Skip to main content

Light Curves of Type II Supernovae

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

The observed light curves of Type II supernovae are rather heterogeneous. Understanding the origin of this diversity requires understanding the physical evolution of their ejecta. This is accomplished through the implementation of different radiation hydrodynamics approaches, some of which are summarized in this chapter. We first review an approximate semi-analytic treatment of the evolution of the ejecta that has been developed by several authors in the last two decades and is adequate to obtain a solid physical understanding of several basic processes. We then describe in detail the full radiation-hydrodynamics approach in spherical symmetry, discussing the evolution of the supernova internal structure and describing the physical effects of the ejecta properties on the light curve. These treatments are used to illustrate how to model observables of Type II supernovae (not only the light curves but also the evolution of the photospheric properties), to estimate the physical parameters of the ejecta, and to constrain their progenitors. Finally, we shortly address also the implications of these studies for understanding the use of Type II supernovae as cosmological distance indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arnett D (1996) Supernovae and nucleosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Balberg S, Zampieri L, Shapiro SL (2000) Black hole emergence in supernovae. ApJ 541:860

    Article  ADS  Google Scholar 

  • Barbarino C, Dall’Ora M, Botticella MT, Della Valle M, Zampieri L, Maund JR et al (2015) SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase. MNRAS 448:2312

    Article  ADS  Google Scholar 

  • Barbon R, Ciatti F, Rosino L (1979) Photometric properties of Type II Supernovae. A&A 72:287

    ADS  Google Scholar 

  • Baron E, Nugent PE, Branch D, Hauschildt PH (2004) Type IIP Supernovae as cosmological probes: a spectral-fitting expanding atmosphere model distance to SN 1999em. ApJL 616:L91

    Article  ADS  Google Scholar 

  • Benson PJ, Herbst W, Salzer JJ, Vinton G, Hanson GJ, Ratcliff SJ et al (1994) Light curves of SN 1993J from the Keck Northeast Astronomy Consortium. AJ 107:1453

    Article  ADS  Google Scholar 

  • Bersten MC, Benvenuto O, Hamuy M (2011) Hydrodynamical models of Type II plateau supernovae. ApJ 729:article id. 61

    Google Scholar 

  • Blinnikov SI, Bartunov OS (1993) Non-equilibrium radiative transfer in supernova theory - models of linear Type-II Supernovae. A&A 273:106

    ADS  Google Scholar 

  • Botticella MT, Trundle C, Pastorello A, Rodney S, Rest A, Gezari S. et al (2010) Supernova 2009kf: an ultraviolet bright Type IIP Supernova discovered with Pan-STARRS 1 and GALEX. ApJL 717:L52

    Article  ADS  Google Scholar 

  • Cappellaro E, Danziger IJ, della Valle M, Gouiffes C, Turatto M (1995) The bright linear Type II SN 1990K. A&A 293:723

    Google Scholar 

  • Chieffi A, Domínguez I, Höflich P, Limongi M, Straniero O (2003) Theoretical light curves of Type II-P Supernovae and applications to cosmology. MNRAS 345:111

    Article  ADS  Google Scholar 

  • Chugai NN, Utrobin VP (2000) The nature of SN 1997D: low-mass progenitor and weak explosion. A&A 354:557

    ADS  Google Scholar 

  • Colpi M, Shapiro SL, Wasserman I (1996) Spherical accretion in a uniformly expanding universe. ApJ 470:1075

    Article  ADS  Google Scholar 

  • Dessart L, Hillier DJ (2010) Supernova radiative-transfer modelling: a new approach using non-local thermodynamic equilibrium and full time dependence. MNRAS 405:2141

    ADS  Google Scholar 

  • Dessart L, Hillier DJ, Waldman R, Livne E (2013) Type II-plateau supernova radiation: dependencies on progenitor and explosion properties. MNRAS 433:1745

    Article  ADS  Google Scholar 

  • Eastman RG, Schmidt BP, Kirshner R (1996) The atmospheres of Type II Supernovae and the expanding photosphere method. ApJ 466:911

    Article  ADS  Google Scholar 

  • Elias-Rosa N, Van Dyk SD, Li W, Miller AA, Silverman JM, Ganeshalingam M et al. (2010) The massive progenitor of the Type II-linear Supernova 2009kr. ApJL 714:L254

    Article  ADS  Google Scholar 

  • Elmhamdi A, Chugai NN, Danziger IJ (2003) Light curves and Hα luminosities as indicators of56Ni mass in Type IIP Supernovae. A&A 404:1077

    Article  ADS  Google Scholar 

  • Ertl T, Janka H-Th, Woosley SE, Sukhbold T, Ugliano M (2016) A two-parameter criterion for classifying the explodability of massive stars by the Neutrino-driven Mechanism. ApJ 818:article id. 124

    Google Scholar 

  • Gal-Yam A (2012) Luminous supernovae. Science 337:927

    Article  ADS  Google Scholar 

  • Gezari S, Rest A, Huber ME, Narayan G, Forster K, Neill JD et al (2010) GALEX and Pan-STARRS1 discovery of SN IIP 2010aq: the first few days after shock breakout in a red supergiant star. ApJL 720:L77

    Article  ADS  Google Scholar 

  • Gezari S, Jones DO, Sanders NE, Soderberg AM, Hung T, Heinis S et al (2015) GALEX detection of shock breakout in Type IIP Supernova PS1-13arp: implications for the progenitor star wind. ApJ 804:article id. 28

    Google Scholar 

  • Hamuy M (2003) Observed and physical properties of core-collapse supernovae. ApJ 582:905

    Article  ADS  Google Scholar 

  • Hamuy M, Suntzeff NB, Gonzalez R, Martin G (1988) SN 1987A in the LMC - UBVRI photometry at Cerro Tololo. AJ 95:63

    Article  ADS  Google Scholar 

  • Hendry MA, Smartt SJ, Maund JR, Pastorello A, Zampieri L, Benetti S et al (2005) A study of the Type II-P Supernova 2003gd in M74. MNRAS 359:906

    Article  ADS  Google Scholar 

  • Huang F, Wang X, Zhang J, Brown PJ, Zampieri L, Pumo ML et al (2015) SN 2013ej in M74: a luminous and fast-declining Type II-P Supernova. ApJ 807:article id. 59

    Google Scholar 

  • Kasen D, Woosley SE (2009) Type II Supernovae: model light curves and standard candle relationships. ApJ 703:2205

    Article  ADS  Google Scholar 

  • Leonard DC, Kanbur SM, Ngeow CC, Tanvir NR (2003) The cepheid distance to NGC 1637: a direct test of the expanding photosphere method distance to SN 1999em. ApJ 594:247

    Article  ADS  Google Scholar 

  • Maund JR, Reilly E, Mattila S (2014) A late-time view of the progenitors of five Type IIP Supernovae. MNRAS 438:938

    Article  ADS  Google Scholar 

  • Nugent P, Sullivan M, Ellis R, Gal-Yam A, Leonard DC, Howell DA et al (2006) Toward a cosmological hubble diagram for Type II-P Supernovae. ApJ 645:841

    Article  ADS  Google Scholar 

  • Olivares EF, Hamuy M, Pignata G, Maza J, Bersten M, Phillips MM et al (2010) The standardized candle method for Type II plateau supernovae. ApJ 715:833

    Article  ADS  Google Scholar 

  • Pastorello A, Pastorello A, Kasliwal MM, Crockett RM, Valenti S, Arbour R, Itagaki K et al (2008) The Type IIb SN 2008ax: spectral and light curve evolution. MNRAS 389:955

    Article  ADS  Google Scholar 

  • Pastorello A, Valenti S, Zampieri L, Navasardyan H, Taubenberger S, Smartt SJ et al (2009) SN 2005cs in M51 - II. Complete evolution in the optical and the near-infrared. MNRAS 394:2266

    Google Scholar 

  • Popov DV (1993) An analytical model for the plateau stage of Type II Supernovae. ApJ 414:712

    Article  ADS  Google Scholar 

  • Pumo ML, Turatto M, Botticella MT, Pastorello A, Valenti S, Zampieri L et al (2009) EC-SNe from super-asymptotic giant branch progenitors: theoretical models versus observations. ApJ 705:L138

    Article  ADS  Google Scholar 

  • Pumo ML, Zampieri L (2011) Radiation-hydrodynamical modeling of core-collapse supernovae: light curves and the evolution of photospheric velocity and temperature. ApJ 741. article id. 41

    Google Scholar 

  • Pumo ML, Zampieri L (2013) Calibration relations for core-collapse supernovae. MNRAS 434:3445

    Article  ADS  Google Scholar 

  • Smartt SJ (2009) Progenitors of core-collapse supernovae. ARA&A 47:63

    Article  ADS  Google Scholar 

  • Smartt SJ (2015) Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars. PASA 32:id.e016

    Google Scholar 

  • Schmidt BP, Kirshner RP, Eastman RG, Hamuy M, Phillips MM, Suntzeff NB et al (1994) The expanding photosphere method applied to SN 1992am at cz = 14600 km/s. AJ 107:1444

    Article  ADS  Google Scholar 

  • Soderberg AM, Berger E, Page KL, Schady P, Parrent J, Pooley D et al (2008) An extremely luminous X-Ray outburst at the birth of a supernova. Nature 453:469

    Article  ADS  Google Scholar 

  • Spiro S, Pastorello A, Pumo ML, Zampieri L, Turatto M, Smartt SJ et al (2014) Low luminosity Type II Supernovae - II. Pointing towards moderate mass precursors. MNRAS 439:2873

    Google Scholar 

  • Takáts K, Pignata G, Pumo ML, Paillas E, Zampieri L, Elias-Rosa N et al (2015) SN 2009ib: a Type II-P Supernova with an unusually long plateau. MNRAS 450:3137

    Article  ADS  Google Scholar 

  • Tartaglia L, Pastorello A, Sullivan M, Baltay C, Rabinowitz D, Nugent P et al (2016) Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star. MNRAS 459:1039

    Google Scholar 

  • Taubenberger S, Navasardyan H, Maurer JI, Zampieri L, Chugai NN, Benetti S et al (2011) The He-rich stripped-envelope core-collapse supernova 2008ax. MNRAS 413:2140

    Article  ADS  Google Scholar 

  • Turatto M (2003) Classification of Supernovae. In: Weiler K (ed) Supernovae and gamma ray bursters. Lecture notes in physics, vol 598. Springer, p 21

    Google Scholar 

  • Utrobin VP (2007) An optimal hydrodynamic model for the normal Type IIP Supernova 1999em. A&A 461:233

    Article  ADS  Google Scholar 

  • Utrobin VP, Chugai NN (2009) High mass of the Type IIP Supernova 2004et inferred from hydrodynamic modeling. A&A 506:829

    Article  ADS  Google Scholar 

  • Young TR (2004) A parameter study of Type II Supernova light curves using 6M ⊙ He Cores. ApJ 617:1233

    Article  ADS  Google Scholar 

  • Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. explosive hydrodynamics and nucleosynthesis. ApJS 101:181

    Google Scholar 

  • Zampieri L (2007) Exploring the physics of Type II Supernovae. In: Antonelli LA et al (ed) The multicolored landscape of compact objects and their explosive origins. AIP Conference Series, vol 924. Melville, p 358

    Google Scholar 

  • Zampieri L, Colpi M, Shapiro SL, Wasserman I (1998) Supernova fallback and the emergence of a Black Hole. ApJ 505:876

    Article  ADS  Google Scholar 

  • Zampieri L, Pastorello A, Turatto M, Cappellaro E, Benetti S, Altavilla G et al (2003) Peculiar, low-luminosity Type II Supernovae: low-energy explosions in massive progenitors? MNRAS 338:711

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Maria Letizia Pumo and Andrea Pastorello for useful suggestions. The figures of this chapter were produced with Matplotlib, a 2D graphics package for Python.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Zampieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zampieri, L. (2017). Light Curves of Type II Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_26

Download citation

Publish with us

Policies and ethics