Skip to main content

Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns

  • Reference work entry
  • First Online:
Marine Animal Forests

Abstract

This chapter reviews the major known monospecific and multispecific sponge aggregations in the world’s oceans. They are shown to occur from the intertidal to abyssal depths, in tropical, temperate, and high latitudes and sometimes to create spectacular formations, such as glass sponge reefs, lithistid reef-like fields, and carnivorous sponge grounds. Sponge aggregations are recognized as singular vulnerable habitats that deserve special research attention and legal protection. However, this review reveals that there is only a poor and fragmentary understanding of the main biological, environmental, and geochemical factors that favor and maintain these systems, including the food supply, which is fundamental knowledge. There is also a particular lack of information regarding reproductive biology, growth rates, life spans, and the main factors causing mortality, all crucial drivers for understanding population and community dynamics and for developing conservation strategies. The sponge aggregations have been shown to increase the structural complexity of the habitats, attracting a larger variety of organisms and locally enhancing biodiversity. From the very few cases in which sponge biomass and sponge physiology have been reliably approached jointly, phenomenal fluxes of matter and energy have been inferred. Through their benthic-pelagic coupling, some of the densest sponge aggregations have a significant local or regional impact on major biogeochemical cycles and food webs. Physical damage and habitat destruction derived from man-driven activities along with epidemic diseases facilitated by global environmental alterations emerge as major threats to the future of the sponge aggregations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arellano S, Lee O, Lafi F, Yang J, Wang Y, Young C, et al. Deep sequencing of Myxilla (Ectyomyxilla) methanophila, an epibiotic sponge on cold-seep tubeworms, reveals methylotrophic, thiotrophic, and putative hydrocarbon-degrading microbial associations. Microb Ecol. 2013;65(2):450–61. doi:10.1007/s00248-012-0130-y.

    Article  CAS  PubMed  Google Scholar 

  • Barthel D, Gutt J. Sponge associations in the eastern Weddell Sea. Antarct Sci. 1992;4(2):137–50.

    Article  Google Scholar 

  • Beazley L, Kenchington E, Yashayaev I, Murillo FJ. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. Deep-Sea Res I. 2015;98:102–14.

    Article  Google Scholar 

  • Beazley LI, Kenchington EL, Murillo FJ, Sacau MDM. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J Mar Sci. 2013;70(7):1471–90. doi:10.1093/icesjms/fst124.

    Article  Google Scholar 

  • Becking LE, Cleary DFR, de Voogd NJ. Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau. Indonesia Mar Ecol Prog Ser. 2013;481:105–20. doi:10.3354/meps10155.

    Article  Google Scholar 

  • Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS. Could some coral reefs become sponge reefs as our climate changes? Glob Chang Biol. 2013;19:2613. doi:10.1111/gcb.12212.

    Article  PubMed  Google Scholar 

  • Brandt A, Gooday AJ, Brandao SN, Brix S, Brokeland W, Cedhagen T, et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature. 2007;447(7142):307–11.

    Article  CAS  PubMed  Google Scholar 

  • Brown R. 2015. Reproduction and genetic structure in a reef-forming glass sponge, Aphrocallistes vastus. MSc Thesis, University of Alberta. https://era.library.ualberta.ca/files/n870zt81x#.VtaVnK2DNTo.

  • Chu JWF, Maldonado M, Yahel G, Leys SP. Glass sponge reefs as a silicon sink. Mar Ecol Prog Ser. 2011;441:1–14.

    Article  CAS  Google Scholar 

  • Conway KW, Barrie JV, Austin WC, Luternauer JL. Holocene sponge bioherms on the western Canadian continental shelf. Cont Shelf Res. 1991;11(8–10):771–90.

    Article  Google Scholar 

  • Conway KW, Krautter M, Barrie JV, Whitney F, Thomson RE, Reiswig H, et al. Sponge reefs in the Queen Charlotte Basin, Canada: controls on distribution, growth and development. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin: Springer; 2005. p. 605–21.

