Skip to main content

Combustion in Thermonuclear Supernova Explosions

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Type Ia supernovae are associated with thermonuclear explosions of white dwarf stars. Combustion processes convert material in nuclear reactions and release the energy required to explode the stars. At the same time, they produce the radioactive species that power radiation and give rise to the formation of the observables. Therefore, the physical mechanism of the combustion processes, as reviewed here, is the key to understand these astrophysical events.

Theory establishes two distinct modes of propagation for combustion fronts: subsonic deflagrations and supersonic detonations. Both are assumed to play an important role in thermonuclear supernovae. The physical nature and theoretical models of deflagrations and detonations are discussed together with numerical implementations. A particular challenge arises due to the wide range of spatial scales involved in these phenomena. Neither the combustion waves nor their interaction with fluid flow and instabilities can be directly resolved in simulations. Substantial modeling effort is required to consistently capture such effects, and the corresponding techniques are discussed in detail. They form the basis of modern multidimensional hydrodynamical simulations of thermonuclear supernova explosions. The problem of deflagration-to-detonation transitions in thermonuclear supernova explosions is briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barenblatt GI, Zel’dovich YB, Istratov AG (1962) On the diffusional-thermal stability of a laminar flame. Zh Prikl Mekh Tekh Fiz 4:21–26

    Google Scholar 

  • Boisseau JR, Wheeler JC, Oran ES, Khokhlov AM (1996) The multidimensional structure of detonations in type IA supernovae. ApJ Lett 471:99–102

    Article  ADS  Google Scholar 

  • Calder AC, Townsley DM, Seitenzahl IR, Peng F, Messer OEB, Vladimirova N, Brown EF, Truran JW, Lamb DQ (2007) Capturing the Fire: Flame Energetics and Neutronization for Type Ia Supernova Simulations. ApJ 656:313–332

    Article  ADS  Google Scholar 

  • Ciaraldi-Schoolmann F, Schmidt W, Niemeyer JC, Röpke FK, Hillebrandt W (2009) Turbulence in a three-dimensional deflagration model for Type Ia supernovae. I. scaling properties. ApJ 696:1491–1497

    Google Scholar 

  • Ciaraldi-Schoolmann F, Seitenzahl IR, Röpke FK (2013) A subgrid-scale model for deflagration-to-detonation transitions in Type Ia supernova explosion simulations. Numer Implement. A&A 559:117

    Google Scholar 

  • Damköhler G (1940) Der Einflußder Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Z f Elektroch 46(11):601–652

    Google Scholar 

  • Döring W (1943) Über den Detonationsvorgang in Gasen. Annalen der Physik 435:421–436

    Article  ADS  Google Scholar 

  • Fickett W, Davis C (1979) Detonation. Los Alamos series in basic and applied sciences. University of California Press, Berkeley

    Google Scholar 

  • Fink M, Röpke FK, Hillebrandt W, Seitenzahl IR, Sim SA, Kromer M (2010) Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? A&A 514:53

    Article  ADS  Google Scholar 

  • Fink M, Kromer M, Seitenzahl IR, Ciaraldi-Schoolmann F, Röpke FK, Sim SA, Pakmor R, Ruiter AJ, Hillebrandt W (2014) Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. Mon Not R Astron Soc 438:1762–1783

    Article  ADS  Google Scholar 

  • Gamezo VN, Wheeler JC, Khokhlov AM, Oran ES (1999) Multilevel Structure of Cellular Detonations in Type Ia Supernovae. ApJ 512:827–842

    Article  ADS  Google Scholar 

  • Gamezo VN, Khokhlov AM, Oran ES, Chtchelkanova AY, Rosenberg RO (2003) Thermonuclear supernovae: simulations of the deflagration stage and their implications. Science 299:77–81

    Article  ADS  Google Scholar 

  • Gamezo VN, Khokhlov AM, Oran ES (2005) Three-dimensional delayed-detonation model of Type Ia supernovae. ApJ 623:337–346

    Article  ADS  Google Scholar 

  • Golombek I, Niemeyer JC (2005) A model for multidimensional delayed detonations in SN Ia explosions. A&A 438:611–616

    Article  ADS  Google Scholar 

  • Hansen CJ, Kawaler SD (1994) Stellar interiors: physical principles, structure, and evolution. Astronomy and astrophysics library. Springer, New York

    Book  Google Scholar 

  • Hicks EP (2015) Rayleigh-Taylor unstable flames – fast or faster? ApJ 803:72

    Article  ADS  Google Scholar 

  • Hix WR, Meyer BS (2006) Thermonuclear kinetics in astrophysics. Nucl Phys A 777:188–207

    Article  ADS  Google Scholar 

  • Jackson AP, Calder AC, Townsley DM, Chamulak DA, Brown EF, Timmes FX (2010) Evaluating systematic dependencies of type Ia supernovae: the influence of deflagration to detonation density. ApJ 720:99–113

    Article  ADS  Google Scholar 

  • Jackson AP, Townsley DM, Calder AC (2014) Power-law wrinkling turbulence-flame interaction model for astrophysical flames. ApJ 784:174

    Article  ADS  Google Scholar 

  • Jordan IV GC, Fisher RT, Townsley DM, Calder AC, Graziani C, Asida S, Lamb DQ, Truran JW (2008) Three-dimensional simulations of the deflagration phase of the gravitationally confined detonation model of Type Ia supernovae. ApJ 681:1448–1457

    Article  ADS  Google Scholar 

  • Jordan IV GC, Graziani C, Fisher RT, Townsley DM, Meakin C, Weide K, Reid LB, Norris J, Hudson R, Lamb DQ (2012a) The detonation mechanism of the pulsationally assisted gravitationally confined detonation model of type Ia supernovae. ApJ 759:53

    Article  ADS  Google Scholar 

  • Jordan IV GC, Perets HB, Fisher RT, van Rossum DR (2012b) Failed-detonation Supernovae: Subluminous Low-velocity Ia Supernovae and their Kicked Remnant White Dwarfs with Iron-rich Cores. ApJ Lett 761:23

    Article  ADS  Google Scholar 

  • Kasen D, Röpke FK, Woosley SE (2009) The diversity of type Ia supernovae from broken symmetries. Nature 460:869–872

    Article  ADS  Google Scholar 

  • Khokhlov AM (1989) The structure of detonation waves in supernovae. Mon Not R Astron Soc 239:785–808

    Article  ADS  Google Scholar 

  • Khokhlov AM (1991) Delayed detonation model for type Ia supernovae. A&A 245:114–128

    ADS  Google Scholar 

  • Khokhlov AM (1995) Propagation of turbulent flames in supernovae. ApJ 449:695–713

    Article  ADS  Google Scholar 

  • Kromer M, Fink M, Stanishev V, Taubenberger S, Ciaraldi-Schoolman F, Pakmor R, Röpke FK, Ruiter AJ, Seitenzahl IR, Sim SA, Blanc G, Elias-Rosa N, Hillebrandt W (2013) 3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae. Mon Not R Astron Soc 429:2287–2297

    Article  ADS  Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid mechanics (course of theoretical physics: volume 6), 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Lee JHS, Knystautas R, Yoshikawa N (1978) Photochemical initiation of gaseous detonations. Acta Astronaut 5:971–982

    Article  ADS  Google Scholar 

  • Liñan A, Williams FA (1993) Fundamental aspects of combustion. Oxford University Press, Oxford/New York

    Google Scholar 

  • Lisewski AM, Hillebrandt W, Woosley SE (2000) Constraints on the delayed transition to detonation in Type Ia supernovae. ApJ 538:831–836

    Article  ADS  Google Scholar 

  • Maier A, Niemeyer JC (2006) C+O detonations in thermonuclear supernovae: interaction with previously burned material. A&A 451:207–212

    Article  ADS  Google Scholar 

  • Marquardt KS, Sim SA, Ruiter AJ, Seitenzahl IR, Ohlmann ST, Kromer M, Pakmor R, Röpke FK (2015) Type Ia supernovae from exploding oxygen-neon white dwarfs. A&A 580:118

    Article  ADS  Google Scholar 

  • Meakin CA, Seitenzahl I, Townsley D, Jordan GC, Truran J, Lamb D (2009) Study of the detonation phase in the gravitationally confined detonation model of Type Ia supernovae. ApJ 693:1188–1208

    Article  ADS  Google Scholar 

  • Moll R, Woosley SE (2013) Multi-dimensional Models for Double Detonation in Sub-Chandrasekhar Mass White Dwarfs. ApJ 774:137

    Article  ADS  Google Scholar 

  • Niemeyer JC, Hillebrandt W (1995) Turbulent nuclear flames in type Ia supernovae. ApJ 452:769–778

    Article  ADS  Google Scholar 

  • Niemeyer JC, Hillebrandt W (1997) Microscopic and macroscopic modeling of thermonuclear burning fronts. In: Ruiz-Lapuente P, Canal R, Isern J (eds) Thermonuclear supernovae. Nato ASIC proceedings, vol 486. Kluwer Academic Publishers, Dordrecht, pp 441–456

