Skip to main content

Very Massive and Supermassive Stars: Evolution and Fate

  • Reference work entry
  • First Online:

Abstract

This chapter reviews the properties and evolution of very massive stars (M > 100 M ) in the context of recent stellar evolution models. At the end of the chapter, we summarize the properties, evolution, and fate of supermassive stars (M > 10, 000 M ). Since very massive stars have very large convective cores during the main sequence phase, their evolution is never far from a chemically homogeneous evolution, even without rotation-induced mixing. Their evolution is thus not so much affected by rotational mixing, but more by mass loss through strong stellar winds. All very massive stars at metallicities close to solar end their life as hydrogen-free Wolf-Rayet stars. At solar metallicity, mass loss is so strong that even if a star is born with several hundred solar masses, it will end its life with less than 50 M . This means that their fate will be similar to normal massive stars. At the metallicity of the Large Magellanic Cloud (LMC) and lower, on the other hand, mass loss is weaker and might allow stars to undergo pair-instability supernovae or pulsation pair-instability supernovae. These supernovae are expected to be very rare but very bright and able to explain a subset of slowly evolving super-luminous supernovae. Supermassive stars might be the progenitors of intermediate-mass or super massive black holes or explain anti-correlations between the abundance of specific chemical elements in star clusters. In rare circumstances they might explode due to a general relativistic instability. Supermassive stars formation and their evolution, however, are very uncertain and there is no solid evidence for their existence. If they exist, supermassive stars evolve close to the Eddington limit, and thus their mass loss is probably very strong and makes their fate similar to very massive stars.

This is a preview of subscription content, log in via an institution.

References

  • Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016a) Astrophysical implications of the binary black-hole merger GW150914. Astrophys J Lett 818:L22. doi:10.3847/2041-8205/818/2/L22, 1602.03846

  • Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016b) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116(24):241103. doi:10.1103/PhysRevLett.116.241103, 1606.04855

  • Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016c) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116(6):061102. doi:10.1103/PhysRevLett.116.061102, 1602.03837

  • Abel T, Bryan GL, Norman ML (2002a) The formation of the first star in the universe. Science 295:93–98. doi:10.1126/science.295.5552.93, arXiv:astro-ph/0112088

  • Abel T, Bryan GL, Norman ML (2002b) The formation of the first star in the universe. Science 295:93–98. doi:10.1126/science.1063991

    Article  ADS  Google Scholar 

  • Baraffe I, Heger A, Woosley SE (2001) On the stability of very massive primordial stars. Astrophys J 550:890–896. doi:10.1086/319808, astro-ph/0009410

  • Bennett ME, Hirschi R, Pignatari M, Diehl S, Fryer C, Herwig F, Hungerford A, Nomoto K, Rockefeller G, Timmes FX, Wiescher M (2012) The effect of 12C + 12C rate uncertainties on the evolution and nucleosynthesis of massive stars. Mon Not R Astron Soc 420:3047–3070. doi:10.1111/j.1365-2966.2012.20193.x, 1201.1225

  • Bond JR, Arnett WD, Carr BJ (1984) The evolution and fate of very massive objects. Astrophys J 280:825–847. doi:10.1086/162057

    Article  ADS  Google Scholar 

  • Bromm V, Coppi PS, Larson RB (1999) Forming the first stars in the universe: the fragmentation of primordial gas. Astrophys J Lett 527:L5–L8. doi:10.1086/312385, arXiv:astro-ph/9910224

  • Burrows A, Dessart L, Livne E, Ott CD, Murphy J (2007) Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation. Astrophys J 664:416–434. doi:10.1086/519161, arXiv:astro-ph/0702539

  • Chatzopoulos E, Wheeler JC (2012) Effects of rotation on the minimum mass of primordial progenitors of pair-instability supernovae. Astrophys J 748:42. doi:10.1088/0004-637X/748/1/42, 1201.1328

  • Chen KJ, Heger A, Woosley S, Almgren A, Whalen DJ, Johnson JL (2014) The general relativistic instability supernova of a supermassive population III star. Astrophys J 790:162. doi:10.1088/0004-637X/790/2/162, 1402.4777

  • Chieffi A, Limongi M (2013) Pre-supernova evolution of rotating solar metallicity stars in the mass range 13–120 Mo and their explosive yields. Astrophys J 764:21. doi:10.1088/0004-637X/764/1/21

    Article  ADS  Google Scholar 

  • Christlieb N, Bessell MS, Beers TC, Gustafsson B, Korn A, Barklem PS, Karlsson T, Mizuno-Wiedner M, Rossi S (2002) A stellar relic from the early milky way. Nature 419:904–906. doi:10.1038/nature01142, arXiv:astro-ph/0211274

  • Crowther PA (2001) Stellar winds from massive stars. In: Vanbeveren D (ed) The influence of binaries on stellar population studies, astrophysics and space science library, vol 264. Springer, p 215. ISBN:0792371046, arXiv:astro-ph/0010581

    Google Scholar 

  • Crowther PA, Schnurr O, Hirschi R, Yusof N, Parker RJ, Goodwin SP, Kassim HA (2010) The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Mo stellar mass limit. Mon Not R Astron Soc 408:731–751. doi:10.1111/j.1365-2966.2010.17167.x, 1007.3284

  • Crowther PA, Hirschi R, Walborn NR, Yusof N (2012) Very massive stars and the Eddington limit. In: Drissen L, Rubert C, St-Louis N, Moffat AFJ (eds) Proceedings of a Scientific Meeting in Honor of Anthony F. J. Moffat. Astronomical society of the pacific conference series, vol 465, p 196, 1209.6157

    Google Scholar 

  • de Jager C, Nieuwenhuijzen H, van der Hucht KA (1988) Mass loss rates in the Hertzsprung-Russell diagram. Astron Astrophys Suppl 72:259–289

    ADS  Google Scholar 

  • Denissenkov PA, Hartwick FDA (2014) Supermassive stars as a source of abundance anomalies of proton-capture elements in globular clusters. Mon Not R Astron Soc 437:L21–L25. doi:10.1093/mnrasl/slt133, 1305.5975

  • Denissenkov PA, VandenBerg DA, Hartwick FDA, Herwig F, Weiss A, Paxton B (2015) The primordial and evolutionary abundance variations in globular-cluster stars: a problem with two unknowns. Mon Not R Astron Soc 448:3314–3324. doi:10.1093/mnras/stv211, 1409.1193

  • Dessart L, O’Connor E, Ott CD (2012) The arduous journey to black hole formation in potential gamma-ray burst progenitors. Astrophys J 754:76. doi:10.1088/0004-637X/754/1/76, 1203.1926

  • Dessart L, Waldman R, Livne E, Hillier DJ, Blondin S (2013) Radiative properties of pair-instability supernova explosions. Mon Not R Astron Soc 428:3227–3251. doi:10.1093/mnras/sts269, 1210.6163

  • Eggenberger P, Meynet G, Maeder A, Hirschi R, Charbonnel C, Talon S, Ekström S (2007) The Geneva stellar evolution code. Astrophys Space Sci 263. doi:10.1007/s10509-007-9511-y

  • Ekström S, Meynet G, Chiappini C, Hirschi R, Maeder A (2008) Effects of rotation on the evolution of primordial stars. Astron Astrophys 489:685–698. doi:10.1051/0004-6361:200809633, 0807.0573

  • Ekström S, Georgy C, Eggenberger P, Meynet G, Mowlavi N, Wyttenbach A, Granada A, Decressin T, Hirschi R, Frischknecht U, Charbonnel C, Maeder A (2012) Grids of stellar models with rotation. I. Models from 0.8 to 120 solar masses at solar metallicity (Z = 0.014). Astron Astrophys 537:A146. doi:10.1051/0004-6361/201117751, 1110.5049

  • Eldridge JJ, Vink JS (2006) Implications of the metallicity dependence of Wolf-Rayet winds. Astron Astrophys 452:295–301. doi:10.1051/0004-6361:20065001, arXiv:astro-ph/0603188

  • Eldridge JJ, Izzard RG, Tout CA (2008) The effect of massive binaries on stellar populations and supernova progenitors. Mon Not R Astron Soc 384:1109–1118. doi:10.1111/j.1365-2966.2007.12738.x, 0711.3079

  • Figer DF (2005) An upper limit to the masses of stars. Nature 434:192–194

    Article  ADS  Google Scholar 

  • Fowler WA (1966) The stability of supermassive stars. Astrophys J 144:180. doi:10.1086/148594

    Article  ADS  Google Scholar 

  • Frebel A, Aoki W, Christlieb N (2005) Nucleosynthetic signatures of the first stars. Nature 434:871–873. doi:10.1038/nature03455

    Article  ADS  Google Scholar 

  • Fryer CL, Woosley SE, Heger A (2001) Pair-instability supernovae, gravity waves, and gamma-ray transients. Astrophys J 550:372–382. doi:10.1086/319719, arXiv:astro-ph/0007176

  • Georgy C, Ekström S, Meynet G, Massey P, Levesque EM, Hirschi R, Eggenberger P, Maeder A (2012) Grids of stellar models with rotation. II. WR populations and supernovae/GRB progenitors at Z = 0.014. Astron Astrophys 542:A29. doi:10.1051/0004-6361/201118340, 1203.5243

  • Georgy C, Ekström S, Eggenberger P, Meynet G, Haemmerlé L, Maeder A, Granada A, Groh JH, Hirschi R, Mowlavi N, Yusof N, Charbonnel C, Decressin T, Barblan F (2013) Grids of stellar models with rotation. III. Models from 0.8 to 120 MŁ  at a metallicity Z = 0.002. Astron Astrophys 558:A103. doi:10.1051/0004-6361/201322178, 1308.2914

  • Gräfener G, Hamann WR (2008) Mass loss from late-type WN stars and its Z-dependence. Very massive stars approaching the Eddington limit. Astron Astrophys 482:945–960. doi:10.1051/0004-6361:20066176, 0803.0866

  • Greif TH, Glover SCO, Bromm V, Klessen RS (2010) The first galaxies: chemical enrichment, mixing, and star formation. Astrophys J 716:510–520. doi:10.1088/0004-637X/716/1/510, 1003.0472

  • Hamann WR, Gräfener G, Liermann A (2006) The galactic WN stars. Spectral analyses with line-blanketed model atmospheres versus stellar evolution models with and without rotation. Astron Astrophys 457:1015–1031. doi:10.1051/0004-6361:20065052. arXiv:astro-ph/0608078

  • Heger A, Woosley SE (2002) The nucleosynthetic signature of population III. Astrophys J 567:532–543. doi:10.1086/338487, arXiv:astro-ph/0107037

  • Hirschi R (2007) Very low-metallicity massive stars: pre-SN evolution models and primary nitrogen production. Astron Astrophys 461:571–583. doi:10.1051/0004-6361:20065356, arXiv:astro-ph/0608170

  • Hirschi R, Meynet G, Maeder A (2004) Stellar evolution with rotation. XII. Pre-supernova models. Astron Astrophys 425:649–670. doi:10.1051/0004-6361:20041095, astro-ph/0406552

  • Hirschi R, Meynet G, Maeder A (2005) Stellar evolution with rotation. XIII. Predicted GRB rates at various Z. Astron Astrophys 443:581–591. doi:10.1051/0004-6361:20053329, arXiv:astro-ph/0507343

  • Kippenhahn R, Weigert A (1990) Stellar structure and evolution. Springer, Berlin

    Book  Google Scholar 

  • Kozyreva A, Gilmer M, Hirschi R, Fröhlich C, Blinnikov S, Wollaeger RT, Noebauer UM, van Rossum DR, Heger A, Even WP, Waldman R, Tolstov A, Chatzopoulos E, Sorokina E (2017) Fast evolving pair-instability supernova models: evolution, explosion, light curves. Mon Not R Astron Soc 464:2854–2865. doi:10.1093/mnras/stw2562, 1610.01086

  • Krumholz MR (2015) The formation of very massive stars. In: Vink JS (ed) Very massive stars in the local universe. Astrophysics and space science library, vol 412. Springer International Publishing, p 43. doi:10.1007/978-3-319-09596-7_3, 1403.3417

  • Maeder A (1980) The most massive stars in the galaxy and the LMC – quasi-homogeneous evolution, time-averaged mass loss rates and mass limits. Astron Astrophys 92:101–110

    ADS  Google Scholar 

  • Maeder A, Meynet G (2000) Stellar evolution with rotation. VI. The Eddington and Omega-limits, the rotational mass loss for OB and LBV stars. Astron Astrophys 361:159–166

    ADS  Google Scholar 

  • Maeder A, Georgy C, Meynet G, Ekström S (2012) On the Eddington limit and Wolf-Rayet stars. Astron Astrophys 539:A110. doi:10.1051/0004-6361/201118328, 1201.5013

  • Muijres LE, de Koter A, Vink JS, Krtička J, Kubát J, Langer N (2011) Predictions of the effect of clumping on the wind properties of O-type stars. Astron Astrophys 526:A32. doi:10.1051/0004-6361/201014290

    Article  Google Scholar 

  • Nugis T, Lamers HJGLM (2000) Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. Astron Astrophys 360:227–244

    ADS  Google Scholar 

  • O’Connor E, Ott CD (2011) Black hole formation in failing core-collapse supernovae. Astrophys J 730:70. doi:10.1088/0004-637X/730/2/70, 1010.5550

  • Oey MS, Clarke CJ (2005) Statistical confirmation of a stellar upper mass limit. Astrophys J Lett 620:L43–L46. doi:10.1086/428396, arXiv:astro-ph/0501135

  • Ohkubo T, Umeda H, Maeda K, Nomoto K, Suzuki T, Tsuruta S, Rees MJ (2006) Core-collapse very massive stars: evolution, explosion, and nucleosynthesis of population III 500–1000 M solar stars. Astrophys J 645:1352–1372. doi:10.1086/504578, astro-ph/0507593

  • Ott CD, Burrows A, Livne E, Walder R (2004) Gravitational waves from axisymmetric, rotating stellar core collapse. Astrophys J 600:834–864. doi:10.1086/379822, arXiv:astro-ph/0307472

  • Owocki SP (2015) Instabilities in the envelopes and winds of very massive stars. In: Vink JS (ed) Very massive stars in the local universe. Astrophysics and space science library, vol 412. Springer International Publishing, p 113. doi:10.1007/978-3-319-09596-7_5, 1403.6745

  • Portegies Zwart SF, Baumgardt H, Hut P, Makino J, McMillan SLW (2004) Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428:724–726. doi:10.1038/nature02448, astro-ph/0402622

  • Portegies Zwart SF, McMillan SLW, Gieles M (2010) Young massive star clusters. ARA&A 48:431–493. doi:10.1146/annurev-astro-081309-130834, 1002.1961

  • Rees MJ (1984) Black hole models for active galactic nuclei. ARA&A 22:471–506. doi:10.1146/annurev.aa.22.090184.002351

    Article  ADS  Google Scholar 

  • Salpeter EE (1955) The luminosity function and stellar evolution. Astrophys J 121:161. doi:10.1086/145971

    Article  ADS  Google Scholar 

  • Sander A, Hamann WR, Todt H (2012) The galactic WC stars. Stellar parameters from spectral analyses indicate a new evolutionary sequence. Astron Astrophys 540:A144. doi:10.1051/0004-6361/201117830, 1201.6354

  • Schneider FRN, Izzard RG, de Mink SE, Langer N, Stolte A, de Koter A, Gvaramadze VV, Hußmann B, Liermann A, Sana H (2014) Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: analyzing age-dependent stellar mass functions. Astrophys J 780:117. doi:10.1088/0004-637X/780/2/117, 1312.0607

  • Shapiro SL, Teukolsky SA (1983) Black holes, white dwarfs, and neutron stars: the physics of compact objects. Research supported by the National Science Foundation. Wiley-Interscience, New York, p 663

    Book  Google Scholar 

  • Shibata M, Sekiguchi Y, Uchida H, Umeda H (2016) Gravitational waves from supermassive stars collapsing to a supermassive black hole. PhysRevD 94(2):021501. doi:10.1103/PhysRevD.94.021501, 1606.07147

  • Stacy A, Greif TH, Bromm V (2010) The first stars: formation of binaries and small multiple systems. Mon Not R Astron Soc 403:45–60. doi:10.1111/j.1365-2966.2009.16113.x, 0908.0712

  • Sylvester RJ, Skinner CJ, Barlow MJ (1998) Silicate and hydrocarbon emission from galactic M supergiants. Mon Not R Astron Soc 301:1083–1094. doi:10.1046/j.1365-8711.1998.02078.x

    Article  ADS  Google Scholar 

  • Umeda H, Nomoto K (2002) Nucleosynthesis of zinc and iron peak elements in population III type II supernovae: comparison with abundances of very metal poor halo stars. Astrophys J 565:385–404. doi:10.1086/323946

    Article  ADS  Google Scholar 

  • van Loon JT, Groenewegen MAT, de Koter A, Trams NR, Waters LBFM, Zijlstra AA, Whitelock PA, Loup C (1999) Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC. Astron Astrophys 351:559–572, arXiv:astro-ph/9909416

    Google Scholar 

  • Vink JS (ed) (2015) Very massive stars in the local universe, astrophysics and space science library, vol 412. Springer International Publishing. doi:10.1007/978-3-319-09596-7, 1406.4836

  • Vink JS, de Koter A, Lamers HJGLM (2001) Mass-loss predictions for O and B stars as a function of metallicity. Astron Astrophys 369:574–588. doi:10.1051/0004-6361:20010127, arXiv:astro-ph/0101509

  • Vink JS, Muijres LE, Anthonisse B, de Koter A, Gräfener G, Langer N (2011) Wind modelling of very massive stars up to 300 solar masses. Astron Astrophys 531:A132. doi:10.1051/0004-6361/201116614, 1105.0556

  • Wheeler JC, Yi I, Höflich P, Wang L (2000) Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts. Astrophys J 537:810–823. doi:10.1086/309055, arXiv:astro-ph/9909293

  • Woosley SE (1993) Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys J 405:273–277

    Article  ADS  Google Scholar 

  • Woosley SE (2017) Pulsational pair-instability supernovae. Astrophys J 836:244. doi:10.3847/1538-4357/836/2/244, 1608.08939

  • Woosley SE, Heger A (2006) The progenitor stars of gamma-ray bursts. Astrophys J 637:914–921. doi:10.1086/498500

    Article  ADS  Google Scholar 

  • Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74:1015–1071

    Article  ADS  Google Scholar 

  • Yoon SC, Langer N (2005) Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astron Astrophys 443:643–648. doi:10.1051/0004-6361:20054030

    Article  ADS  Google Scholar 

  • Yoon SC, Dierks A, Langer N (2012) Evolution of massive population III stars with rotation and magnetic fields. Astron Astrophys 542:A113. doi:10.1051/0004-6361/201117769, 1201.2364

  • Yoshida T, Umeda H (2011) A progenitor for the extremely luminous Type Ic supernova 2007bi. Mon Not R Astron Soc 412:L78–L82. doi:10.1111/j.1745-3933.2011.01008.x, 1101.0635

  • Yusof N, Hirschi R, Meynet G, Crowther PA, Ekström S, Frischknecht U, Georgy C, Abu Kassim H, Schnurr O (2013) Evolution and fate of very massive stars. Mon Not R Astron Soc 433:1114–1132. doi:10.1093/mnras/stt794, 1305.2099

Download references

Acknowledgements

The author thanks his collaborators at the University of Geneva (C. Georgy, G. Meynet, A. Maeder, and S. Ekström) and Malaysia (N. Yusof) for their significant contributions to the results presented in this chapter. He acknowledges support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and from the ChETEC COST Action (CA16117), supported by COST (European Cooperation in Science and Technology). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n. 306901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Hirschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hirschi, R. (2017). Very Massive and Supermassive Stars: Evolution and Fate. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_120

Download citation

Publish with us

Policies and ethics