    Chapter  Google Scholar 

  • Dayton PK. Interdecadal variation in an Antarctic sponge and its predator from oceanographic climate shifts. Science. 1989;245:1484–6.

    Article  CAS  PubMed  Google Scholar 

  • Dayton PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, et al. Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS One. 2013;8(2):e56939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.

    Article  PubMed  Google Scholar 

  • Diaz MC, Rützler K. Biodiversity and abundance of sponges in Caribbean mangrove: indicators of environmental quality. Smithson Contrib Mar Sci. 2009;38:151–72.

    Article  Google Scholar 

  • Diaz MC. Mangrove and coral reef sponge faunas: untold stories about shallow water Porifera in the Caribbean. Hydrobiologia. 2012;687(1):179–90. doi:10.1007/s10750-011-0952-5.

    Article  CAS  Google Scholar 

  • Dohrmann M, Göcke C, Reed J, Janussen D. Integrative taxonomy justifies a new genus, Nodastrella gen. nov., for North Atlantic “Rossella” species (Porifera: Hexactinellida: Rossellidae). Zootaxa. 2012;3383:1–13.

    Article  Google Scholar 

  • Downey RV, Griffiths HJ, Linse K, Janussen D. Diversity and distribution patterns in high southern latitude sponges. PLoS One. 2012;7(7):e41672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekins M, Erpenbeck D, Hall K, Wörheide G, Hooper JNA. Staying well connected: lithistid sponges on seamounts. J Mar Biol Assoc UK. 2016;96(2):437–451. doi:10.1017/S0025315415000831.

    Google Scholar 

  • Ellison AM, Farnsworth EJ, Twilley RR. Facultative mutualism between red mangroves and root-fouling sponges in Belizean mangal. Ecology. 1996;77(8):2431–44.

    Article  Google Scholar 

  • Fallon SJ, James K, Norman R, Kelly M, Ellwood MJ. A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges. Nucl Inst Methods Phys Res B. 2010;268(7–8):1241–3.

    Article  CAS  Google Scholar 

  • FAO. Report of the technical consultation on international guidelines for the management of deep-sea fisheries in the high seas Rome: Food and Agriculture Organization of the United Nations. 2009. Report no. 881.

    Google Scholar 

  • Fillinger L, Janussen D, Lundälv T, Richter C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr Biol. 2013;23(14):1330–4. doi:10.1016/j.cub.2013.05.051.

    Article  CAS  PubMed  Google Scholar 

  • Gerdes D, Klages M, Arntz WE, Herman RL, Galéron J, Hain S. Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biol. 1992;12(2):291–301. doi:10.1007/bf00238272.

    Article  Google Scholar 

  • Ghiold J. The sponges that spanned Europe. New Sci. 1991;129(1754):58–62.

    Google Scholar 

  • Göcke C, Janussen D. Sponge assemblages of the deep Weddell Sea: ecological and zoogeographic results of ANDEEP I–III and SYSTCO I expeditions. Polar Biol. 2013;36(7–2):1059–68.

    Article  Google Scholar 

  • Guerra-Castro EJ, Cruz-Motta JJ. Ecology of fouling assemblages associated with mangrove’s roots: an artificial substrate for manipulative experiments. J Exp Mar Biol Ecol. 2014;457:31–40. doi:10.1016/j.jembe.2014.03.017.

    Article  Google Scholar 

  • Gutt J, Schickan T. Epibiontic relationships in the Antarctic benthos. Antarct Sci. 1998;10:398–405.

    Article  Google Scholar 

  • Gutt J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A, et al. Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res II Top Stud Oceanogr. 2011;58(1–2):74–83. doi:10.1016/j.dsr2.2010.05.024.

    Article  Google Scholar 

  • Gutt J, Böhmer A, Dimmler W. Antarctic sponge spicule mats shape macrobenthic diversity and act as a silicon trap. Mar Ecol Prog Ser. 2013;480:57–71. doi:10.3354/meps10226.

    Article  Google Scholar 

  • Janussen D, Tendal OS. Diversity and distribution of Porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-Sea Res II. 2016;96(2):429-436. doi:10.1017/S0025315415000466.

    Google Scholar 

  • Janussen D, Downey RV. Porifera. In: De Broyer C, Koubbi P, Griffiths H, Raymond B, d’Udekem d’Acoz C, Van de Putte A, editors. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research; 2014. p. 94–102.

    Google Scholar 

  • Kahn A, Vehring L, Brown R, Leys S. Dynamic change, recruitment, and resilience in reef-forming glass sponges. J Mar Biol Assoc UK. 2016;96(2):429–436. doi:10.1017/S0025315415000466.

    Google Scholar 

  • Kahn AS, Yahel G, Chu JWF, Tunnicliffe V, Leys SP. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol Oceanogr. 2015;60(1):78–88. doi:10.1002/lno.10002.

    Article  CAS  Google Scholar 

  • Kelly M. The marine Fauna of New Zealand. Porifera: lithistid Demospongiae (Rock Sponges), The marine fauna of New Zealand. Wellington: National Institute of Water and Atmospheric Research (NIWA); 2007.

    Google Scholar 

  • Kelly M, Ellwood M, Tubbs L, Buckeridge J. The lithistid Demospongiae in New Zealand waters: species composition and distribution. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G, editors. Porifera research: biodiversity, innovation and sustainability, vol série livros. Rio de Janeiro: Museu Nacional du Rio de Janeiro; 2007. p. 393–404.

    Google Scholar 

  • Klitgaard AB, Tendal OS. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog Oceanogr. 2004;61(1):57–98. doi:10.1016/j.pocean.2004.06.002.

    Article  Google Scholar 

  • Knudby A, Kenchington E, Murillo FJ. Modeling the distribution of Geodia sponges and sponge grounds in the Northwest Atlantic. PLoS One. 2013;8(12):e82306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koschinsky A, Billings A, Devey C, Dubilier N, Duester A, Edge D, et al. Discovery of new hydrothermal vents on the southern Mid-Atlantic Ridge (4° S–10° S) during Cruise M68/1. InterRidge News. 2006;15:9–15.

    Google Scholar 

  • Krautter M, Conway KW, Barrie JV, Neuweiler M. Discovery of a “living dinosaur”: globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies. 2001;44:265–82.

    Article  Google Scholar 

  • Kuhnz LA, Ruhl HA, Huffard CL, Smith Jr KL. Rapid changes and long-term cycles in the benthic megafaunal community observed over 2 years in the abyssal northeast Pacific. Prog Oceanogr. 2014;124:1–11. doi:10.1016/j.pocean.2014.04.007.

    Article  Google Scholar 

  • Kutti T, Bannister RJ, Fosså JH. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA – northern Norwegian continental shelf. Cont Shelf Res. 2013;69:21–30. doi:10.1016/j.csr.2013.09.011.

    Article  Google Scholar 

  • Lee WL, Reiswig HM, Austin WC, Lundsten L. An extraordinary new carnivorous sponge, Chondrocladia lyra, in the new subgenus Symmetrocladia (Demospongiae, Cladorhizidae), from off of northern California, USA. Invertebr Biol. 2012;131(4):259–84. doi:10.1111/ivb.12001.

    Article  Google Scholar 

  • Lévi C. Lithistid sponges from the Norfolk rise. Recent and Mesozoic genera. In: Reitner J, Keupp H, editors. Fossil and recent sponges. Berlin/Heidelberg/New York: Springer; 1991. p. 72–82.

    Chapter  Google Scholar 

  • Leys SP, Lauzon RJ. Hexactinellid sponge ecology: growth rates and seasonality in deep water sponges. J Exp Mar Biol Ecol. 1998;230:111–29.

