Skip to main content

Low- and Intermediate-Mass Stars

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Low- and intermediate-mass stars with masses less than about 8M are common inhabitants of galaxies throughout the Universe. These stars evolve through core hydrogen and helium burning and eventually end their lives as distended red giant stars that experience copious mass loss. Single stellar evolution predicts that the final fate of a low- and intermediate-mass star is a carbon-oxygen (C-O) white dwarf which does not experience any further nuclear burning. Low- and intermediate-mass stars produce substantial dust and gas, which may be enriched in the products of nucleosynthesis and plays an important role in the chemical evolution of galaxies. This chapter examines the theoretical evolution of low- and intermediate-mass stars from the main sequence to the asymptotic giant branch, which is the last nuclear burning phase for these stars. The chapter finishes with a brief discussion of the initial-final mass distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abia C, Domínguez I, Gallino R, Busso M, Masera S, Straniero O, de Laverny P, Plez B, Isern J (2002) s-process nucleosynthesis in carbon stars. ApJ 579:817–831

    Article  ADS  Google Scholar 

  • Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. ARA&A 47:481–522

    Article  ADS  Google Scholar 

  • Bastian N, Covey KR, Meyer MR (2010) A universal stellar initial mass function? A critical look at variations. ARA&A 48:339–389

    Article  ADS  Google Scholar 

  • Beck PG, Montalban J, Kallinger T, De Ridder J, Aerts C, García RA, Hekker S, Dupret MA, Mosser B, Eggenberger P, Stello D, Elsworth Y, Frandsen S, Carrier F, Hillen M, Gruberbauer M, Christensen-Dalsgaard J, Miglio A, Valentini M, Bedding TR, Kjeldsen H, Girouard FR, Hall JR, Ibrahim KA (2012) Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes. Nature 481:55–57

    Article  ADS  Google Scholar 

  • Bedding TR, Mosser B, Huber D, Montalbán J, Beck P, Christensen-Dalsgaard J, Elsworth YP, García RA, Miglio A, Stello D, White TR, De Ridder J, Hekker S, Aerts C, Barban C, Belkacem K, Broomhall AM, Brown TM, Buzasi DL, Carrier F, Chaplin WJ, di Mauro MP, Dupret MA, Frandsen S, Gilliland RL, Goupil MJ, Jenkins JM, Kallinger T, Kawaler S, Kjeldsen H, Mathur S, Noels A, Silva Aguirre V, Ventura P (2011) Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471:608–611

    Article  ADS  Google Scholar 

  • Bloecker T, Schoenberner D (1991) A 7-solar-mass AGB model sequence not complying with the core mass-luminosity relation. A&A 244:L43–L46

    ADS  Google Scholar 

  • Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29:547–650

    Article  ADS  Google Scholar 

  • Busso M, Gallino R, Wasserburg GJ (1999) Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and solar system formation. ARA&A 37:239–309

    Article  ADS  Google Scholar 

  • Cameron AGW, Fowler WA (1971) Lithium and the s-process in red-giant stars. ApJ 164:111–114

    Article  ADS  Google Scholar 

  • Clayton DD (1983) Principles of stellar evolution and nucleosynthesis. University of Chicago Press, Chicago

    Google Scholar 

  • Cummings JD, Kalirai JS, Tremblay PE, Ramirez-Ruiz E, Bergeron P (2016) An ultramassive 1.28 MŁ  white dwarf in NGC 2099. ApJ 820:L18

    Google Scholar 

  • De Smedt K, Van Winckel H, Karakas AI, Siess L, Goriely S, Wood PR (2012) Post-AGB stars in the SMC as tracers of stellar evolution: the extreme s-process enrichment of the 21 μm star J004441.04-732136.4. A&A 541:A67

    Google Scholar 

  • Dobbie PD, Napiwotzki R, Lodieu N, Burleigh MR, Barstow MA, Jameson RF (2006) On the origin of the ultramassive white dwarf GD50. MNRAS 373:L45–L49

    Article  ADS  Google Scholar 

  • Dupree AK (1986) Mass-loss from cool stars. ARA&A 24:377–420

    Article  ADS  Google Scholar 

  • Eggleton P (2006) Evolutionary processes in binary and multiple stars. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ferrario L, Wickramasinghe D, Liebert J, Williams KA (2005) The open-cluster initial-final mass relationship and the high-mass tail of the white dwarf distribution. MNRAS 361:1131–1135

    Article  ADS  Google Scholar 

  • Fishlock CK, Karakas AI, Lugaro M, Yong D (2014) Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity. ApJ 797:44

    Article  ADS  Google Scholar 

  • Frogel JA, Mould J, Blanco VM (1990) The asymptotic giant branch of Magellanic Cloud clusters. ApJ 352:96–122

    Article  ADS  Google Scholar 

  • Frost CA, Cannon RC, Lattanzio JC, Wood PR, Forestini M (1998) The brightest carbon stars. A&A 332:L17–L20

    ADS  Google Scholar 

  • Gallart C, Zoccali M, Aparicio A (2005) The adequacy of stellar evolution models for the interpretation of the color-magnitude diagrams of resolved stellar populations. ARA&A 43:387–434

    Article  ADS  Google Scholar 

  • Gänsicke BT, Koester D, Girven J, Marsh TR, Steeghs D (2010) Two white dwarfs with oxygen-rich atmospheres. Science 327:188

    Article  ADS  Google Scholar 

  • Gesicki K, Zijlstra AA, Hajduk M, Szyszka C (2014) Accelerated post-AGB evolution, initial-final mass relations, and the star-formation history of the Galactic bulge. A&A 566:A48

    Article  ADS  Google Scholar 

  • Habing HJ, Olofsson H (2004) Asymptotic giant branch stars. Springer, New York

    Book  Google Scholar 

  • Hansen CJ, Kawaler SD, Trimble V (2004) Stellar interiors: physical principles, structure, and evolution. Springer, New York

    Book  Google Scholar 

  • Herwig F (2005) Evolution of asymptotic giant branch stars. ARA&A 43:435–479

    Article  ADS  Google Scholar 

  • Hillebrandt W, Niemeyer JC (2000) Type IA supernova explosion models. ARA&A 38:191–230

    Article  ADS  Google Scholar 

  • Iben I Jr (1967) Stellar evolution within and off the main sequence. ARA&A 5:571

    Article  ADS  Google Scholar 

  • Iliadis C (2015) Nuclear physics of stars, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • José J, Hernanz M (1998) Nucleosynthesis in classical novae: CO versus ONe white dwarfs. ApJ 494:680–690

    Article  ADS  Google Scholar 

  • Kalirai JS, Hansen BMS, Kelson DD, Reitzel DB, Rich RM, Richer HB (2008) The initial-final mass relation: direct constraints at the low-mass end. ApJ 676:594–609

    Article  ADS  Google Scholar 

  • Käppeler F, Gallino R, Bisterzo S, Aoki W (2011) The s process: nuclear physics, stellar models, and observations. Rev Mod Phys 83:157–194

    Article  ADS  Google Scholar 

  • Karakas AI (2014) Helium enrichment and carbon-star production in metal-rich populations. MNRAS 445:347–358

    Article  ADS  Google Scholar 

  • Karakas AI, Lattanzio JC (2003) AGB stars and the observed abundance of neon in planetary nebulae. PASA 20:393–400

    Article  ADS  Google Scholar 

  • Karakas AI, Lattanzio JC (2014) The Dawes Review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. PASA 31:e030

    Article  ADS  Google Scholar 

  • Karakas AI, Lattanzio JC, Pols OR (2002) Parameterising the third dredge-up in asymptotic giant branch stars. PASA 19:515–526

    Article  ADS  Google Scholar 

  • Kippenhahn R, Weigert A, Weiss A (2012) Stellar structure and evolution, 2nd edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Maoz D, Mannucci F, Nelemans G (2014) Observational clues to the progenitors of type Ia supernovae. ARA&A 52:107–170

    Article  ADS  Google Scholar 

  • McDonald I, Zijlstra AA (2015) Mass-loss on the red giant branch: the value and metallicity dependence of Reimers’ η in globular clusters. MNRAS 448:502–521

    Article  ADS  Google Scholar 

  • McKee CF, Ostriker EC (2007) Theory of star formation. ARA&A 45:565–687

    Article  ADS  Google Scholar 

  • Mereghetti S, Tiengo A, Esposito P, La Palombara N, Israel GL, Stella L (2009) An ultramassive, fast-spinning white dwarf in a peculiar binary system. Science 325:1222

    Article  ADS  Google Scholar 

  • Miglio A, Brogaard K, Stello D, Chaplin WJ, D’Antona F, Montalbán J, Basu S, Bressan A, Grundahl F, Pinsonneault M, Serenelli AM, Elsworth Y, Hekker S, Kallinger T, Mosser B, Ventura P, Bonanno A, Noels A, Silva Aguirre V, Szabo R, Li J, McCauliff S, Middour CK, Kjeldsen H (2012) Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819. MNRAS 419:2077–2088

    Article  ADS  Google Scholar 

  • Nomoto K (1984) Evolution of 8–10 solar mass stars toward electron capture supernovae. I – formation of electron-degenerate O + NE + MG cores. ApJ 277:791–805

    Article  ADS  Google Scholar 

  • Paczyński B (1970) Evolution of single stars. I. Stellar evolution from main sequence to white dwarf or carbon ignition. Acta Astronomica 20:47

    Google Scholar 

  • Pignatari M, Herwig F, Hirschi R, Bennett M, Rockefeller G, Fryer C, Timmes FX, Ritter C, Heger A, Jones S, Battino U, Dotter A, Trappitsch R, Diehl S, Frischknecht U, Hungerford A, Magkotsios G, Travaglio C, Young P (2016) NuGrid stellar data set. I. Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01. ApJS 225:24

    Google Scholar 

  • Pinsonneault M (1997) Mixing in stars. ARA&A 35:557–605

    Article  ADS  Google Scholar 

  • Pols OR, Tout CA, Schroder KP, Eggleton PP, Manners J (1997) Further critical tests of stellar evolution by means of double-lined eclipsing binaries. MNRAS 289:869–881

    Article  ADS  Google Scholar 

  • Reimers D (1975) Circumstellar absorption lines and mass loss from red giants. Mémoires of the Société Royale des Sciences de Liège 8:369–382

    ADS  Google Scholar 

  • Romero AD, Campos F, Kepler SO (2015) The age-metallicity dependence for white dwarf stars. MNRAS 450:3708–3723

    Article  ADS  Google Scholar 

  • Rubin KHR, Williams KA, Bolte M, Koester D (2008) The white dwarf population in NGC 1039 (M34) and the white dwarf initial-final mass relation. AJ 135:2163–2176

    Article  ADS  Google Scholar 

  • Salaris M, Cassisi S (2005) Evolution of stars and stellar populations. Wiley, Hoboken

    Book  Google Scholar 

  • Siess L (2010) Evolution of massive AGB stars. III. The thermally pulsing super-AGB phase. A&A 512:A10

    Google Scholar 

  • Sneden C, Cowan JJ, Gallino R (2008) Neutron-capture elements in the early galaxy. ARA&A 46:241–288

    Article  ADS  Google Scholar 

  • Stancliffe RJ, Tout CA, Pols OR (2004) Deep dredge-up in intermediate-mass thermally pulsing asymptotic giant branch stars. MNRAS 352:984–992. astro-ph/0405150

    Google Scholar 

  • Stancliffe RJ, Fossati L, Passy JC, Schneider FRN (2015) Confronting uncertainties in stellar physics: calibrating convective overshooting with eclipsing binaries. A&A 575:A117

    Article  ADS  Google Scholar 

  • Sterling NC, Dinerstein HL (2008) The abundances of light neutron-capture elements in planetary nebulae. II. s-process enrichments and interpretation. ApJS 174:158–201

    Google Scholar 

  • Straniero O, Cristallo S, Piersanti L (2014) Heavy elements in globular clusters: the role of asymptotic giant branch stars. ApJ 785:77

    Article  ADS  Google Scholar 

  • van Loon JT, Zijlstra AA, Groenewegen MAT (1999) Luminous carbon stars in the magellanic clouds. A&A 346:805–810

    ADS  Google Scholar 

  • van Winckel H (2003) Post-AGB stars. ARA&A 41:391–427

    Article  ADS  Google Scholar 

  • Ventura P, Di Criscienzo M, Carini R, D’Antona F (2013) Yields of AGB and SAGB models with chemistry of low- and high-metallicity globular clusters. MNRAS 431:3642–3653

    Article  ADS  Google Scholar 

  • Wallerstein G, Knapp GR (1998) Carbon stars. ARA&A 36:369–434

    Article  ADS  Google Scholar 

  • Weiss A, Ferguson JW (2009) New asymptotic giant branch models for a range of metallicities. A&A 508:1343–1358

    Article  ADS  Google Scholar 

  • Werner K, Herwig F (2006) The elemental abundances in bare planetary nebula central stars and the shell burning in AGB stars. Publ Astron Soc Pac 118:183–204

    Article  ADS  Google Scholar 

  • Williams KA, Bolte M, Koester D (2009) Probing the lower mass limit for supernova progenitors and the high-mass end of the initial-final mass relation from white dwarfs in the open cluster M35 (NGC 2168). ApJ 693:355–369

    Article  ADS  Google Scholar 

  • Willson LA (2000) Mass-loss from cool stars: impact on the evolution of stars and stellar populations. ARA&A 38:573–611

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda I. Karakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karakas, A.I. (2017). Low- and Intermediate-Mass Stars. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_117

Download citation

Publish with us

Policies and ethics