

  • S.A. Silling, R.B. Lehoucq, Peridynamic theory of solid mechanics, in Advances in Applied Mechanics, vol. 44 (Elsevier, San Diego, 2010), pp. 73–168

    Google Scholar 

  • S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US DOE’s Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories and the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research. Part of this research was carried under the auspices of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-3003 B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta D’Elia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG (outside the USA)

About this entry

Cite this entry

D’Elia, M., Bochev, P., Littlewood, D., Perego, M. (2018). Optimization-Based Coupling of Local and Nonlocal Models: Applications to Peridynamics. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-22977-5_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22977-5_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22977-5

  • Online ISBN: 978-3-319-22977-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics