Skip to main content

Coexistence in Cold Waters: Animal Forests in Seaweed-Dominated Habitats in Southern High-Latitudes

  • Reference work entry
  • First Online:
Marine Animal Forests

Abstract

Coexistence between species plays an important role in structuring marine benthic communities but is often underestimated in current ecological studies. In the cold-water ecosystem, such as Chilean fjord/channels and Antarctic areas, animal forests are dominant on rocky substrates and exist among dense macroalgal forests as well as encrusting coralline algae. The distribution patterns of both animal and macroalgal forests are influenced by the topography of the rocky wall, where animal forests formed by trees- and mound-like growth forms become dominant with an increasing degree of inclination. The macroalgal forest tends to decrease from the inclined toward the overhanging profile. Along a latitudinal gradient, very abundant gregarious animal forests (e.g., mytilids ) on the subantarctic shallow rocky substrate tend to decrease in their abundance and distribution toward the rocky substrate of the Antarctic shallow areas. A contrasting pattern emerges regarding clonal animal forests (e.g., sponges), where dense assemblages of clonal growth forms are dominant in the Antarctic rocky substrate and tend to decrease toward the southern tip of South America. In both the Chilean fjord and channels and Antarctic ecosystems, the animal forests are key elements in the seascape as they have great potential as a tourist attraction and also provide important ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjeroud M, Kayal M, Penin L. Importance of recruitment processes in the dynamics and resilience of coral reef assemblages. Marine animal forests: The ecology of benthic biodiversity hotspots. 2015;1–21.

    Google Scholar 

  • Andrade C, Ríos C, Gerdes D, Brey T. Trophic structure of shallow-water benthic communities in the sub-Antarctic Strait Magellan. Polar Biol. 2016;1–17. Available from doi: 10.1007/s00300-016-1895-0.

    Google Scholar 

  • Arntz WE, Ríos C. Magellan-Antarctic: ecosystems that drifted apart. Sci Mar. 1999;63:1–518.

    Google Scholar 

  • Arntz WE, Thatje S, Gerdes D, Gili JM, Gutt J, Jacob U, Montiel A, Orejas C, Teixidó N. The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Sci Mar. 2005;69:237–69.

    Article  Google Scholar 

  • Aronson R, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seible BA. Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst. 2007;3:129–54.

    Article  Google Scholar 

  • Ávila E, Blancas-Gallangos NI, Riosmena-Rodríguez R, Paul-Chávez L. Sponges associated with Sargassum spp. (Phaeophyceae: Fucales) from the south-western Gulf of California. J Mar Biol Assoc UK. 2010;90:193–202.

    Article  Google Scholar 

  • Barnes DKA, Neutel AM. Severity of seabed spatial competition decreases towards the poles. Curr Biol. 2016;26(8):R317–8.

    Article  CAS  PubMed  Google Scholar 

  • Barnes RSK, Calow PP, Olive PJW, Golding DW, Spicer JI. The invertebrates: a synthesis. Chichester: Wiley; 2009.

    Google Scholar 

  • Bell JJ, Barnes DK. The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: vertical cliff surfaces. Divers Distrib. 2000;6(6):283–303.

    Article  Google Scholar 

  • Berke SK, Jablonski D, Krug AZ, Valentine JW. Origination and immigration drive latitudinal gradients in marine functional diversity. PLoS One. 2014;9(7):e101494.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boudouresque CF, Blanfuné A, Harmelin-Vivien M, Personnic S, Ruitton S, Thibaut T, Verlaque M. Where seaweed forests meet animal forests: the examples of macroalgae in coral reefs and the mediterranean coralligenous ecosystem. Marine animal forests: the ecology of benthic biodiversity hotspots. Switzerand: Springer; 2016.

    Google Scholar 

  • Brambati A, Fontolan G, Simeoni U. Recent sediments and sedimentological processes in the Strait of Magellan. Boll Oceanologia Teor Appl. 1991;9(2–3):217–59.

    Google Scholar 

  • Bulleri F. Facilitation research in marine systems: state of the art, emerging patterns and insights for future developments. J Ecol. 2009;97:1121–30.

    Article  Google Scholar 

  • Buss LW, Jackson JBC. Competitive networks: Nontransitive competitive relationships in cryptic coral reefs environments. Am Nat. 1979;113:223–34.

    Article  Google Scholar 

  • Cárdenas CA, Montiel A. The influence of depth and substrate inclination on sessile assemblages in subantarctic rocky reefs (Magellan region). Polar Biol. 2015;38(10):1631–44.

    Article  Google Scholar 

  • Cárdenas CA, Davy SK, Bell JJ. Correlations between algal abundance, environmental variables and sponge distribution patterns on southern hemisphere temperate rocky reefs. Aquat Biol. 2012;16:229–39.

    Article  Google Scholar 

  • Cárdenas CA, Davy SK, Bell JJ. Influence of canopy-forming algae on temperate sponge assemblages. J Mar Biol Assoc UK. 2016a;96(2):315–61.

    Article  Google Scholar 

  • Cárdenas CA, Newcombe EM, Hajdu E, Gonzalez-Aravena M, Geange SW, Bell JJ. Sponge richness on algae-dominated rocky reefs in the western Antarctic Peninsula and the Magellan Strait. Polar Res. 2016b;35:30532.

    Article  Google Scholar 

  • Carranza A, Defeo O, Beck M, Castilla JC. Linking fisheries management and conservation in bioengineering species: the case of south American mussels (Mytilidae). Rev Fish Biol Fish. 2009;19(3):349–66.

    Article  Google Scholar 

  • Connell JH, Keough MJ. Disturbance and patch dynamics of subtidal marine animals on hard substrata. In: Pickett STA, White PS, editors. The ecology of natural disturbance and patch dynamics. Orlando: Academic Press Harcout Brace Javanovich, Publishers; 1985.

    Google Scholar 

  • Duggins DO, Eckman JE. Is kelp detritus a good food for suspension feeders? Effects of kelp species, age and secondary metabolites. Mar Biol. 1997;128:489–95.

    Article  Google Scholar 

  • Fowler-Walker MJ, Gillanders BM, Connell SD, Irving AD. Patterns of association between canopy-morphology and understorey assemblages across temperate Australia. Estuar Coast Shelf Sci. 2005;63(1):133–41.

    Article  Google Scholar 

  • Försterra G, Häussermann V, Lüter C. Mass occurrence of the recent brachiopod Magellania venosa (Terebratellidae) in the fjords Comau and Reñihué, northern Patagonia, Chile. Mar Ecol. 2008; 29:342–47.

    Google Scholar 

  • Gazeau F, Parker LM, Comeau S, Gattuso JP, O’Connor WA, Martin S, Pörtner H-O, Ross PM. Impacts of ocean acidification on marine shelled molluscs. Mar Biol. 2013;160(8):2207–45.

    Article  CAS  Google Scholar 

  • Gerdes D, Klages M, Arntz WE, Herman RL, Galéron J, Hain S. Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biol. 1992;12(2):291–301.

    Article  Google Scholar 

  • Gili JM, Coma R, Orejas C, López-González PJ, Zabala M. Are Antarctic suspension-feeding communities different from those elsewhere in the world? Berlin/Heidelberg: Springer; 2002. p. 104–16.

    Google Scholar 

  • Gili JM, Arntz WE, Palanques A, Orejas C, Clarke A, Dayton PK, Isla E, Teixido N, Rossi S, López-González PJ. A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep Sea Res II: Top Stud Oceanogr. 2006;53(8):1029–52.

    Article  Google Scholar 

  • Gray JS. Antarctic marine benthic biodiversity in a world-wide latitudinal context. Polar Biol. 2001;24:633–41.

    Article  Google Scholar 

  • Greene CH, Schoener A, Corets E. Succession on marine hard substrata: the adaptive significance of solitary and colonial strategies in temperate fouling communities. Mar Ecol Prog Ser. 1983;13(2):121–9.

    Article  Google Scholar 

  • Gutiérrez JL, Jones CG, Strayer DL, Iribarne O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos. 2003;101(1):79–90.

    Article  Google Scholar 

  • Gutt J, Hosie G, Stoddart M. Marine life in the Antarctic. Life in the world’s oceans: diversity, distribution, and abundance. 1st ed. Oxford: Blackwell Publishing; 2010. p. 203–20.

    Book  Google Scholar 

  • Gutt J, Cummings V, Dayton PK, Isla E, Jentsch A, Schiaparelli S. Antarctic Marine animal forests: three-dimensional communities in Southern Ocean ecosystems. Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Switzerand. 2016 doi: 10.1007/978-3-319-17001-5_8-1.