    Chapter  Google Scholar 

  • Ohlmann ST, Kromer M, Fink M, Pakmor R, Seitenzahl IR, Sim SA, Röpke FK (2014) The white dwarf’s carbon fraction as a secondary parameter of Type Ia supernovae. A&A 572:57

    Article  ADS  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  ADS  MathSciNet  Google Scholar 

  • Pakmor R, Kromer M, Röpke FK, Sim SA, Ruiter AJ, Hillebrandt W (2010) Sub-luminous type ia supernovae from the mergers of equal-mass white dwarfs with mass ∼ 0.9m. Nature 463:61–64

    Google Scholar 

  • Pakmor R, Kromer M, Taubenberger S, Sim SA, Röpke FK, Hillebrandt W (2012) Normal Type Ia supernovae from violent mergers of white dwarf binaries. ApJ Lett 747:10

    Article  ADS  Google Scholar 

  • Pakmor R, Kromer M, Taubenberger S, Springel V (2013) Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae. ApJ Lett 770:8

    Article  ADS  Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Poludnenko AY, Gardiner TA, Oran ES (2011) Spontaneous transition of turbulent flames to detonations in unconfined media. Phys Rev Lett 107(5):054501

    Article  ADS  Google Scholar 

  • Reinecke M, Hillebrandt W, Niemeyer JC, Klein R, Gröbl A (1999) A new model for deflagration fronts in reactive fluids. A&A 347:724–733

    ADS  Google Scholar 

  • Reinecke M, Hillebrandt W, Niemeyer JC (2002a) Refined numerical models for multidimensional type Ia supernova simulations. A&A 386:936–943

    Article  ADS  Google Scholar 

  • Reinecke M, Hillebrandt W, Niemeyer JC (2002b) Three-dimensional simulations of type Ia supernovae. A&A 391:1167–1172

    Article  ADS  Google Scholar 

  • Röpke FK (2003) On the stability of thermonuclear flames in type Ia supernova explosions. PhD Dissertation, Technical University of Munich

    Google Scholar 

  • Röpke FK (2005) Following multi-dimensional type Ia supernova explosion models to homologous expansion. A&A 432:969–983

    Article  ADS  Google Scholar 

  • Röpke FK (2007) Flame-driven deflagration-to-detonation transitions in Type Ia supernovae? ApJ 668:1103–1108

    Article  ADS  Google Scholar 

  • Röpke FK, Hillebrandt W (2004) The case against the progenitor’s carbon-to-oxygen ratio as a source of peak luminosity variations in type Ia supernovae. A&A 420:1–4

    Article  ADS  Google Scholar 

  • Röpke FK, Hillebrandt W (2005) Full-star type Ia supernova explosion models. A&A 431:635–645

    Article  ADS  Google Scholar 

  • Röpke FK, Niemeyer JC (2007) Delayed detonations in full-star models of type Ia supernova explosions. A&A 464:683–686

    Article  ADS  Google Scholar 

  • Röpke, FK, Niemeyer JC, Hillebrandt W (2003) On the small-scale stability of thermonuclear flames in Type Ia supernovae. ApJ 588:952–961

    Article  ADS  Google Scholar 

  • Röpke FK, Hillebrandt W, Niemeyer JC (2004a) The cellular burning regime in type Ia supernova explosions. I. Flame propagation into quiescent fuel. A&A 420:411–422

    Google Scholar 

  • Röpke FK, Hillebrandt W, Niemeyer JC (2004b) The cellular burning regime in type Ia supernova explosions. II. Flame propagation into vortical fuel. A&A 421:783–795

    Google Scholar 

  • Röpke FK, Hillebrandt W, Niemeyer JC, Woosley SE (2006) Multi-spot ignition in type Ia supernova models. A&A 448:1–14

    Article  ADS  Google Scholar 

  • Röpke FK, Hillebrandt W, Schmidt W, Niemeyer JC, Blinnikov SI, Mazzali PA (2007a) A three-dimensional deflagration model for Type Ia supernovae compared with observations. ApJ 668:1132–1139

    Article  ADS  Google Scholar 

  • Röpke FK, Woosley SE, Hillebrandt W (2007b) Off-center ignition in Type Ia supernovae. I. Initial evolution and implications for delayed detonation. ApJ 660:1344–1356

    Google Scholar 

  • Schmidt W, Niemeyer JC, Hillebrandt W (2006a) A localised subgrid scale model for fluid dynamical simulations in astrophysics. I. Theory and numerical tests. A&A 450:265–281

    Google Scholar 

  • Schmidt W, Niemeyer JC, Hillebrandt W, Röpke FK (2006b) A localised subgrid scale model for fluid dynamical simulations in astrophysics. II. Application to type Ia supernovae. A&A 450:283–294

    Google Scholar 

  • Seitenzahl IR, Ciaraldi-Schoolmann F, Röpke FK, Fink M, Hillebrandt W, Kromer M, Pakmor R, Ruiter AJ, Sim SA, Taubenberger S (2013) Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae. Mon Not R Astron Soc 429:1156–1172

    Article  ADS  Google Scholar 

  • Seitenzahl IR, Kromer M, Ohlmann ST, Ciaraldi-Schoolmann F, Marquardt K, Fink M, Hillebrandt W, Pakmor R, Röpke FK, Ruiter AJ, Sim SA, Taubenberger S (2016) Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T. A&A 592:57

    Article  ADS  Google Scholar 

  • Sharpe GJ (1999) The structure of steady detonation waves in Type Ia supernovae: pathological detonations in C-O cores. Mon Not R Astron Soc 310:1039–1052

    Article  ADS  Google Scholar 

  • Sim SA, Röpke FK, Hillebrandt W, Kromer M, Pakmor R, Fink M, Ruiter AJ, Seitenzahl IR (2010) Detonations in sub-Chandrasekhar-mass C+O white dwarfs. ApJ Lett 714:52–57

    Article  ADS  Google Scholar 

  • Timmes FX, Woosley SE (1992) The conductive propagation of nuclear flames. I. degenerate C+O and O + Ne + Mg white dwarfs. ApJ 396:649–667

    Article  ADS  Google Scholar 

  • Timmes FX, Zingale M, Olson K, Fryxell B, Ricker P, Calder AC, Dursi LJ, Tufo H, MacNeice P, Truran JW, Rosner R (2000) On the Cellular Structure of Carbon Detonations. ApJ 543:938–954

    Article  ADS  Google Scholar 

  • Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin/Heidelberg. http://books.google.de/books?id=SqEjX0um8o0C

    Book  Google Scholar 

  • Townsley DM, Calder AC, Asida SM, Seitenzahl IR, Peng F, Vladimirova N, Lamb DQ, Truran JW (2007) Flame evolution during Type Ia supernovae and the deflagration phase in the gravitationally confined detonation scenario. ApJ 668:1118–1131

    Article  ADS  Google Scholar 

  • Townsley DM, Jackson AP, Calder AC, Chamulak DA, Brown EF, Timmes FX (2009) Evaluating systematic dependencies of type Ia supernovae: the influence of progenitor 22ne content on dynamics. ApJ 701:1582–1604

    Article  ADS  Google Scholar 

  • Vladimirova N, Weirs GV, Ryzhik L (2006) Flame capturing with an advection-reaction-diffusion model. Combust Theor Model 10(5):727–747

    Article  ADS  MathSciNet  Google Scholar 

  • von Neumann J (1942) Theory of detonation waves, Prog. Rept. No. 238; O.S.R.D. Rept. No. 549, Ballistic Research Laboratory File No. X-122, Aberdeen Proving Ground

    Google Scholar 

  • Woosley SE, Kerstein AR, Sankaran V, Aspden AJ, Röpke FK (2009) Type Ia Supernovae: Calculations of Turbulent Flames Using the Linear Eddy Model. ApJ 704:255–273

    Article  ADS  Google Scholar 

  • Zel’dovich YB (1940) On the theory of the propagation of detonations on gaseous system. Zh Eksp Teor Fiz 10:542–568. In Russian

    Google Scholar 

  • Zel’dovich YB (1966) An effect which stabilizes the curved front of a laminar flame. J Appl Mech Tech Phys 7:68–69

    Article  ADS  Google Scholar 

  • Zel’dovich YB, Librovich VB, Makhviladze GM, Sivashinskii GI (1970) On the onset of detonation in a nonuniformly heated gas. J Appl Mech Tech Phys 11:264–270

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence “Origin and Structure of the Universe.” In particular, participation in the MIAPP workshop “The physics of supernovae,” where this article was initiated, is gratefully acknowledged. The work of FKR is supported by the Klaus-Tschira Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich K. Röpke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Röpke, F.K. (2017). Combustion in Thermonuclear Supernova Explosions. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_58

Download citation

Publish with us

Policies and ethics