Skip to main content

Thermal and Non-thermal Emission from Circumstellar Interaction

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

It has become clear during the last decades that the interaction between the supernova ejecta and the circumstellar medium is playing a major role both for the observational properties of the supernova and for understanding the evolution of the progenitor star leading up to the explosion. In addition, it provides an opportunity to understand the shock physics connected to both thermal and nonthermal processes, including relativistic particle acceleration, radiation processes, and the hydrodynamics of shock waves. This chapter has an emphasis on the information we can get from radio and X-ray observations, but also their connection to observations in the optical and ultraviolet. We first review the different physical processes involved in circumstellar interaction, including hydrodynamics, thermal X-ray emission, acceleration of relativistic particles, and non-emission processes in the radio and X-ray ranges. Finally, we discuss applications of these to different types of supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexander KD, Soderberg AM, Chomiuk LB (2015) A new model for the radio emission from SN 1994I and an associated search for radio transients in M51. ApJ 806:106. doi:10.1088/0004-637X/806/1/106

    Article  ADS  Google Scholar 

  • Arendt RG, Dwek E, Bouchet P, Danziger IJ, Frank KA, Gehrz RD, Park S, Woodward CE (2016) Infrared continuum and line evolution of the equatorial ring around SN 1987A. AJ 151:62. doi:10.3847/0004-6256/151/3/62

    Article  ADS  Google Scholar 

  • Aretxaga I, Benetti S, Terlevich RJ, Fabian AC, Cappellaro E, Turatto M, della Valle M (1999) SN 1988Z: spectro-photometric catalogue and energy estimates∗. MNRAS 309:343–354. doi:10.1046/j.1365-8711.1999.02830.x

  • Argo MK, Beswick RJ, Muxlow TWB, Pedlar A, Fenech D, Thrall H (2005) MERLIN monitoring of recent core-collapse supernovae. MmSAI 76:565

    ADS  Google Scholar 

  • Barniol Duran R, Nakar E, Piran T, Sari R (2015) The afterglow of a relativistic shock breakout and low-luminosity GRBs. MNRAS 448:417–428. doi:10.1093/mnras/stv011

    Article  ADS  Google Scholar 

  • Bartel N (2009) Supernova VLBI. In: Hagiwara Y, Fomalont E, Tsuboi M, Yasuhiro M (eds) Approaching micro-arcsecond resolution with VSOP-2: astrophysics and technologies. Astronomical society of the pacific conference series, vol 402. Astronomical Society of the Pacific, San Francisco, p 243

    Google Scholar 

  • Bartel N, Bietenholz MF (2003) SN 1979C VLBI: 22 years of almost free expansion. ApJ 591:301–315. doi:10.1086/375267

    Article  ADS  Google Scholar 

  • Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS 353:550–558. doi:10.1111/j.1365-2966.2004.08097.x

    Article  ADS  Google Scholar 

  • Bell AR, Lucek SG (2001) Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. MNRAS 321:433–438. doi:10.1046/j.1365-8711.2001.04063.x

    Article  ADS  Google Scholar 

  • Beswick RJ, Muxlow TWB, Argo MK, Pedlar A, Marcaide JM, Wills KA (2005) Monitoring of the prompt radio emission from the unusual supernova SN 2004dj in NGC 2403. ApJL 623:L21–L24. doi:10.1086/430049

    Article  ADS  Google Scholar 

  • Bietenholz M, Bartel N, Rupen MP, Dwarkadas VV, Beasley AJ, Graham DA, Venturu T, Umana G, Cannon W, Conway J (2010) Radio imaging of SN 1993J: the story continues. In: 10th European VLBI network symposium and EVN users meeting: VLBI and the new generation of radio arrays, p 57

    Google Scholar 

  • Bietenholz MF, Bartel N, Rupen MP (2003) SN 1993J VLBI. III. The evolution of the radio shell. ApJ 597:374–398. doi:10.1086/378265

    Article  Google Scholar 

  • Bietenholz MF, Bartel N, Rupen MP (2010) Supernova 1986J very long baseline interferometry. II. The evolution of the shell and the central source. ApJ 712:1057–1069. doi:10.1088/0004-637X/712/2/1057

    Article  Google Scholar 

  • Björnsson CI (2013) Inhomogeneities in Type Ib/c supernovae: an inverse compton scattering origin of the X-ray emission. ApJ 769:65. doi:10.1088/0004-637X/769/1/65

    Article  ADS  Google Scholar 

  • Björnsson CI, Fransson C (2004) The X-ray and radio emission from SN 2002ap: the importance of compton scattering. ApJ 605:823–829. doi:10.1086/382584

    Article  ADS  Google Scholar 

  • Björnsson CI, Lundqvist P (2014) Heating from free-free absorption and the mass-loss rate of the progenitor stars to supernovae. ApJ 787:143. doi:10.1088/0004-637X/787/2/143

    Article  ADS  Google Scholar 

  • Blondin JM, Lundqvist P (1993) Formation of the circumstellar shell around SN 1987A. ApJ 405:337–352. doi:10.1086/172366

    Article  ADS  Google Scholar 

  • Blondin JM, Lundqvist P, Chevalier RA (1996) Axisymmetric Circumstellar Interaction in Supernovae. ApJ 472:257. doi:10.1086/178060

    Article  ADS  Google Scholar 

  • Borkowski KJ, Blondin JM, McCray R (1997) X-rays from the impact of SN 1987A with its circumstellar ring. ApJ 477:281–293

    Article  ADS  Google Scholar 

  • Burrows CJ, Krist J, Hester JJ, Sahai R, Trauger JT, Stapelfeldt KR, Gallagher JS III, Ballester GE, Casertano S, Clarke JT, Crisp D, Evans RW, Griffiths RE, Hoessel JG, Holtzman JA, Mould JR, Scowen PA, Watson AM, Westphal JA (1995) Hubble space telescope observations of the SN 1987A triple ring nebula. ApJ 452:680. doi:10.1086/176339

    Article  ADS  Google Scholar 

  • Caprioli D (2015) Cosmic-ray acceleration and propagation. ArXiv e-prints

    Google Scholar 

  • Caprioli D, Spitkovsky A (2014a) Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. ApJ 783:91. doi:10.1088/0004-637X/783/2/91

    Article  Google Scholar 

  • Caprioli D, Spitkovsky A (2014b) Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification. ApJ 794:46. doi:10.1088/0004-637X/794/1/46

  • Caprioli D, Spitkovsky A (2014c) Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion. ApJ 794:47. doi:10.1088/0004-637X/794/1/47

    Article  Google Scholar 

  • Chandra P, Chevalier RA, Chugai N, Fransson C, Soderberg AM (2015) X-ray and radio emission from Type IIn supernova SN 2010jl. ApJ 810:32. doi:10.1088/0004-637X/810/1/32

    Article  ADS  Google Scholar 

  • Chandra P, Dwarkadas VV, Ray A, Immler S, Pooley D (2009) X-rays from the explosion site: 15 years of light curves of SN 1993J. ApJ 699:388–399. doi:10.1088/0004-637X/699/1/388

    Article  ADS  Google Scholar 

  • Chevalier R, Blondin JM (1995) Hydrodynamic instabilities in supernova remnants: early radiative cooling. ApJ 444:312–317. doi:10.1086/175606

    Article  ADS  Google Scholar 

  • Chevalier RA (1982a) Self-similar solutions for the interaction of stellar ejecta with an external medium. ApJ 258:790–797. doi:10.1086/160126

    Article  ADS  Google Scholar 

  • Chevalier RA (1982b) The radio and X-ray emission from Type II supernovae. ApJ 259:302–310. doi:10.1086/160167

    Article  ADS  Google Scholar 

  • Chevalier RA (1984) The interaction of supernovae with a circumstellar medium. Ann N Y Acad Sci 422:215–232. doi:10.1111/j.1749-6632.1984.tb23355.x

    Article  ADS  Google Scholar 

  • Chevalier RA (1990) Interaction of supernovae with circumstellar matter. In: Petschek AG (ed) Supernovae. Springer, New York, pp 91–110

    Chapter  Google Scholar 

  • Chevalier RA (1998) Synchrotron self-absorption in radio supernovae. ApJ 499:810–819

    Article  ADS  Google Scholar 

  • Chevalier RA (2007) Circumstellar interaction around supernovae. In: Immler S, Weiler K, McCray R (eds) Supernova 1987A: 20 years after: supernovae and gamma ray bursters. American Institute of Physics Conference Series, vol 937, pp 206–211. doi:10.1063/1.3682904

    Chapter  Google Scholar 

  • Chevalier RA (2012) Common envelope evolution leading to supernovae with dense interaction. ApJL 752:L2. doi:10.1088/2041-8205/752/1/L2

    Article  ADS  Google Scholar 

  • Chevalier RA, Blondin JM, Emmering RT (1992) Hydrodynamic instabilities in supernova remnants – self-similar driven waves. ApJ 392:118–130. doi:10.1086/171411

    Article  ADS  Google Scholar 

  • Chevalier RA, Dwarkadas VV (1995) The presupernova H II region around SN 1987A. ApJL 452:L45. doi:10.1086/309714

    Article  ADS  Google Scholar 

  • Chevalier RA, Fransson C (1985) Supernova interaction with a circumstellar wind and the distance to SN 1979c. In: Bartel N (ed) Supernovae as distance indicators. Lecture notes in physics, vol 224. Springer, Berlin

    Google Scholar 

  • Chevalier RA, Fransson C (1994) Emission from circumstellar interaction in normal Type II supernovae. ApJ 420:268–285. doi:10.1086/173557

    Article  ADS  Google Scholar 

  • Chevalier RA, Fransson C (2003) Supernova interaction with a circumstellar medium. In: Weiler K (ed) Supernovae and gamma ray bursters. Lecture notes in physics, vol 598. Springer, Berlin, pp 171–194. doi:10.1007/3-540-45863-8_10

    Chapter  Google Scholar 

  • Chevalier RA, Fransson C (2006) Circumstellar emission from Type Ib and Ic supernovae. ApJ 651:381–391. doi:10.1086/507606

    Article  ADS  Google Scholar 

  • Chevalier RA, Fransson C, Nymark TK (2006) Radio and X-ray emission as probes of Type IIP supernovae and red supergiant mass loss. ApJ 641:1029–1038. doi:10.1086/500528

    Article  ADS  Google Scholar 

  • Chevalier RA, Irwin CM (2012) X-Rays from supernova shocks in dense mass loss. ApJL 747:L17. doi:10.1088/2041-8205/747/1/L17

    Article  ADS  Google Scholar 

  • Chevalier RA, Liang EP (1989) The interaction of supernovae with circumstellar bubbles. ApJ 344:332–340. doi:10.1086/167802

    Article  ADS  Google Scholar 

  • Chevalier RA, Soker N (1989) Asymmetric envelope expansion of supernova 1987A. ApJ 341:867–882. doi:10.1086/167545

    Article  ADS  Google Scholar 

  • Chomiuk L, Soderberg AM, Chevalier RA, Bruzewski S, Foley RJ, Parrent J, Strader J, Badenes C, Fransson C, Kamble A, Margutti R, Rupen MP, Simon JD (2016) A deep search for prompt radio emission from thermonuclear supernovae with the very large array. ApJ 821:119. doi:10.3847/0004-637X/821/2/119

    Article  ADS  Google Scholar 

  • Chugai NN (1993) X-rays from SN 1986J – emission of a shocked clumpy wind. ApJL 414:L101–L103. doi:10.1086/187006

    Article  ADS  Google Scholar 

  • Chugai NN (2001) Broad emission lines from the opaque electron-scattering environment of SN 1998S. MNRAS 326:1448–1454. doi:10.1111/j.1365-2966.2001.04717.x

    Article  ADS  Google Scholar 

  • Chugai NN (2009) Circumstellar interaction in type Ibn supernovae and SN 2006jc. MNRAS 400:866–874. doi:10.1111/j.1365-2966.2009.15506.x

    Article  ADS  Google Scholar 

  • Chugai NN, Belous ML (1999) Radio supernovae in a cloudy wind. Astron Rep 43:89–93

    ADS  Google Scholar 

  • Chugai NN, Chevalier RA (2006) Late emission from the Type Ib/c SN 2001em: overtaking the hydrogen envelope. ApJ 641:1051–1059. doi:10.1086/500539

    Article  ADS  Google Scholar 

  • Chugai NN, Danziger IJ (1994) Supernova 1988Z – low-mass ejecta colliding with the clumpy wind. MNRAS 268:173. doi:10.1093/mnras/268.1.173

    Article  ADS  Google Scholar 

  • Chugai NN, Danziger IJ, della Valle M (1995) Optical spectrum of SN 1978K: emission from shocked clouds in the circumstellar wind. MNRAS 276:530–536. doi:10.1093/mnras/276.2.530

  • Dessart L, Audit E, Hillier DJ (2015) Numerical simulations of superluminous supernovae of type IIn. MNRAS 449:4304–4325. doi:10.1093/mnras/stv609

    Article  ADS  Google Scholar 

  • Dewey D, Zhekov SA, McCray R, Canizares CR (2008) Chandra HETG spectra of SN 1987A at 20 years. ApJL 676:L131. doi:10.1086/587549

    Article  ADS  Google Scholar 

  • Drury LO (1983) An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep Prog Phys 46:973–1027. doi:10.1088/0034-4885/46/8/002

    Article  ADS  Google Scholar 

  • Dwarkadas VV (2014) On the lack of X-ray bright Type IIP supernovae. MNRAS 440:1917–1924. doi:10.1093/mnras/stu347

    Article  ADS  Google Scholar 

  • Dwarkadas VV, Gruszko J (2012) What are published X-ray light curves telling us about young supernova expansion? MNRAS 419:1515–1524. doi:10.1111/j.1365-2966.2011.19808.x

    Article  ADS  Google Scholar 

  • Dwek E (1987) The infrared diagnostic of a dusty plasma with applications to supernova remnants. ApJ 322:812–821. doi:10.1086/165774

    Article  ADS  Google Scholar 

  • Ensman L, Burrows A (1992) Shock breakout in SN 1987A. ApJ 393:742–755. doi:10.1086/171542

    Article  ADS  Google Scholar 

  • Fabian AC, Terlevich R (1996) X-ray detection of supernova 1988Z with the ROSAT high resolution imager. MNRAS 280:L5–L8. doi:10.1093/mnras/280.1.L5

    Article  ADS  Google Scholar 

  • Fassia A, Meikle WPS, Chugai N, Geballe TR, Lundqvist P, Walton NA, Pollacco D, Veilleux S, Wright GS, Pettini M, Kerr T, Puchnarewicz E, Puxley P, Irwin M, Packham C, Smartt SJ, Harmer D (2001) Optical and infrared spectroscopy of the Type IIn SN 1998S: days 3-127. MNRAS 325:907–930. doi:10.1046/j.1365-8711.2001.04282.x

    Article  ADS  Google Scholar 

  • Felten JE, Morrison P (1966) Omnidirectional inverse compton and synchrotron radiation from cosmic distributions of fast electrons and thermal photons. ApJ 146:686. doi:10.1086/148946

    Article  ADS  Google Scholar 

  • Filippenko AV, Barth AJ, Matheson T, Armus L, Brown M, Espey BR, Fan XM, Goodrich RW, Ho LC, Junkkarinen VT, Koo DC, Lehnert MD, Martel AR, Mazzarella JM, Miller JS, Smith GH, Tytler D, Wirth GD (1995) The Type IC supernova 1994I in M51: detection of helium and spectral evolution. ApJL 450:L11. doi:10.1086/309659

    Article  ADS  Google Scholar 

  • Foley RJ, Smith N, Ganeshalingam M, Li W, Chornock R, Filippenko AV (2007) SN 2006jc: a Wolf-Rayet star exploding in a dense he-rich circumstellar medium. ApJL 657:L105–L108. doi:10.1086/513145

    Article  ADS  Google Scholar 

  • Frank KA, Zhekov SA, Park S, McCray R, Dwek E, Burrows DN (2016) Chandra bserves the end of an era in SN 1987A. ApJ 829:40. doi:10.3847/0004-637X/829/1/40

    Article  ADS  Google Scholar 

  • Fransson C (1982) X-ray and UV-emission from supernova shock waves in stellar winds. A&A 111:140–150

    ADS  Google Scholar 

  • Fransson C (1984) Comptonization and UV emission lines from Type II supernovae. A&A 133:264–284

    ADS  Google Scholar 

  • Fransson C, Benvenuti P, Wamsteker W, Gordon C, Hempe K, Reimers D, Palumbo GGC, Panagia N (1984) Physical conditions in the UV line emitting region of supernova 1979c in NGC 4321. A&A 132:1–10

    ADS  Google Scholar 

  • Fransson C, Björnsson CI (1998) Radio emission and particle acceleration in SN 1993J. ApJ 509:861–878. doi:10.1086/306531

    Article  ADS  Google Scholar 

  • Fransson C, Cassatella A, Gilmozzi R, Kirshner RP, Panagia N, Sonneborn G, Wamsteker W (1989) Narrow ultraviolet emission lines from SN 1987A – evidence for CNO processing in the progenitor. ApJ 336:429–441. doi:10.1086/167022

    Article  ADS  Google Scholar 

  • Fransson C, Challis PM, Chevalier RA, Filippenko AV, Kirshner RP, Kozma C, Leonard DC, Matheson T, Baron E, Garnavich P, Jha S, Leibundgut B, Lundqvist P, Pun CSJ, Wang L, Wheeler JC (2005) Hubble space telescope and ground-based observations of SN 1993J and SN 1998S: CNO processing in the progenitors. ApJ 622:991–1007. doi:10.1086/426495

    Article  ADS  Google Scholar 

  • Fransson C, Chevalier RA, Filippenko AV, Leibundgut B, Barth AJ, Fesen RA, Kirshner RP, Leonard DC, Li W, Lundqvist P, Sollerman J, Van Dyk SD (2002) Optical and ultraviolet spectroscopy of SN 1995N: evidence for strong circumstellar interaction. ApJ 572:350–370. doi:10.1086/340295

    Article  ADS  Google Scholar 

  • Fransson C, Ergon M, Challis PJ, Chevalier RA, France K, Kirshner RP, Marion GH, Milisavljevic D, Smith N, Bufano F, Friedman AS, Kangas T, Larsson J, Mattila S, Benetti S, Chornock R, Czekala I, Soderberg A, Sollerman J (2014) High-density circumstellar interaction in the luminous Type IIn SN 2010jl: the first 1100 days. ApJ 797:118. doi:10.1088/0004-637X/797/2/118

    Article  ADS  Google Scholar 

  • Fransson C, Larsson J, Migotto K, Pesce D, Challis P, Chevalier RA, France K, Kirshner RP, Leibundgut B, Lundqvist P, McCray R, Spyromilio J, Taddia F, Jerkstrand A, Mattila S, Smith N, Sollerman J, Wheeler JC, Crotts A, Garnavich P, Heng K, Lawrence SS, Panagia N, Pun CSJ, Sonneborn G, Sugerman B (2015) The destruction of the circumstellar ring of SN 1987A. ApJL 806:L19. doi:10.1088/2041-8205/806/1/L19

    Article  ADS  Google Scholar 

  • Fransson C, Larsson J, Spyromilio J, Chevalier R, Gröningsson P, Jerkstrand A, Leibundgut B, McCray R, Challis P, Kirshner RP, Kjaer K, Lundqvist P, Sollerman J (2013) Late spectral evolution of the ejecta and reverse shock in SN 1987A. ApJ 768:88. doi:10.1088/0004-637X/768/1/88

    Article  ADS  Google Scholar 

  • Fransson C, Lundqvist P, Chevalier RA (1996) Circumstellar interaction in SN 1993J. ApJ 461:993. doi:10.1086/177119

    Article  ADS  Google Scholar 

  • Gröningsson P, Fransson C, Lundqvist P, Lundqvist N, Leibundgut B, Spyromilio J, Chevalier RA, Gilmozzi R, Kjær K, Mattila S, Sollerman J (2008) High resolution spectroscopy of the inner ring of SN 1987A. A&A 479:761–777. doi:10.1051/0004-6361:20077604

    Article  ADS  Google Scholar 

  • Gröningsson P, Fransson C, Lundqvist P, Nymark T, Lundqvist N, Chevalier R, Leibundgut B, Spyromilio J (2006) Coronal emission from the shocked circumstellar ring of SN 1987A. A&A 456:581–589. doi:10.1051/0004-6361:20065325

    Article  ADS  Google Scholar 

  • Haberl F, Geppert U, Aschenbach B, Hasinger G (2006) XMM-Newton observations of ¡ASTROBJ¿SN 1987 A¡/ASTROBJ¿. A&A 460:811–819. doi:10.1051/0004-6361:20066198

    Article  ADS  Google Scholar 

  • Horesh A, Kulkarni SR, Fox DB, Carpenter J, Kasliwal MM, Ofek EO, Quimby R, Gal-Yam A, Cenko SB, de Bruyn AG, Kamble A, Wijers RAMJ, van der Horst AJ, Kouveliotou C, Podsiadlowski P, Sullivan M, Maguire K, Howell DA, Nugent PE, Gehrels N, Law NM, Poznanski D, Shara M (2012) Early radio and X-ray observations of the youngest nearby Type Ia supernova PTF 1 (SN 2011fe). ApJ 746:21. doi:10.1088/0004-637X/746/1/21

    Article  ADS  Google Scholar 

  • Houck JC, Bregman JN, Chevalier RA, Tomisaka K (1998) Recent X-ray observations of SN 1986J with ASCA and ROSAT. ApJ 493:431–439. doi:10.1086/305098

    Article  ADS  Google Scholar 

  • Immler S, Modjaz M, Landsman W, Bufano F, Brown PJ, Milne P, Dessart L, Holland ST, Koss M, Pooley D, Kirshner RP, Filippenko AV, Panagia N, Chevalier RA, Mazzali PA, Gehrels N, Petre R, Burrows DN, Nousek JA, Roming PWA, Pian E, Soderberg AM, Greiner J (2008) Swift and Chandra detections of supernova 2006jc: evidence for interaction of the supernova shock with a circumstellar shell. ApJL 674:L85. doi:10.1086/529373

    Article  ADS  Google Scholar 

  • Immler S, Wilson AS, Terashima Y (2002) X-ray emission from the Type Ic supernova 1994I observed with Chandra. ApJL 573:L27–L30. doi:10.1086/341935

    Article  ADS  Google Scholar 

  • Jakobsen P, Albrecht R, Barbieri C, Blades JC, Boksenberg A, Crane P, Deharveng JM, Disney MJ, Kamperman TM, King IR, Macchetto F, Mackay CD, Paresce F, Weigelt G, Baxter D, Greenfield P, Jedrzejewski R, Nota A, Sparks WB, Kirshner RP, Panagia N (1991) First results from the faint object camera – SN 1987A. ApJL 369: L63–L66. doi:10.1086/185959

    Article  ADS  Google Scholar 

  • Jones FC, Ellison DC (1991) The plasma physics of shock acceleration. SSRv 58:259–346. doi:10.1007/BF01206003

    Article  ADS  Google Scholar 

  • Jun BI, Jones TW, Norman ML (1996) Interaction of Rayleigh-Taylor fingers and circumstellar cloudlets in young supernova remnants. ApJL 468:L59. doi:10.1086/310224

    Article  ADS  Google Scholar 

  • Kallman TR, McCray R (1982) X-ray nebular models. ApJS 50:263–317. doi:10.1086/190828

    Article  ADS  Google Scholar 

  • Kuncarayakti H, Maeda K, Anderson JP, Hamuy M, Nomoto K, Galbany L, Doi M (2016) Evolving into a remnant: optical observations of SN 1978K at three decades. MNRAS 458:2063–2073. doi:10.1093/mnras/stw430

    Article  ADS  Google Scholar 

  • Larsson J, Fransson C, Östlin G, Gröningsson P, Jerkstrand A, Kozma C, Sollerman J, Challis P, Kirshner RP, Chevalier RA, Heng K, McCray R, Suntzeff NB, Bouchet P, Crotts A, Danziger J, Dwek E, France K, Garnavich PM, Lawrence SS, Leibundgut B, Lundqvist P, Panagia N, Pun CSJ., Smith N, Sonneborn G, Wang L, Wheeler JC (2011) X-ray illumination of the ejecta of supernova 1987A. Nature 474:484–486. doi:10.1038/nature10090

    Article  ADS  Google Scholar 

  • Leising MD, Kurfess JD, Clayton DD, Grabelsky DA, Grove JE, Johnson WN, Jung GV, Kinzer RL, Kroeger RA, Purcell WR, Strickman MS, The LS, Ulmer MP (1994) Hard X-rays from SN 1993J. ApJL 431:L95–L98. doi:10.1086/187481

    Article  ADS  Google Scholar 

  • Longair MS (2011) High energy astrophysics. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Lundqvist P, Fransson C (1988) Circumstellar absorption of UV and radio emission from supernovae. A&A 192:221–233

    ADS  Google Scholar 

  • Lundqvist P, Fransson C (1996) The line emission from the circumstellar gas around SN 1987A. ApJ 464:924. doi:10.1086/177380

    Article  ADS  Google Scholar 

  • Marcaide JM, Martí-Vidal I, Alberdi A, Pérez-Torres MA, Ros E, Diamond PJ, Guirado JC, Lara L, Shapiro II, Stockdale CJ, Weiler KW, Mantovani F, Preston RA, Schilizzi RT, Sramek RA, Trigilio C, van Dyk SD, Whitney AR (2009) A decade of SN 1993J: discovery of radio wavelength effects in the expansion rate. A&A 505:927–945. doi:10.1051/0004-6361/200912133

    Article  ADS  Google Scholar 

  • Marcaide JM, Martí-Vidal I, Perez-Torres MA, Alberdi A, Guirado JC, Ros E, Weiler KW (2009) 1.6 GHz VLBI observations of SN 1979C: almost-free expansion. A&A 503:869–872. doi:10.1051/0004-6361/200912485

    Article  ADS  Google Scholar 

  • Marcowith A, Bret A, Bykov A, Dieckman ME, O’C Drury L, Lembège B, Lemoine M, Morlino G, Murphy G, Pelletier G, Plotnikov I, Reville B, Riquelme M, Sironi L, Stockem Novo A (2016) The microphysics of collisionless shock waves. Rep Prog Phys 79(4):046901. doi:10.1088/0034-4885/79/4/046901

    Article  ADS  Google Scholar 

  • Margutti R, Kamble A, Milisavljevic D, De Mink S, Zapartas E, Drout M, Chornock R, Risaliti G, Zauderer BA, Bietenholz M, Cantiello M, Chakraborti S, Chomiuk L, Fong W, Grefenstette B, Guidorzi C, Kirshner R, Parrent JT, Patnaude D, Soderberg AM, Gehrels NC, Harrison F (2016) Ejection of the massive hydrogen-rich envelope timed with the collapse of the stripped SN 2014C. ArXiv e-prints

    Google Scholar 

  • Margutti R, Parrent J, Kamble A, Soderberg AM, Foley RJ, Milisavljevic D, Drout MR, Kirshner R (2014) No X-rays from the very nearby Type Ia SN 2014J: constraints on its environment. ApJ 790:52. doi:10.1088/0004-637X/790/1/52

    Article  ADS  Google Scholar 

  • Martí-Vidal I, Marcaide JM, Alberdi A, Guirado JC, Lara L, Pérez-Torres MA, Ros E, Argo MK, Beswick RJ, Muxlow TWB, Pedlar A, Shapiro II, Stockdale CJ, Sramek RA, Weiler KW, Vinko J (2007) 8.4 GHz VLBI observations of SN 2004et in NGC 6946. A&A 470:1071–1077. doi:10.1051/0004-6361:20077522

    Article  ADS  Google Scholar 

  • Martí-Vidal I, Marcaide JM, Alberdi A, Guirado JC, Pérez-Torres MA, Ros E (2011) Radio emission of SN 1993J: the complete picture. II. Simultaneous fit of expansion and radio light curves. A&A 526:A143. doi:10.1051/0004-6361/201014517

  • Matheson T, Filippenko AV, Barth AJ, Ho LC, Leonard DC, Bershady MA, Davis M, Finley DS, Fisher D, González RA, Hawley SL, Koo DC, Li W, Lonsdale CJ, Schlegel D, Smith HE, Spinrad H, Wirth GD (2000a) Optical spectroscopy of supernova 1993J during its first 2500 days. AJ 120:1487–1498. doi:10.1086/301518

    Article  ADS  Google Scholar 

  • Matheson T, Filippenko AV, Barth AJ, Ho LC, Leonard DC, Bershady MA, Davis M, Finley DS, Fisher D, González RA, Hawley SL, Koo DC, Li W, Lonsdale CJ, Schlegel D, Smith HE, Spinrad H, Wirth GD (2000b) Optical spectroscopy of supernova 1993J during its first 2500 days. AJ 120:1487–1498. doi:10.1086/301518

    Article  ADS  Google Scholar 

  • Matheson T, Filippenko AV, Ho LC, Barth AJ, Leonard DC (2000c) Detailed analysis of early to late-time spectra of supernova 1993J. AJ 120:1499–1515. doi:10.1086/301519

    Article  ADS  Google Scholar 

  • Mattila S, Meikle WPS, Lundqvist P, Pastorello A, Kotak R, Eldridge J, Smartt S, Adamson A, Gerardy CL, Rizzi L, Stephens AW, van Dyk SD (2008) Massive stars exploding in a He-rich circumstellar medium – III. SN 2006jc: infrared echoes from new and old dust in the progenitor CSM. MNRAS 389:141–155. doi:10.1111/j.1365-2966.2008.13516.x

    Article  ADS  Google Scholar 

  • Matzner CD, McKee CF (1999) The expulsion of stellar envelopes in core-collapse supernovae. ApJ 510:379–403. doi:10.1086/306571

    Article  ADS  Google Scholar 

  • McCray R, Fransson C (2016) The remnant of supernova 1987A. ARA&A 16. doi:10.1146/annurev-astro-082615-105405

  • McDonald AR, Muxlow TWB, Pedlar A, Garrett MA, Wills KA, Garrington ST, Diamond PJ, Wilkinson PN (2001) Global very long-baseline interferometry observations of compact radio sources in M82. MNRAS 322:100–106. doi:10.1046/j.1365-8711.2001.04109.x

    Article  ADS  Google Scholar 

  • Milisavljevic D, Fesen RA, Chevalier RA, Kirshner RP, Challis P, Turatto M (2012) Late-time optical emission from core-collapse Supernovae. ApJ 751:25. doi:10.1088/0004-637X/751/1/25

    Article  ADS  Google Scholar 

  • Milisavljevic D, Fesen RA, Leibundgut B, Kirshner RP (2008) The evolution of late-time optical emission from SN 1986J. ApJ 684:1170-1173. doi:10.1086/590426

    Article  ADS  Google Scholar 

  • Milisavljevic D, Margutti R, Kamble A, Patnaude DJ, Raymond JC, Eldridge JJ, Fong W, Bietenholz M, Challis P, Chornock R, Drout MR, Fransson C, Fesen RA, Grindlay JE, Kirshner RP, Lunnan R, Mackey J, Miller GF, Parrent JT, Sanders NE, Soderberg AM, Zauderer BA (2015) Metamorphosis of SN 2014C: delayed interaction between a hydrogen poor core-collapse supernova and a nearby circumstellar shell. ApJ 815:120. doi:10.1088/0004-637X/815/2/120

    Article  ADS  Google Scholar 

  • Murase K, Thompson TA, Lacki BC, Beacom JF (2011) New class of high-energy transients from crashes of supernova ejecta with massive circumstellar material shells. PhRvD 84(4):043003. doi:10.1103/PhysRevD.84.043003

    Article  ADS  Google Scholar 

  • Murase K, Thompson TA, Ofek EO (2014) Probing cosmic ray ion acceleration with radio-submm and gamma ray emission from interaction-powered supernovae. MNRAS 440: 2528–2543. doi:10.1093/mnras/stu384

    Article  ADS  Google Scholar 

  • Nadezhin DK (1985) On the initial phase of interaction between expanding stellar envelopes and surrounding medium. Ap&SS 112:225–249. doi:10.1007/BF00653506

    Article  ADS  Google Scholar 

  • Nakar E (2015) A unified picture for low-luminosity and long gamma ray bursts based on the extended progenitor of llGRB 060218/SN 2006aj. ApJ 807:172. doi:10.1088/0004-637X/807/2/172

    Article  ADS  Google Scholar 

  • Nakar E, Sari R (2012) Relativistic shock breakouts – a variety of gamma ray flares: from low-luminosity gamma ray bursts to Type Ia supernovae. ApJ 747:88. doi:10.1088/0004-637X/747/2/88

    Article  ADS  Google Scholar 

  • Ng CY, Zanardo G, Potter TM, Staveley-Smith L, Gaensler BM, Manchester RN, Tzioumis AK (2013) Evolution of the radio remnant of supernova 1987A: morphological changes from day 7000. ApJ 777:131. doi:10.1088/0004-637X/777/2/131

    Article  ADS  Google Scholar 

  • Nomoto K, Suzuki T (1998) X-rays from supernova 1993J; Ejecta instabilities. In: Koyama K, Kitamoto S, Itoh M (eds) The hot universe. IAU symposium, vol 188. Kluwer, Dordrecht, p 27

    Google Scholar 

  • Nymark TK, Chandra P, Fransson C (2009) Modeling the X-ray emission of SN 1993J. A&A 494:179–189. doi:10.1051/0004-6361:200810884

    Article  ADS  Google Scholar 

  • Nymark TK, Fransson C, Kozma C (2006) X-ray emission from radiative shocks in Type II supernovae. A&A 449:171–192. doi:10.1051/0004-6361:20054169

    Article  ADS  Google Scholar 

  • Ofek EO, Fox D, Cenko SB, Sullivan M, Gnat O, Frail DA, Horesh A, Corsi A, Quimby RM, Gehrels N, Kulkarni SR, Gal-Yam A, Nugent PE, Yaron O, Filippenko AV, Kasliwal MM, Bildsten L, Bloom JS, Poznanski D, Arcavi I, Laher RR, Levitan D, Sesar B, Surace J (2013) X-ray emission from supernovae in dense circumstellar matter environments: a search for collisionless shocks. ApJ 763:42. doi:10.1088/0004-637X/763/1/42

    Article  ADS  Google Scholar 

  • Ofek EO, Zoglauer A, Boggs SE, Barriére NM, Reynolds SP, Fryer CL, Harrison FA, Cenko SB, Kulkarni SR, Gal-Yam A, Arcavi I, Bellm E, Bloom JS, Christensen F, Craig WW, Even W, Filippenko AV, Grefenstette B, Hailey CJ, Laher R, Madsen K, Nakar E, Nugent PE, Stern D, Sullivan M, Surace J, Zhang WW (2014) SN 2010jl: optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon. ApJ 781, 42. doi:10.1088/0004-637X/781/1/42

    Article  ADS  Google Scholar 

  • Orlando S, Miceli M, Pumo ML, Bocchino F (2015) Supernova 1987A: a template to link supernovae to their remnants. ApJ 810:168. doi:10.1088/0004-637X/810/2/168

    Article  ADS  Google Scholar 

  • Pacholczyk AG (1970) Radio astrophysics. Nonthermal processes in galactic and extragalactic sources. Freeman, San Francisco

    Google Scholar 

  • Park J, Caprioli D, Spitkovsky A (2015) Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks. Phys Rev Lett 114(8):085003. doi:10.1103/PhysRevLett.114.085003

    Article  ADS  Google Scholar 

  • Pastorello A, Smartt SJ, Mattila S, Eldridge JJ, Young D, Itagaki K, Yamaoka H, Navasardyan H, Valenti S, Patat F, Agnoletto I, Augusteijn T, Benetti S, Cappellaro E, Boles T, Bonnet-Bidaud JM, Botticella MT, Bufano F, Cao C, Deng J, Dennefeld M, Elias-Rosa N, Harutyunyan A, Keenan FP, Iijima T, Lorenzi V, Mazzali PA, Meng X, Nakano S, Nielsen TB, Smoker JV, Stanishev V, Turatto M, Xu D, Zampieri L (2007) A giant outburst two years before the core-collapse of a massive star. Nature 447:829–832. doi:10.1038/nature05825

    Article  ADS  Google Scholar 

  • Pastorello A, Wang XF, Ciabattari F, Bersier D, Mazzali PA, Gao X, Xu Z, Zhang JJ, Tokuoka S, Benetti S, Cappellaro E, Elias-Rosa N, Harutyunyan A, Huang F, Miluzio M, Mo J, Ochner P, Tartaglia L, Terreran G, Tomasella L, Turatto M (2016) Massive stars exploding in a He-rich circumstellar medium – IX. SN 2014av, and characterization of Type Ibn SNe. MNRAS 456:853–869. doi:10.1093/mnras/stv2634

    Article  ADS  Google Scholar 

  • Pérez-Torres MA, Alberdi A, Marcaide JM, Guirado JC, Lara L, Mantovani F, Ros E, Weiler KW (2002) A distorted radio shell in the young supernova SN 1986J. MNRAS 335:L23–L28. doi:10.1046/j.1365-8711.2002.05809.x

    Article  ADS  Google Scholar 

  • Pérez-Torres MA, Lundqvist P, Beswick RJ, Björnsson CI, Muxlow TWB., Paragi Z, Ryder S, Alberdi A, Fransson C, Marcaide JM, Martí-Vidal I, Ros E, Argo MK, Guirado JC (2014) Constraints on the progenitor system and the environs of SN 2014J from deep radio observations. ApJ 792:38. doi:10.1088/0004-637X/792/1/38

    Article  ADS  Google Scholar 

  • Potter TM, Staveley-Smith L, Reville B, Ng CY, Bicknell GV, Sutherland RS, Wagner AY (2014) Multi-dimensional simulations of the expanding supernova remnant of SN 1987A. ApJ 794:174. doi:10.1088/0004-637X/794/2/174

    Article  ADS  Google Scholar 

  • Pozzo M, Meikle WPS, Fassia A, Geballe T, Lundqvist P, Chugai NN, Sollerman J (2004) On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae. MNRAS 352:457–477. doi:10.1111/j.1365-2966.2004.07951.x

    Article  ADS  Google Scholar 

  • Ro S, Matzner CD (2013) Shock emergence in supernovae: limiting cases and accurate approximations. ApJ 773:79. doi:10.1088/0004-637X/773/1/79

    Article  ADS  Google Scholar 

  • Rybicki GB, Lightman AP (1986) Radiative processes in astrophysics. Wiley-Interscience, New York

    Google Scholar 

  • Sakurai A (1960) On the problem of a shock wave arriving at the edge of a gas. Commun Pure Appl Math 13:353–370

    Article  MathSciNet  Google Scholar 

  • Shiode JH, Quataert E (2014) Setting the stage for circumstellar interaction in core-collapse supernovae. II. Wave-driven mass loss in supernova progenitors. ApJ 780:96. doi:10.1088/0004-637X/780/1/96

  • Slysh VI (1990) Synchrotron self-absorption of radio emission from supernovae. Sov Astron Lett 16:339

    ADS  Google Scholar 

  • Smartt SJ (2009) Progenitors of core-collapse supernovae. ARA&A 47:63–106. doi:10.1146/annurev-astro-082708-101737

    Article  ADS  Google Scholar 

  • Smith N (2006) The structure of the homunculus. I. Shape and latitude dependence from H2 and [Fe II] velocity maps of η carinae. ApJ 644: 1151–1163. doi:10.1086/503766

    Article  ADS  Google Scholar 

  • Smith N (2014) Mass loss: its effect on the evolution and fate of high-mass stars. ARA&A 52:487–528. doi:10.1146/annurev-astro-081913-040025

    Article  ADS  Google Scholar 

  • Smith N, Arnett WD (2014) Preparing for an explosion: hydrodynamic instabilities and turbulence in presupernovae. ApJ 785:82. doi:10.1088/0004-637X/785/2/82

    Article  ADS  Google Scholar 

  • Smith N, Foley RJ, Filippenko AV (2008) Dust formation and He II λ4686 Emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc. ApJ 680: 568-579. doi:10.1086/587860

    Article  ADS  Google Scholar 

  • Smith N, Hinkle KH, Ryde N (2009) Red supergiants as potential Type IIn supernova progenitors: spatially resolved 4.6 μm CO emission around VY CMa and betelgeuse. AJ 137:3558–3573. doi:10.1088/0004-6256/137/3/3558

    Article  ADS  Google Scholar 

  • Sramek RA, Weiler KW (2003) Radio supernovae. In: Weiler K (ed) Supernovae and gamma ray bursters. Lecture notes in physics, vol 598.Springer, Berlin, pp 145–169. doi:10.1007/3-540-45863-8_9

  • Storey MC, Manchester RN (1987) Modelling of the radio burst from SN 1987A. Nature 329:421–423. doi:10.1038/329421a0

    Article  ADS  Google Scholar 

  • Stritzinger M, Taddia F, Fransson C, Fox OD, Morrell N, Phillips MM, Sollerman J, Anderson JP, Boldt L, Brown PJ, Campillay A, Castellon S, Contreras C, Folatelli G, Habergham SM, Hamuy M, Hjorth J, James PA, Krzeminski W, Mattila S, Persson SE, Roth M (2012) Multi-wavelength observations of the enduring Type IIn supernovae 2005ip and 2006jd. ApJ 756:173. doi:10.1088/0004-637X/756/2/173

    Article  ADS  Google Scholar 

  • Taddia F, Sollerman J, Fremling C, Pastorello A, Leloudas G, Fransson C, Nyholm A, Stritzinger MD, Ergon M, Roy R, Migotto K (2015) Metallicity at the explosion sites of interacting transients. A&A 580:A131. doi:10.1051/0004-6361/201525989

    Article  ADS  Google Scholar 

  • Van Dyk SD, de Mink SE, Zapartas E (2016) Constraints on the binary companion to the SN Ic 1994I progenitor. ApJ 818:75. doi:10.3847/0004-637X/818/1/75

    Article  ADS  Google Scholar 

  • van Dyk SD, Weiler KW, Sramek RA, Rupen MP, Panagia N (1994) SN 1993J: the early radio emission and evidence for a changing presupernova mass-loss rate. ApJL 432:L115–L118. doi:10.1086/187525

    Article  ADS  Google Scholar 

  • van Marle AJ, Smith N, Owocki SP, van Veelen B (2010) Numerical models of collisions between core-collapse supernovae and circumstellar shells. MNRAS 407:2305–2327. doi:10.1111/j.1365-2966.2010.16851.x

    Article  ADS  Google Scholar 

  • Weiler KW, Panagia N, Stockdale C, Rupen M, Sramek RA, Williams CL (2011) Radio emission from SN 1994I in NGC 5194 (M 51): the best-studied Type Ib/c radio supernova. ApJ 740:79. doi:10.1088/0004-637X/740/2/79

    Article  ADS  Google Scholar 

  • Weiler KW, Sramek RA, Panagia N, van der Hulst JM, Salvati M (1986) Radio supernovae. ApJ 301:790–812. doi:10.1086/163944

    Article  ADS  Google Scholar 

  • Weiler KW, van der Hulst JM, Sramek RA, Panagia N (1981) SN 1979c – a radio supernova. ApJL 243:L151–L156. doi:10.1086/183463

    Article  ADS  Google Scholar 

  • Weiler KW, van Dyk SD, Pringle JE, Panagia N (1992) Evidence for periodic modulation of presupernova mass loss from the progenitor of SN 1979 C. ApJ 399:672–679. doi:10.1086/171959

    Article  ADS  Google Scholar 

  • Weiler KW, Williams CL, Panagia N, Stockdale CJ, Kelley MT, Sramek RA, Van Dyk SD, Marcaide JM (2007) Long-term radio monitoring of SN 1993J. ApJ 671: 1959–1980. doi:10.1086/523258

    Article  ADS  Google Scholar 

  • Wellons S, Soderberg AM, Chevalier RA (2012) Radio observations reveal unusual circumstellar environments for some Type Ibc supernova progenitors. ApJ 752:17. doi:10.1088/0004-637X/752/1/17

    Article  ADS  Google Scholar 

  • Williams CL, Panagia N, Van Dyk SD, Lacey CK, Weiler KW, Sramek RA (2002) Radio emission from SN 1988Z and very massive star evolution. ApJ 581:396–403. doi:10.1086/344087

    Article  ADS  Google Scholar 

  • Zanardo G, Staveley-Smith L, Ball L, Gaensler BM, Kesteven MJ, Manchester RN, Ng CY, Tzioumis AK, Potter TM (2010) Multifrequency radio measurements of supernova 1987A over 22 years. ApJ 710:1515–1529. doi:10.1088/0004-637X/710/2/1515

    Article  ADS  Google Scholar 

  • Zhang T, Wang X, Wu C, Chen J, Chen J, Liu Q, Huang F, Liang J, Zhao X, Lin L, Wang M, Dennefeld M, Zhang J, Zhai M, Wu H, Fan Z, Zou H, Zhou X, Ma J (2012) Type IIn supernova SN 2010jl: optical observations for over 500 days after explosion. AJ 144:131. doi:10.1088/0004-6256/144/5/131

    Article  ADS  Google Scholar 

  • Zimmermann HU, Aschenbach B (2003) XMM-Newton observation of SN 1993J in M 81. A&A 406:969–974. doi:10.1051/0004-6361:20030687

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RAC’s research was partly supported by NASA grant NNX12AF90G, while that of CF by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Chevalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chevalier, R.A., Fransson, C. (2017). Thermal and Non-thermal Emission from Circumstellar Interaction. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_34

Download citation

Publish with us

Policies and ethics