Skip to main content

Fractional Nonlocal Continuum Mechanics and Microstructural Models

  • Living reference work entry
  • First Online:
  • 122 Accesses

Abstract

Models of physical lattices with long-range interactions for nonlocal continuum are suggested. The lattice long-range interactions are described by exact fractional-order difference operators. Continuous limit of suggested lattice operators gives continuum fractional derivatives of non-integer orders. The proposed approach gives a new microstructural basis to formulation of theory of nonlocal materials with power-law nonlocality. Moreover these lattice models, which is based on exact fractional differences, allow us to have a unified microscopic description of fractional nonlocal and standard local continuum.

This is a preview of subscription content, log in via an institution.

References

  • T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes (Wiley-ISTE, Hoboken, 2014a)

    Book  MATH  Google Scholar 

  • T.M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles (Wiley-ISTE, Hoboken, 2014b)

    Book  MATH  Google Scholar 

  • A. Carpinteri, P. Cornetti, A. Sapora, Static-kinematic fractional operators for fractal and non-local solids. Zeitschrift für Angewandte Mathematik und Mechanik. Appl. Math. Mech. 89(3), 207–217 (2009)

    MathSciNet  MATH  Google Scholar 

  • A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity. Eur. Phys. J. Spec. Top. 193, 193–204 (2011)

    Article  MATH  Google Scholar 

  • N. Challamel, D. Zorica, T.M. Atanackovic, D.T. Spasic, On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. C. R. Mec. 341(3), 298–303 (2013)

    Article  Google Scholar 

  • G. Cottone, M. Di Paola, M. Zingales, Elastic waves propagation in 1D fractional non-local continuum. Physica E 42(2), 95–103 (2009a)

    Article  MATH  Google Scholar 

  • G. Cottone, M. Di Paola, M. Zingales, Fractional mechanical model for the dynamics of non-local continuum, in Advances in Numerical Methods. Lecture Notes in Electrical Engineering, vol. 11 (Springer, New York, 2009b), Chapter 33 pp. 389–423

    Google Scholar 

  • M. Di Paola, M. Zingales, Fractional differential calculus for 3D mechanically based non-local elasticity. Int. J. Multiscale Comput. Eng. 9(5), 579–597 (2011)

    Article  Google Scholar 

  • M. Di Paola, F. Marino, M. Zingales, A generalized model of elastic foundation based on long-range interactions: integral and fractional model. Int. J. Solids Struct. 46(17), 3124–3137 (2009a)

    Article  MATH  Google Scholar 

  • M. Di Paola, G. Failla, M. Zingales, Physically-based approach to the mechanics of strong non-local linear elasticity theory. J. Elast. 97(2), 103–130 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Di Paola, G. Failla, A. Pirrotta, A. Sofi, M. Zingales, The mechanically based non-local elasticity: an overview of main results and future challenges. Philos. Trans. R. Soc. A. 371(1993), 20120433 (2013)

    Google Scholar 

  • C.S. Drapaca, S. Sivaloganathan, A fractional model of continuum mechanics. J. Elast. 107(2), 105–123 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • V.S. Gubenko, Some contact problems of the theory of elasticity and fractional differentiation. J. Appl. Math. Mech. 21(2), 279–280 (1957, in Russian)

    Google Scholar 

  • A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006) p. 353

    MATH  Google Scholar 

  • N.A. Rostovtsev, Remarks on the paper by V.S. Gubenko, Some contact problems of the theory of elasticity and fractional differentiation. J. Appl. Math. Mech. 23(4), 1143–1149 (1959)

    Google Scholar 

  • S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications (Gordon and Breach, New York, 1993), p. 1006

    MATH  Google Scholar 

  • A. Sapora, P. Cornetti, A. Carpinteri, Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Commun. Nonlinear Sci. Numer. Simul. 18(1), 63–74 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Sumelka, Non-local KirchhoffLove plates in terms of fractional calculus. Arch. Civil Mech. Eng. 15(1), 231–242 (2015)

    Article  Google Scholar 

  • W. Sumelka, T. Blaszczyk, Fractional continua for linear elasticity. Arch. Mech. 66(3), 147–172 (2014)

    MathSciNet  MATH  Google Scholar 

  • W. Sumelka, R. Zaera, J. Fernández-Sáez, A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics. Meccanica. 50(9), 2309–2323 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, Continuous limit of discrete systems with long-range interaction. J. Phys. A. 39(48), 14895–14910 (2006a). arXiv:0711.0826

    Google Scholar 

  • V.E. Tarasov, Map of discrete system into continuous. J. Math. Phys. 47(9), 092901 (2006b). arXiv:0711.2612

    Google Scholar 

  • V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  • V.E. Tarasov, Lattice model with power-law spatial dispersion for fractional elasticity. Centr. Eur. J. Phys. 11(11), 1580–1588 (2013)

    Google Scholar 

  • V.E. Tarasov, Fractional gradient elasticity from spatial dispersion law. ISRN Condens. Matter Phys. 2014, 794097 (13 pages) (2014a)