    Article  Google Scholar 

  • Maldonado M, Carmona MC, Velásquez Z, Puig A, Cruzado A, López A, et al. Siliceous sponges as a silicon sink: an overlooked aspect of the benthopelagic coupling in the marine silicon cycle. Limnol Oceanogr. 2005;50(3):799–809. doi:10.4319/lo.2005.50.3.0799.

    Article  CAS  Google Scholar 

  • Maldonado M, Riesgo A, Bucci A, Rützler K. Revisiting silicon budgets at a tropical continental shelf: silica standing stocks in sponges surpass those in diatoms. Limnol Oceanogr. 2010;55(5):2001–10. doi:10.4319/lo.2010.55.5.2001.

    Article  CAS  Google Scholar 

  • Maldonado M, Ribes M, Van Duyl FC. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol. 2012;62:114–82. doi:10.1016/B978-0-12-394283-8.00003-5.

    Google Scholar 

  • Maldonado M. Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its origin and nature. Mar Ecol. 2015;1–15. doi:10.1111/maec.12256.

    Google Scholar 

  • Maldonado M, Aguilar R, Blanco J, García S, Serrano A, Punzón A. Aggregated clumps of Lithistid sponges: a singular, reef-like bathyal habitat with relevant paleontological connections. PLoS One. 2015;10(5):e0125378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murillo FJ, Muñoz PD, Cristobo J, Ríos P, González C, Kenchington E, et al. Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): distribution and species composition. Mar Biol Res. 2012;8(9):842–54. doi:10.1080/17451000.2012.682583.

    Article  Google Scholar 

  • Piepenburg D, Schmid M, Gerdes D. The benthos off King George Island (South Shetland Islands, Antarctica): further evidence for a lack of a latitudinal biomass cline in the Southern Ocean. Polar Biol. 2002;25(2):146–58. doi:10.1007/s003000100322.

    Article  Google Scholar 

  • Pile AJ, Young CM. The natural diet of a hexactinellid sponge: Benthic-pelagic coupling in a deep-sea microbial food web. Deep-Sea Res I Oceanogr Res Pap. 2006;53(7):1148–56.

    Article  Google Scholar 

  • Pomponi SA, Kelly M, Reed J, Wright AD. Diversity and bathymetric distribution of lithistid sponges in the tropical western Atlantic region. Bull Biol Soc Wash. 2001;10:344–53.

    Google Scholar 

  • Rastorgueff PA, Rocher C, Selva M, Chevaldonné P. Preliminary DNA-based diet assessment of a gutless carnivore, the sponge Asbestopluma hypogea. J Exp Mar Biol Ecol. 2015;467:108–14.

    Article  CAS  Google Scholar 

  • Reiswig HM. Population dynamics of three Jamaican Demospongiae. Bull Mar Sci. 1973;23:191–226.

    Google Scholar 

  • Reiswig HM. Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol. 1974;14:231–49.

    Article  Google Scholar 

  • Rice AL, Thurston MH, New AL. Dense aggregations of a hexactinellid sponge, Pheronema carpenteri, in the Porcupine Seabight (northeast Atlantic Ocean), and possible causes. Prog Oceanogr. 1990;24:179–96.

    Article  Google Scholar 

  • Rützler K. Low-tide exposure of sponges in a Caribbean mangrove community. Mar Ecol. 1995;16(2):165–79. doi:10.1111/j.1439-0485.1995.tb00402.x.

    Article  Google Scholar 

  • Rützler K, Díaz MC, van Soest RWM, Zea S, Smith K, Alvarez B, et al. Diversity of sponge fauna in mangrove ponds, Pelican Cays, Belize. Atoll Res Bull. 2000;477:231–50.

    Google Scholar 

  • Rützler K. The role of sponges in the Mesoamerican barrier-Reef ecosystem, Belize. In: Becerro MA, Uriz MJ, Maldonado M, Turon X, editors. Adv Mar Biol. 2012;61(61):211–271. doi:10.1016/B978-0-12-387787-1.00002-7.

