Skip to main content

Explosion Physics of Core-Collapse Supernovae

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

The physical ingredients and processes ruling the violent death of a massive star are reviewed, from the collapse of its core to the birth of a neutron star and the ejection of the stellar envelope. The crucial phase of this transition results from the complex interplay of many fields of physics: quantum physics, gravitation, nuclear physics, neutrino physics, and magnetohydrodynamics. Recent numerical simulations have revealed the diversity of explosion paths induced by the diversity of progenitor structures. 3D simulations are now capable of exploring the consequences of pre-collapse asymmetries in the stellar core, such as the distribution of angular momentum, magnetic fields, and combustion inhomogeneities. They also revealed the limitations of the 2D results which assumed an axisymmetric evolution. Even with the fastest computers, physical approximations are still unavoidable to calculate neutrino transport. We describe the explosion physics based on the most robust results, privileging simplified descriptions conducive to the deepest physical understanding. We emphasize the role of hydrodynamical instabilities and their consequences on the nonspherical character of the explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdikamalov E, Ott CD, Radice D, Roberts LF, Haas R, Reisswig C, Mösta P, Klion H, Schnetter E (2015) Neutrino–driven turbulent convection and standing accretion shock instability in three–dimensional core-collapse supernovae. ApJ 808:70 (22p)

    Article  ADS  Google Scholar 

  • Antoniadis J, Freire PCC, Wex N, Tauris TM, Lynch RS, van Kerkwijk MH, Kramer M, Bassa C, Dhillon VS, Driebe T, Hessels JWT, Kaspi VM, Kondratiev VI, Langer N, Marsh TR, McLaughlin MA, Pennucci TT, Ransom SM, Stairs IH, van Leeuwen J, Verbiest JPW, Whelan DG (2013) A massive pulsar in a compact relativistic binary. Science 340:1233232 (9p)

    Article  Google Scholar 

  • Bethe HA, Wilson JR (1985) Revival of a stalled supernova shock by neutrino heating. ApJ 295:14–23

    Article  ADS  Google Scholar 

  • Blondin JM, Mezzacappa A (2007) Pulsar spins from an instability in the accretion shock of supernovae. Nature 445:58–60

    Article  ADS  Google Scholar 

  • Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye toward core-collapse supernovae. ApJ 584:971–980

    Article  ADS  Google Scholar 

  • Bruenn SW, De Nisco KR, Mezzacappa A (2001) General relativistic effects in the core collapse supernova mechanism. ApJ 560:326–338

    Article  ADS  Google Scholar 

  • Burrows A, Dessart L, Livne E, Ott CD, Murphy J (2007) Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation. ApJ 664:416–434

    Article  ADS  Google Scholar 

  • Cantiello M, Mankovich C, Bildsten L, Christensen–Dalsgaard J, Paxton B (2014) Angular momentum transport within evolved low-mass stars. ApJ 788:93 (7p)

    Google Scholar 

  • Cardall CY, Budiardja RD (2016) Stochasticity and efficiency in simplified models of core-collapse supernova explosions. ApJL 813:L6 (6p)

    Article  ADS  Google Scholar 

  • Colgate SA, White RH (1966) The hydrodynamic behavior of supernovae explosions. ApJ 143:626–681

    Article  ADS  Google Scholar 

  • Couch SM, Ott CD (2015) The role of turbulence in neutrino-driven core-collapse supernova explosions. ApJ 799:5 (12p)

    Article  ADS  Google Scholar 

  • de Mink SE, Sana H, Langer N, Izzard RG, Schneider FRN (2014) The incidence of stellar mergers and mass gainers among massive stars. ApJ 782:7 (8p)

    Article  ADS  Google Scholar 

  • Dessart L, Burrows A, Livne E, Ott CD (2006) Multidimensional radiation/hydrodynamic simulations of proto–neutron star convection. ApJ 645:534–550

    Article  ADS  Google Scholar 

  • Endeve E, Cardall CY, Budiardja RD, Beck SW, Bejnood A, Toedte RJ, Mezzacappa A, Blondin J (2012) Turbulent magnetic field amplification from spiral SASI modes: implications for core-collapse supernovae and proto-neutron star magnetization. ApJ 751:26 (28p)

    Article  ADS  Google Scholar 

  • Fernandez R, Müller B, Foglizzo T, Janka HT (2014) Characterizing SASI- and convection-dominated core-collapse supernova explosions in two dimensions. MNRAS 440:2763–2780

    Article  ADS  Google Scholar 

  • Fischer T, Sagert I, Pagliara G, Hempel M, Schaffner–Bielich J, Rauscher T, Thielemann FK, Käppeli R, Martínez–Pinedo G, Liebendörfer M (2011) Core–collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase. ApJSS 194: 39 (28p)

    Google Scholar 

  • Foglizzo T (2009) A simple toy model of the advective-acoustic instability. I. perturbative approach. ApJ 694:820–832

    Google Scholar 

  • Foglizzo T, Scheck L, Janka HT (2006) Neutrino–driven convection versus advection in core-collapse supernovae. ApJ 652:1436–1450

    Article  ADS  Google Scholar 

  • Foglizzo T, Galletti P, Scheck L, Janka HT (2007) Instability of a stalled accretion shock: evidence for the advective-acoustic cycle. ApJ 654:1006–1021

    Article  ADS  Google Scholar 

  • Foglizzo T, Masset F, Guilet J, Durand G (2012) Shallow water analogue of the standing accretion shock instability: experimental demonstration and a two-dimensional model. PRL 108: 051103 (4p)

    Article  ADS  Google Scholar 

  • Fuller J, Cantiello M, Lecoanet D, Quataert E (2015) The spin rate of pre-collapse stellar cores: wave-driven angular momentum transport in massive stars. ApJ 810:101 (13p)

    Article  ADS  Google Scholar 

  • Grefenstette BW, Harrison FA, Boggs SE, Reynolds SP, Fryer CL, Madsen KK, Wik DR, Zoglauer A, Ellinger CI, Alexander DM, An H, Barret D, Christensen FE, Craig WW, Forster K, Giommi P, Hailey CJ, Hornstrup A, Kaspi VM, Kitaguchi T, Koglin JE, Mao PH, Miyasaka H, Mori K, Perri M, Pivovaroff MJ, Puccetti S, Rana V, Stern D, Westergaard NJ, Zhang WW (2014) Asymmetries in core-collapse supernovae from maps of radioactive44Ti in Cassiopeia A. Nature 506:339–342

    Article  ADS  Google Scholar 

  • Guilet J, Fernandez R (2014) Angular momentum redistribution by SASI spiral modes and consequences for neutron star spins. MNRAS 441:2782–2798

    Article  ADS  Google Scholar 

  • Guilet J, Foglizzo T (2012) On the linear growth mechanism driving the standing accretion shock instability. MNRAS 421:546–560

    ADS  Google Scholar 

  • Guilet J, Sato J, Foglizzo T (2010) The saturation of SASI by parasitic instabilities. ApJ 713:1350–1362

    Article  ADS  Google Scholar 

  • Guilet J, Müller E, Janka HT (2015) Neutrino viscosity and drag: impact on the magnetorotational instability in protoneutron stars. MNRAS 447:3992–4003

    Article  ADS  Google Scholar 

  • Hanke F, Marek A, Müller B, Janka HT (2012) Is strong SASI activity the key to successful neutrino-driven supernova explosions? ApJ 755:138 (23p)

    Article  ADS  Google Scholar 

  • Hanke F, Müller B, Wongwathanarat A, Marek A, Janka HT (2013) SASI activity in three-dimensional neutrino-hydrodynamics simulations of supernova cores. ApJ 770:66 (16p)

    Article  ADS  Google Scholar 

  • Heger A, Woosley SE, Spruit HC (2005) Presupernova evolution of differentially rotating massive stars including magnetic fields. ApJ 626:350–363

    Article  ADS  Google Scholar 

  • Herant M, Benz W, Colgate S (1992) Postcollapse hydrodynamics of SN 1987A – two-dimensional simulations of the early evolution. ApJ 395:642–653

    Article  ADS  Google Scholar 

  • Hobbs G, Lorimer DR, Lyne AG, Kramer M (2005) A statistical study of 233 pulsar proper motions. MNRAS 360:974–992

    Article  ADS  Google Scholar 

  • Iwakami W, Nagakura H, Yamada S (2014) Critical surface for explosions of rotational core-collapse supernovae. ApJ 793:5 (16p)

    Article  ADS  Google Scholar 

  • Kazeroni R, Guilet J, Foglizzo T (2016) New insights on the spin-up of a neutron star during core collapse. MNRAS 456:126–135

    Article  ADS  Google Scholar 

  • Khan E, Margueron J, Vidaña I (2012) Constraining the nuclear equation of state at subsaturation densities. PRL 109:092501 (4p)

    Article  ADS  Google Scholar 

  • Kitaura FS, Janka HT, Hillebrandt W (2006) Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. A&A 450:345–350

    Article  ADS  Google Scholar 

  • Kuroda T, Takiwaki T, Kotake K (2014) Gravitational wave signatures from low-mode spiral instabilities in rapidly rotating supernova cores. Phys Rev D 89:044011 (22p)

    Article  ADS  Google Scholar 

  • Larsson J, Fransson C, Kjaer K, Jerkstrand A, Kirshner RP, Leibundgut B, Lundqvist L, Mattila S, McCray R, Sollerman J, Spyromilio J, Wheeler JC (2013) The morphology of the ejecta in supernova 1987a: a study over time and wavelength. ApJ 768:89 (17p)

    Article  ADS  Google Scholar 

  • Lattimer JM (2012) The nuclear equation of state and neutron star masses. Annu Rev Nucl Part Sci 62:485–515

    Article  ADS  Google Scholar 

  • Leonard DC, Filippenko AV, Ganeshalingam M, Serduke FJD, Li W, Swift BJ, Gal–Yam A, Foley RJ, Fox DB, Park S, Hoffman JI, Wong DS (2006) A non-spherical core in the explosion of supernova SN 2004dj. Nature 440:505–507

    Google Scholar 

  • Maeda K, Kawabata K, Mazzali PA, Tanaka M, Valenti S, Nomoto K, Hattori T, Deng J, Pian E, Taubenberger S, Iye M, Matheson T, Filippenko AV, Aoki K, Kosugi G, Ohyama Y, Sasaki T, Takata T (2008) Asphericity in supernova explosions from late–time spectroscopy. Science 319:1220–1223

    Article  ADS  Google Scholar 

  • Melson T, Janka HT, Bollig R, Hanke F, Marek A, Müller B (2015) Neutrino–driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino–nucleon scattering. ApJL 808:L42 (8p)

    Article  ADS  Google Scholar 

  • Mösta P, Ott CD, Radice D, Roberts LF, Schnetter E, Haas R (2015) A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528:376–379

    Article  ADS  Google Scholar 

  • Moiseenko SG, Bisnovatyi-Kogan GS, Ardeljan NV (2006) A magnetorotational core-collapse model with jets. MNRAS 370:501–512

    Article  ADS  Google Scholar 

  • Müller B (2015) The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D. MNRAS 453:287–310

    Article  ADS  Google Scholar 

  • Müller B, Janka HT (2015) Non-radial instabilities and progenitor asphericities in core-collapse supernovae. MNRAS 448:2141–2174

    Article  ADS  Google Scholar 

  • Müller B, Janka HT, Heger A (2012) New two-dimensional models of supernova explosions by the neutrino-heating mechanism: evidence for different instability regimes in collapsing stellar cores. ApJ 761:72 (12p)

    Article  ADS  Google Scholar 

  • Murphy JW, Burrows A (2008) Criteria for core-collapse supernova explosions by the neutrino mechanism. ApJ 688:1159–1175

    Article  ADS  Google Scholar 

  • Nakamura K, Takiwaki T, Kuroda T, Kotake K (2014) Revisiting impacts of nuclear burning for reviving weak shocks in neutrino-driven supernovae. ApJ 782:91 (14p)

    Article  ADS  Google Scholar 

  • Obergaulinger M, Janka HT, Aloy MA (2014) Magnetic field amplification and magnetically supported explosions of collapsing, non-rotating stellar cores. MNRAS 445:3169–3199

    Article  ADS  Google Scholar 

  • O’Connor E, Ott CD (2011) Black hole formation in failing core-collapse supernovae. ApJ 730: 70 (20p)

    Article  ADS  Google Scholar 

  • Peres B, Oertel M, Novak J (2013) Influence of pions and hyperons on stellar black hole formation. PhRvD 87:043006 (21p)

    ADS  Google Scholar 

  • Scheck L, Kifonidis K, Janka HT, Müller E (2006) Multidimensional supernova simulations with approximative neutrino transport I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions. A&A 457:963–986

    Google Scholar 

  • Scheck L, Janka HT, Foglizzo T, Kifonidis K (2008) Multidimensional supernova simulations with approximative neutrino transport II. Convection and the advective-acoustic cycle in the supernova core. A&A 477:931–952

    Google Scholar 

  • Sumiyoshi K, Takiwaki T, Matsufuru H, Yamada S (2015) Multi-dimensional features of neutrino transfer in core-collapse supernovae. ApJS 216:5 (37p)

    Article  ADS  Google Scholar 

  • Tamborra I, Hanke F, Müller B, Janka HT, Raffelt G (2013) Neutrino signature of supernova hydrodynamical instabilities in three dimensions. PRL 111:121104 (5p)

    Article  ADS  Google Scholar 

  • Thompson C, Duncan RC (1993) Neutron star dynamos and the origins of pulsar magnetism. ApJ 408:194–217

    Article  ADS  Google Scholar 

  • Ugliano M, Janka HT, Marek A, Arcones A (2012) Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors. ApJ 757:69 (10p)

    Article  ADS  Google Scholar 

  • Utrobin VP, Wongwathanarat A, Janka HT, Müller E (2015) Supernova 1987A: neutrino-driven explosions in three dimensions and light curves. A&A 581:40 (18p)

    Article  ADS  Google Scholar 

  • Wongwathanarat A, Janka HT, Müller E (2013) Three-dimensional neutrino-driven supernovae: neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. A&A 552: A126 (25p)

    Article  ADS  Google Scholar 

  • Yamasaki T, Foglizzo T (2008) Effect of rotation on the stability of a stalled cylindrical shock and its consequences for core-collapse supernovae. ApJ 679:607–615

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is part of the ANR-funded project SN2NS ANR-10-BLAN-0503. TF acknowledges the help of Rémi Kazeroni, Jérôme Guilet, Matthias González, Frédéric Masset, and Gilles Durand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Foglizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Foglizzo, T. (2017). Explosion Physics of Core-Collapse Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_52

Download citation

Publish with us

Policies and ethics