    Google Scholar 

  • Hastings A, Byers JE, Crooks JA, Cuddington K, Jones, CG, Lambrinos JG, … Wilson WG. Ecosystem engineering in space and time. Ecol Lett. 2007;10(2):153–64.

    Google Scholar 

  • Hulton NR, Purves RS, McCulloch RD, Sugden DE, Bentley MJ. The last glacial maximum and deglaciation in southern south America. Quat Sci Rev. 2002;21(1):233–41.

    Article  Google Scholar 

  • Jackson JBC. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat. 1977;118:743–67.

    Article  Google Scholar 

  • Jackson JBC. Morphological strategies of sessile animals biology and systematics of colonial organisms. London: Academic; 1979. p. 499–555.

    Google Scholar 

  • Jackson JB. Distribution and ecology of clonal and aclonal benthic invertebrates. In: Jackson JBC, Buss W, Cook RE, Ashmun JW editors. Population biology and evolution of clonal organisms. 1985;297–355.

    Google Scholar 

  • Jax K. Function and “functioning” in ecology: what does it mean? Oikos. 2005;111(3):641–8.

    Article  Google Scholar 

  • John DM, Hawkins SJ, Price JH. Plant-animal interactions in the marine benthos (no. 46). Oxford: Oxford University Press; 1992.

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. In Ecosystem management. New York: Springer; 1994. p. 130–47.

    Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM. Diet of worms emended: an update of polychaete feeding guilds. Ann Rev Mar Sci. 2015;7:497–520.

    Article  PubMed  Google Scholar 

  • Keith DA, Rodríguez JP, Rodríguez-Clark KM, Nicholson E, Aapala K, Alonso A, et al. Scientific foundations for an IUCN red list of ecosystems. PLoS One. 2013;8(5):e62111. doi:10.1371/journal.pone.0062111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiel S, Tyler PA. Chemosynthetically-driven ecosystems in the deep sea. In The vent and seep biota. Dordrecht: Springer; 2010.

    Google Scholar 

  • McClintock JB, Angus RA, McDonald MR, Amsler CD, Catledge SA, Vohra YK. Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarct Sci. 2009;21(5):449–56.

    Article  Google Scholar 

  • Miller RJ, Etter RJ. Rock walls: small-scale diversity hotspots in the subtidal Gulf of Maine. Mar Ecol Prog Ser. 2011;425:153–65.

    Article  Google Scholar 

  • Montiel A, Gerdes D, Arntz WE. Distributional patterns of shallow-water polychaetes in the Magellan region: a zoogeographical and ecological synopsis. Sci Mar. 2005;69(S2):123–33.

    Article  Google Scholar 

  • Newcombe EM, Cárdenas CA, Geange SW. Green sea urchins structure invertebrate and macroalgal communities in the Magellan Strait, southern Chile. Aquat Biol. 2012;15:135–44.

    Article  Google Scholar 

  • Norderhaug KM, Christie HC. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Mar Biol Res. 2009;5:515–528.

    Article  Google Scholar 

  • Orejas C, Gili JM, Arntz W, Ros JD, López P, Teixidó N, Filipe P. Benthic suspension feeders, key players in Antarctic marine ecosystems? Contrib Sci. 2000;1:299–311.

    Google Scholar 

  • Palumbi SR. Spatial variation in an algal-sponge commensalism and the evolution of ecological interactions. Am Nat. 1985;126:267–75.

    Article  Google Scholar 

  • Pimm SL. Complexity and stability: another look at MacArthur’s original hypothesis. Oikos. 1979;33:351–7.

    Article  Google Scholar 

  • Raguá-Gil JM, Gutt J, Clarke A, Arntz WE. Antarctic shallow-water mega-epibenthos: shaped by circumpolar dispersion or local conditions? Mar Biol. 2004;144(5):829–39.

    Article  Google Scholar 

  • Ríos C, Gerdes D. Ensamble bentónico epifaunístico de un campo intermareal de bloques y cantos en Bahía Laredo, Estrecho de Magallanes. An Inst Patagonia Cienc Nat. 1997;25:47–55.

    Google Scholar 

  • Ríos C, Arntz WE, Gerdes D, Mutschke E, Montiel A. Spatial and temporal variability of the benthic assemblages associated to the holdfasts of the kelp Macrocystis pyrifera in the Straits of Magellan. Chil Pol Biol. 2007;31(1):89–100.

    Article  Google Scholar 

  • Rossi S. The destruction of the ‘animal forests’ in the oceans: towards an over-simplification of the benthic ecosystems. Ocean Coast Manag. 2013;84:77–85.

    Article  Google Scholar 

  • Roy K, Jablonski D, Valentine JW. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proc R Soc Lond B: Biol Sci. 2000;267(1440):293–9.

    Article  CAS  Google Scholar 

  • Salcedo-Castro J, Montiel A, Jara B, Vásquez O. Influence of a glacier melting cycle on the seasonal hydrographic conditions and sediment flux in a subantarctic glacial fjord. Estuaries Coast. 2015;38(1):24–34.

    Article  CAS  Google Scholar 

  • Setti M, Veniale F. Bottom sediments in the Strait of Magellan mineralogy of fine fraction (<62 m). Boll Oceanologia Teor Appl. 1991;9:193–201.

    Google Scholar 

  • Siegfried WR, Hockey PAR, Branch GM. The exploitation of intertidal and subtidal biotic resources of rocky shores in Chile and South Africa: an overview. In: Siegfried WR, editor. Rocky shores: exploitation in Chile and south Africa. 103 Berlin: Springer Science; 1994. p. 1–15.

    Chapter  Google Scholar 

  • Silva N, Vargas CA, Prego R. Land–ocean distribution of allochthonous organic matter in surface sediments of the Chiloé and Aysén interior seas (Chilean Northern Patagonia). Cont Shelf Res. 2011;31(3):330–9.

    Article  Google Scholar 

  • Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol. 2013;3:4016–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res. 2012;79:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Steneck RS, Dethier MN. A functional group approach to the structure of algal-dominated communities. Oikos. 1994;69:476–98.

    Article  Google Scholar 

  • Teixidó N, Garrabou J, Gutt J, Arntz WE. Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms. Mar Ecol Prog Ser. 2004;278:1–16.

    Article  Google Scholar 

  • Teixidó N, Garrabou J, Gutt J, Arntz WE. Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems. 2007;10(1):143–58.

    Article  Google Scholar 

  • Thomson SN, Brandon MT, Tomkin JH, Reiners PW, Vásquez C, Wilson NJ. Glaciation as a destructive and constructive control on mountain building. Nature. 2010;467(7313):313–7.

    Article  CAS  PubMed  Google Scholar 

  • Vrijenhoek RC. Genetics and evolution of deep-sea chemosynthetic bacteria and their invertebrate 551 hosts. In The vent and seep biota. Dordrecht: Springer; 2010. p. 15–49.

    Google Scholar 

  • Willenz Ph, Hajdu E, Desqueyroux-Fáundez R, Lôbo-Hajdu G, Carvalho MS, Azevedo F, Klautau M. Sponges (Phylum Porifera). In Häusserman V, Försterra G, editors. Field identification guide for the macrobenthic invertebrates of the Chilean fjord region. Natur in Focus and Santiago; 2009.

    Google Scholar 

  • Wood R. Reef evolution. Oxford University Press on Demand; Oxford: Oxford Univ. Press ot New York; 1999. 414 pp.

    Google Scholar 

  • Worm B, Karez R. Competition, coexistence and diversity on rocky shores. In Competition and coexistence. Berlin/Heidelberg: Springer; 2002. p. 133–63.

    Google Scholar 

  • Wright JT, Benkendorff K, Davis AR. Habitat associated differences in temperate sponge assemblages: the importance of chemical defense. J Exp Mar Biol Ecol. 1997;213:199–213.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank our colleagues that have contributed during fieldwork activities in the Antarctic and subantarctic. We also thank Dr. Schories, Dr. Gulliksen, and M.Sc. Hüne for providing some of the underwater pictures for this chapter. We also thank, M.A. Kawalle for her time and commentaries, which have improved our chapter. Some fieldwork activities that has allowed the authors to collect data and observations of Antarctic and Subantarctic Marine Forest have been supported by CONICYT/FONDECYT/INACH/INICIACION/ #11150129 awarded to CAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Américo Montiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Cárdenas, C.A., Montiel, A. (2017). Coexistence in Cold Waters: Animal Forests in Seaweed-Dominated Habitats in Southern High-Latitudes. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-21012-4_50

Download citation

Publish with us

Policies and ethics