    Google Scholar 

  • V.E. Tarasov, Lattice model of fractional gradient and integral elasticity: long-range interaction of Grunwald-Letnikov-Riesz type. Mech. Mater. 70(1), 106–114 (2014b). arXiv:1502.06268

    Google Scholar 

  • V.E. Tarasov, Lattice with long-range interaction of power-law type for fractional non-local elasticity. Int. J. Solids Struct. 51(15–16), 2900–2907 (2014c). arXiv:1502.05492

    Google Scholar 

  • V.E. Tarasov, Fractional quantum field theory: from lattice to continuum. Adv. High Energy Phys. 2014, 957863 (14 pages) (2014d)

    Google Scholar 

  • V.E. Tarasov, Toward lattice fractional vector calculus. J. Phys. A. 47(35), 355204 (51 pages) (2014e)

    Google Scholar 

  • V.E. Tarasov, General lattice model of gradient elasticity. Mod. Phys. Lett. B. 28(7), 1450054 (2014f). arXiv:1501.01435

    Google Scholar 

  • V.E. Tarasov, Three-dimensional lattice approach to fractional generalization of continuum gradient elasticity. Prog. Frac. Differ. Appl. 1(4), 243–258 (2015a)

    Article  Google Scholar 

  • V.E. Tarasov, Fractional-order difference equations for physical lattices and some applications. J. Math. Phys. 56(10), 103506 (2015b)

    Google Scholar 

  • V.E. Tarasov, Discretely and continuously distributed dynamical systems with fractional nonlocality, in Fractional Dynamics, ed. by C. Cattani, H.M. Srivastava, X.-J. Yang (De Gruyter Open, Berlin, 2015c), Chapter 3, pp. 31–49. doi: 10.1515/9783110472097-003

  • V.E. Tarasov, Variational principle of stationary action for fractional nonlocal media. Pac. J. Math. Ind. 7(1), Article 6. [11 pages] (2015d)

    Google Scholar 

  • V.E. Tarasov, Non-linear fractional field equations: weak non-linearity at power-law non-locality. Nonlinear Dyn. 80(4), 1665–1672 (2015e)

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, Lattice fractional calculus. Appl. Math. Comput. 257, 12–33 (2015f)

    MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, Lattice model with nearest-neighbor and next-nearest-neighbor interactions for gradient elasticity. Discontinuity Nonlinearity Complex 4(1), 11–23 (2015g). arXiv:1503.03633

    Google Scholar 

  • V.E. Tarasov, Exact discrete analogs of derivatives of integer orders: differences as infinite series. J. Math. 2015, Article ID 134842 (2015h)

    Google Scholar 

  • V.E. Tarasov, Electric field in media with power-law spatial dispersion. Mod. Phys. Lett. B 30(10), 1650132 (11 pages) (2016a). doi: 10.1142/S0217984916501323

  • V.E. Tarasov, Discrete model of dislocations in fractional nonlocal elasticity. J. King Saud Univ. Sci. 28(1), 33–36 (2016b)

    Article  Google Scholar 

  • V.E. Tarasov, Three-dimensional lattice models with long-range interactions of Grunwald-Letnikov type for fractional generalization of gradient elasticity. Meccanica. 51(1), 125–138 (2016c)

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, Fractional mechanics of elastic solids: continuum aspects. J. Eng. Mech. 143(5), (2017). doi: 10.1061/(ASCE)EM.1943-7889.0001074

  • V.E. Tarasov, Partial fractional derivatives of Riesz type and nonlinear fractional differential equations. Nonlinear Dyn. 86(3), 1745–1759 (2016e). doi: 10.1007/s11071-016-2991-y

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 37, 31–61 (2016f)

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, United lattice fractional integro-differentiation. Frac. Calc. Appl. Anal. 19(3), 625–664 (2016g). doi: 10.1515/fca-2016-0034

    MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, Exact discretization of Schrodinger equation. Phys. Lett. A. 380(1–2), 68–75 (2016h)

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, What discrete model corresponds exactly to gradient elasticity equation?. J. Mech. Mater. Struct. 11(4), 329–343 (2016i). doi: 10.2140/jomms.2016.11.329

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, Exact solution of T-difference radial Schrodinger equation. Int. J. Appl. Comput. Math. (2017a). doi: 10.1007/s40819-016-0270-8

    Google Scholar 

  • V.E. Tarasov, Exact discretization of fractional Laplacian. Comput. Math. Appl. 73(5), 855–863 (2017b). doi: 10.1016/j.camwa.2017.01.012

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, J.J. Trujillo, Fractional power-law spatial dispersion in electrodynamics. Ann. Phys. 334, 1–23 (2013). arXiv:1503.04349

    Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction. Chaos. 16(2), 023110 (2006a). arXiv:nlin.PS/0512013

    Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885–898 (2006b). arXiv:1107.5436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily E. Tarasov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Tarasov, V.E. (2017). Fractional Nonlocal Continuum Mechanics and Microstructural Models. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-22977-5_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22977-5_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22977-5

  • Online ISBN: 978-3-319-22977-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics