Skip to main content

Unusual Supernovae and Alternative Power Sources

  • Reference work entry
  • First Online:

Abstract

Recent observations have revealed a diverse class of peculiar supernovae, among them transients that are extremely luminous and unusually dim, or that evolve remarkably rapidly or slowly over time. The light curves of some of these events cannot be powered by ordinary energy sources such as the decay of radioactive isotopes. This chapter begins with a brief description of certain types of unusual supernovae and then reviews the basic physics of supernova light curves, deriving in a pedagogical way the analytic scalings that characterize the peak brightness and duration. After illustrating that ordinary power sources cannot explain all of the observed events, we turn to theoretical ideas involving less common mechanisms, such as energy injection from a long-lived central engine (a rapidly rotating magnetar or an accreting black hole). We conclude by speculating how alternative power sources may be manifest in observations of the assorted classes of peculiar supernovae.

This is a preview of subscription content, log in via an institution.

References

  • Arcavi I, Wolf WM, Howell DA, Bildsten L, Leloudas G, Hardin D, Prajs S, Perley DA, Svirski G, Gal-Yam A, Katz B, McCully C, Cenko SB, Lidman C, Sullivan M, Valenti S, Astier P, Balland C, Carlberg RG, Conley A, Fouchez D, Guy J, Pain R, Palanque-Delabrouille N, Perrett K, Pritchet CJ, Regnault N, Rich J, Ruhlmann-Kleider V (2016) Rapidly rising transients in the supernova-superluminous supernova gap. ApJ 819:35. doi:10.3847/0004-637X/819/1/35

    Article  ADS  Google Scholar 

  • Arnett WD (1979) On the theory of Type I supernovae. ApJ Lett 230:L37–L40. doi:10.1086/182957

    Article  ADS  Google Scholar 

  • Arnett WD (1982) Type I supernovae. I – analytic solutions for the early part of the light curve. ApJ 253:785–797. doi:10.1086/159681

    Article  Google Scholar 

  • Barkat Z, Rakavy G, Sack N (1967) Dynamics of supernova explosion resulting from pair formation. Phys Rev Lett 18:379–381. doi:10.1103/PhysRevLett.18.379

    Article  ADS  Google Scholar 

  • Bildsten L, Shen KJ, Weinberg NN, Nelemans G (2007) Faint thermonuclear supernovae from AM Canum Venaticorum binaries. ApJ Lett 662:L95–L98. doi:10.1086/519489

    Article  ADS  Google Scholar 

  • Blandford RD, Begelman MC (1999) On the fate of gas accreting at a low rate on to a black hole. MNRAS 303:L1–L5. doi:10.1046/j.1365-8711.1999.02358.x

    Article  ADS  Google Scholar 

  • Bodenheimer P, Ostriker JP (1974) Do pulsars make supernovae? 11. Calculations of light curves for Type 11 events. ApJ 191:465–472. doi:10.1086/152985

    Article  ADS  Google Scholar 

  • Chevalier RA (1989) Neutron star accretion in a supernova. ApJ 346:847–859. doi:10.1086/168066

    Article  ADS  Google Scholar 

  • Colgate SA, McKee C (1969) Early supernova luminosity. ApJ 157:623. doi:10.1086/150102

    Article  ADS  Google Scholar 

  • Contopoulos I, Kazanas D, Fendt C (1999) The axisymmetric pulsar magnetosphere. ApJ 511: 351–358. doi:10.1086/306652

    Article  ADS  Google Scholar 

  • De Villiers JP, Hawley JF, Krolik JH, Hirose S (2005) Magnetically driven accretion in the Kerr metric. III. Unbound outflows. ApJ 620:878–888. doi:10.1086/427142

    Article  Google Scholar 

  • Dessart L, Hillier DJ, Waldman R, Livne E, Blondin S (2012) Superluminous supernovae:56Ni power versus magnetar radiation. MNRAS 426:L76–L80. doi:10.1111/j.1745-3933.2012.01329.x

    Article  ADS  Google Scholar 

  • Dexter J, Kasen D (2013) Supernova light curves powered by fallback accretion. ApJ 772:30. doi:10.1088/0004-637X/772/1/30

    Article  ADS  Google Scholar 

  • Drout MR, Chornock R, Soderberg AM, Sanders NE, McKinnon R, Rest A, Foley RJ, Milisavljevic D, Margutti R, Berger E, Calkins M, Fong W, Gezari S, Huber ME, Kankare E, Kirshner RP, Leibler C, Lunnan R, Mattila S, Marion GH, Narayan G, Riess AG, Roth KC, Scolnic D, Smartt SJ, Tonry JL, Burgett WS, Chambers KC, Hodapp KW, Jedicke R, Kaiser N, Magnier EA, Metcalfe N, Morgan JS, Price PA, Waters C (2014) Rapidly evolving and luminous transients from Pan-STARRS1. ApJ 794:23. doi:10.1088/0004-637X/794/1/23

    Article  ADS  Google Scholar 

  • Falk SW, Arnett WD (1977) Radiation dynamics, envelope ejection, and supernova light curves. ApJ Suppl 33:515. doi:10.1086/190440

    Article  ADS  Google Scholar 

  • Gaffet B (1977) Pulsar theory of supernova light curves. II – the light curve and the continuous spectrum. ApJ 216:852–864. doi:10.1086/155530

    Article  Google Scholar 

  • Gal-Yam A, Mazzali P, Ofek EO, Nugent PE, Kulkarni SR, Kasliwal MM, Quimby RM, Filippenko AV, Cenko SB, Chornock R, Waldman R, Kasen D, Sullivan M, Beshore EC, Drake AJ, Thomas RC, Bloom JS, Poznanski D, Miller AA, Foley RJ, Silverman JM, Arcavi I, Ellis RS, Deng J (2009) Supernova 2007bi as a pair-instability explosion. Nature 462:624–627. doi:10.1038/nature08579

    Article  ADS  Google Scholar 

  • Grassberg EK, Imshennik VS, Nadyozhin DK (1971) On the theory of the light curves of supernovate. Astrophys Space Sci 10:28–51. doi:10.1007/BF00654604

    Article  ADS  Google Scholar 

  • Howell DA, Kasen D, Lidman C, Sullivan M, Conley A, Astier P, Balland C, Carlberg RG, Fouchez D, Guy J, Hardin D, Pain R, Palanque-Delabrouille N, Perrett K, Pritchet CJ, Regnault N, Rich J, Ruhlmann-Kleider V (2013) Two superluminous supernovae from the early universe discovered by the Supernova Legacy Survey. ApJ 779:98. doi:10.1088/0004-637X/779/2/98

    Article  ADS  Google Scholar 

  • Inserra C, Smartt SJ, Jerkstrand A, Valenti S, Fraser M, Wright D, Smith K, Chen TW, Kotak R, Pastorello A, Nicholl M, Bresolin F, Kudritzki RP, Benetti S, Botticella MT, Burgett WS, Chambers KC, Ergon M, Flewelling H, Fynbo JPU, Geier S, Hodapp KW, Howell DA, Huber M, Kaiser N, Leloudas G, Magill L, Magnier EA, McCrum MG, Metcalfe N, Price PA, Rest A, Sollerman J, Sweeney W, Taddia F, Taubenberger S, Tonry JL, Wainscoat RJ, Waters C, Young D (2013) Super-luminous Type Ic supernovae: catching a magnetar by the tail. ApJ 770:128. doi:10.1088/0004-637X/770/2/128

    Article  ADS  Google Scholar 

  • Jordan GC IV, Perets HB, Fisher RT, van Rossum DR (2012) Failed-detonation supernovae: subluminous low-velocity Ia supernovae and their kicked remnant white dwarfs with iron-rich cores. ApJ Lett 761:L23. doi:10.1088/2041-8205/761/2/L23

    Article  ADS  Google Scholar 

  • Kasen D, Bildsten L (2010) Supernova light curves powered by young magnetars. ApJ 717: 245–249. doi:10.1088/0004-637X/717/1/245

    Article  ADS  Google Scholar 

  • Kasen D, Metzger BD, Bildsten L (2016) Magnetar-driven shock breakout and double-peaked supernova light curves. ApJ 821:36. doi:10.3847/0004-637X/821/1/36

    Article  ADS  Google Scholar 

  • Kasen D, Woosley SE (2009) Type II supernovae: model light curves and standard candle relationships. ApJ 703:2205–2216. doi:10.1088/0004-637X/703/2/2205

    Article  ADS  Google Scholar 

  • Kasen D, Woosley SE, Heger A (2011) Pair instability supernovae: light curves, spectra, and shock breakout. ApJ 734:102. doi:10.1088/0004-637X/734/2/102

    Article  ADS  Google Scholar 

  • Kasliwal MM, Kulkarni SR, Gal-Yam A, Nugent PE, Sullivan M, Bildsten L, Yaron O, Perets HB, Arcavi I, Ben-Ami S, Bhalerao VB, Bloom JS, Cenko SB, Filippenko AV, Frail DA, Ganeshalingam M, Horesh A, Howell DA, Law NM, Leonard DC, Li W, Ofek EO, Polishook D, Poznanski D, Quimby RM, Silverman JM, Sternberg A, Xu D (2012) Calcium-rich gap transients in the remote outskirts of galaxies. ApJ 755:161. doi:10.1088/0004-637X/755/2/161

    Article  ADS  Google Scholar 

  • Kasliwal MM, Kulkarni SR, Gal-Yam A, Yaron O, Quimby RM, Ofek EO, Nugent P, Poznanski D, Jacobsen J, Sternberg A, Arcavi I, Howell DA, Sullivan M, Rich DJ, Burke PF, Brimacombe J, Milisavljevic D, Fesen R, Bildsten L, Shen K, Cenko SB, Bloom JS, Hsiao E, Law NM, Gehrels N, Immler S, Dekany R, Rahmer G, Hale D, Smith R, Zolkower J, Velur V, Walters R, Henning J, Bui K, McKenna D (2010) Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. ApJ Lett 723:L98–L102. doi:10.1088/2041-8205/723/1/L98

  • Kleiser IKW, Kasen D (2014) Rapidly fading supernovae from massive star explosions. MNRAS 438:318–328. doi:10.1093/mnras/stt2191

    Article  ADS  Google Scholar 

  • Kromer M, Fink M, Stanishev V, Taubenberger S, Ciaraldi-Schoolman F, Pakmor R, Röpke FK, Ruiter AJ, Seitenzahl IR, Sim SA, Blanc G, Elias-Rosa N, Hillebrandt W (2013) 3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae. MNRAS 429:2287–2297. doi:10.1093/mnras/sts498

    Article  ADS  Google Scholar 

  • Lattimer JM, Schutz BF (2005) Constraining the equation of state with moment of inertia measurements. ApJ 629:979–984. doi:10.1086/431543

    Article  ADS  Google Scholar 

  • Lucy LB (2005) Monte carlo techniques for time-dependent radiative transfer in 3-D supernovae. Astron Astrophys 429:19–30. doi:10.1051/0004-6361:20041656

    Article  ADS  Google Scholar 

  • MacFadyen AI, Woosley SE (1999) Collapsars: gamma-Ray bursts and explosions in “Failed Supernovae”. ApJ 524:262–289. doi:10.1086/307790

    Article  ADS  Google Scholar 

  • Maeda K, Tanaka M, Nomoto K, Tominaga N, Kawabata K, Mazzali PA, Umeda H, Suzuki T, Hattori T (2007) The unique Type Ib supernova 2005bf at nebular phases: a possible birth event of a strongly magnetized neutron star. ApJ 666:1069–1082. doi:10.1086/520054

    Article  ADS  Google Scholar 

  • McKinney JC (2006) General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. MNRAS 368: 1561–1582. doi:10.1111/j.1365-2966.2006.10256.x

    Article  ADS  Google Scholar 

  • Metzger BD, Giannios D, Thompson TA, Bucciantini N, Quataert E (2011) The protomagnetar model for gamma-ray bursts. MNRAS 413:2031–2056. doi:10.1111/j.1365-2966.2011.18280.x

    Article  ADS  Google Scholar 

  • Metzger BD, Margalit B, Kasen D, Quataert E (2015) The diversity of transients from magnetar birth in core collapse supernovae. MNRAS 454:3311–3316. doi:10.1093/mnras/stv2224

    Article  ADS  Google Scholar 

  • Metzger BD, Vurm I, Hascoët R, Beloborodov AM (2014) Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae. MNRAS 437:703–720. doi:10.1093/mnras/stt1922

    Article  ADS  Google Scholar 

  • Michel FC (1988) Neutron star disk formation from supernova fall-back and possible observational consequences. Nature 333:644. doi:10.1038/333644a0

    Article  ADS  Google Scholar 

  • Moriya T, Tominaga N, Tanaka M, Maeda K, Nomoto K (2010) A core-collapse supernova model for the extremely luminous Type Ic supernova 2007bi: an alternative to the pair-instability supernova model. ApJ Lett 717:L83–L86. doi:10.1088/2041-8205/717/2/L83

    Article  ADS  Google Scholar 

  • Narayan R, Yi I (1994) Advection-dominated accretion: a self-similar solution. ApJ Lett 428: L13–L16. doi:10.1086/187381

    Article  ADS  Google Scholar 

  • Nicholl M, Smartt SJ (2016) Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. MNRAS 457:L79–L83. doi:10.1093/mnrasl/slv210

    Article  ADS  Google Scholar 

  • Nicholl M, Smartt SJ, Jerkstrand A, Inserra C, McCrum M, Kotak R, Fraser M, Wright D, Chen TW, Smith K, Young DR, Sim SA, Valenti S, Howell DA, Bresolin F, Kudritzki RP, Tonry JL, Huber ME, Rest A, Pastorello A, Tomasella L, Cappellaro E, Benetti S, Mattila S, Kankare E, Kangas T, Leloudas G, Sollerman J, Taddia F, Berger E, Chornock R, Narayan G, Stubbs CW, Foley RJ, Lunnan R, Soderberg A, Sanders N, Milisavljevic D, Margutti R, Kirshner RP, Elias-Rosa N, Morales-Garoffolo, A, Taubenberger S, Botticella MT, Gezari S, Urata Y, Rodney S, Riess AG, Scolnic D, Wood-Vasey WM, Burgett WS, Chambers K, Flewelling HA, Magnier EA, Kaiser N, Metcalfe N, Morgan J, Price PA, Sweeney W, Waters C (2013) Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature 502:346–349. doi:10.1038/nature12569

    Article  ADS  Google Scholar 

  • Perets HB, Gal-Yam A, Mazzali PA, Arnett D, Kagan D, Filippenko AV, Li W, Arcavi I, Cenko SB, Fox DB, Leonard DC, Moon DS, Sand DJ, Soderberg AM, Anderson JP, James PA, Foley RJ, Ganeshalingam M, Ofek EO, Bildsten L, Nelemans G, Shen KJ, Weinberg NN, Metzger BD, Piro AL, Quataert E, Kiewe M, Poznanski D (2010) A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465:322–325. doi:10.1038/nature09056

    Article  ADS  Google Scholar 

  • Perna R, Duffell P, Cantiello M, MacFadyen AI (2014) The fate of fallback matter around newly born compact objects. ApJ 781:119. doi:10.1088/0004-637X/781/2/119

    Article  ADS  Google Scholar 

  • Popov DV (1993) An analytical model for the plateau stage of Type II supernovae. ApJ 414: 712–716. doi:10.1086/173117

    Article  ADS  Google Scholar 

  • Poznanski D, Chornock R, Nugent PE, Bloom JS, Filippenko AV, Ganeshalingam M, Leonard DC, Li W, Thomas RC (2010) An unusually fast-evolving supernova. Science 327:58. doi:10.1126/science.1181709

    Article  ADS  Google Scholar 

  • Quataert E, Kasen D (2012) Swift 1644+57: the longest gamma-ray burst? MNRAS 419:L1–L5. doi:10.1111/j.1745-3933.2011.01151.x

    Article  ADS  Google Scholar 

  • Quataert E, Shiode J (2012) Wave-driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core-collapse supernovae. MNRAS 423:L92–L96. doi:10.1111/j.1745-3933.2012.01264.x

    Article  ADS  Google Scholar 

  • Quimby RM, Aldering G, Wheeler JC, Höflich P, Akerlof CW, Rykoff ES (2007) SN 2005ap: a most brilliant explosion. ApJ Lett 668:L99–L102. doi:10.1086/522862

    Article  ADS  Google Scholar 

  • Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355

    ADS  Google Scholar 

  • Shivvers I, Zheng WK, Mauerhan J, Kleiser IKW, Van Dyk SD, Silverman JM, Graham ML, Kelly PL, Filippenko AV, Kumar S (2016) SN 2015U: a rapidly evolving and luminous Type Ibn supernova. MNRAS 461:3057–3074. doi:10.1093/mnras/stw1528

    Article  ADS  Google Scholar 

  • Smith N, Arnett WD (2014) Preparing for an explosion: hydrodynamic instabilities and turbulence in presupernovae. ApJ 785:82. doi:10.1088/0004-637X/785/2/82

    Article  ADS  Google Scholar 

  • Smith N, Li W, Foley RJ, Wheeler JC, Pooley D, Chornock R, Filippenko AV, Silverman JM, Quimby R, Bloom JS, Hansen C (2007) SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like η carinae. ApJ 666: 1116–1128. doi:10.1086/519949

    Article  ADS  Google Scholar 

  • Spitkovsky A (2006) Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. ApJ Lett 648:L51–L54. doi:10.1086/507518

    Article  ADS  Google Scholar 

  • Swartz DA, Sutherland PG, Harkness RP (1995) Gamma-ray transfer and energy deposition in supernovae. ApJ 446:766. doi:10.1086/175834

    Article  ADS  Google Scholar 

  • Weaver TA, Woosley SE (1980) Evolution and explosion of massive stars. In: Ehlers J, Perry JJ, Walker M (eds) Ninth Texas symposium on relativistic astrophysics. Annals of the New York academy of sciences, vol 336, pp 335–357. doi:10.1111/j.1749-6632.1980.tb15942.x

    Chapter  Google Scholar 

  • Woosley SE (1993) Gamma-ray bursts from stellar mass accretion disks around black holes. ApJ 405:273–277. doi:10.1086/172359

    Article  ADS  Google Scholar 

  • Woosley SE (2010) Bright supernovae from magnetar birth. ApJ Lett 719:L204–L207. doi:10.1088/2041-8205/719/2/L204

    Article  ADS  Google Scholar 

  • Woosley SE, Blinnikov S, Heger A (2007) Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450:390–392. doi:10.1038/nature06333

    Article  ADS  Google Scholar 

  • Woosley SE, Heger A (2012) Long gamma-ray transients from collapsars. ApJ 752:32. doi:10.1088/0004-637X/752/1/32

    Article  ADS  Google Scholar 

  • Zhang W, Woosley SE, Heger A (2008) Fallback and black hole production in massive stars. ApJ 679:639–654. doi:10.1086/526404

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kasen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kasen, D. (2017). Unusual Supernovae and Alternative Power Sources. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_32

Download citation

Publish with us

Policies and ethics