    Google Scholar 

  • Sañé E, Isla E, Bárcena MÁ, DeMaster DJ. A shift in the biogenic silica of sediment in the Larsen B continental shelf, off the eastern Antarctic Peninsula, resulting from climate change. PLoS One. 2013;8(1):e52632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schönberg C, Fromont J. Sponge gardens of Ningaloo Reef (Carnarvon Shelf, Western Australia) are biodiversity hotspots. Hydrobiologia. 2012;687(1):143–61. doi:10.1007/s10750-011-0863-5.

    Article  Google Scholar 

  • Staudigel H, Hart SR, Pile A, Bailey BE, Baker ET, Brooke S, et al. Vailulu’u Seamount, Samoa: life and death on an active submarine volcano. Proc Natl Acad Sci. 2006;103(17):6448–53. doi:10.1073/pnas.0600830103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tompkins-MacDonald G, Leys S. Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Mar Biol. 2008;154(6):973–84. doi:10.1007/s00227-008-0987-y.

    Article  Google Scholar 

  • Vacelet J, Boury-Esnault N. Carnivorous sponges. Nature. 1995;373(6512):333–5. doi:10.1038/373333a0.

    Article  CAS  Google Scholar 

  • Vacelet J, Boury-Esnault N, Fiala-Medioni A, Fisher CR. A methanotrophic carnivorous sponge. Nature. 1995;377:296.

    Article  CAS  Google Scholar 

  • Vacelet J, Kelly MA. New species of Abyssocladia (Porifera, Demospongiae, Poecilosclerida, Cladorhizidae) and other carnivorous sponges from the far eastern Solomon Islands. Zootaxa. 2014;3815(3):11. doi:10.11646/zootaxa.3815.3.4.

    Article  Google Scholar 

  • Wiedenmayer F. Contributions to the knowledge of post-Paleozoic neritic and archibental sponges (Porifera). Schweiz Paläontol Abhand. 1994;116:1–147.

    Google Scholar 

  • Wilkinson CR, Cheshire AC. Comparison of Sponge populations across the Barrier Reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Mar Ecol Prog Ser. 1990;67:285–94.

    Article  Google Scholar 

  • Witte U. Seasonal reproduction in deep-sea sponges triggered by vertical particle flux? Mar Biol. 1996;124:571–81.

    Article  Google Scholar 

  • Witte U, Graf G. Metabolism of deep-sea sponges in the Greenland-Norwegian Sea. J Exp Mar Biol Ecol. 1996;198:223–35.

    Article  Google Scholar 

  • Wulff JL. Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biol Conserv. 2006;127:167–76.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank colleagues and institutions for kind picture contributions: Kevin Coate (Fig. 1a), Tracey Bates (Fig. 3c–e), Chip Clark (Fig. 3a, b), and Carla Piantoni (Fig. 3c), Institute of Marine Research (Figs. 1b, c and 4b), Department of Fisheries and Oceans Canada (Fig. 6c, d), National Institute of Water and Atmospheric Research (NIWA) of New Zealand (Figs. 6d and 7a, b), and Neptune Minerals Inc. (Fig. 7d, e), and Alfred Wegener Institute/Marum, University of Bremen, Germany (Fig. 8a, 8d-g). This study has benefitted from funding by the Spanish Ministry of Economy and Competitiveness (CTM2012-37787) to MM; from the Caribbean Coral Reef Ecosystems Program and the National Museum of Natural History, Washington to KR, CD, and MM (Contribution Number 986); from Stiftung Drittes Millennium, Fundación Biodiversidad, and the Ministerio de Agricultura, Alimentación y Medio Ambiente to Oceana and RA; from NIWA, New Zealand Foundation for Research, Science and Technology, and CSIRO’s Division of Marine and Atmospheric Research to MK; the Natural Sciences and Engineering Council of Canada for Discovery and Ship Time grants to SPL; from the Norwegian Research Council to RJB and HTR; from The Norwegian Oil and Gas and the Norwegian Biodiversity Information Centre to HTR; and from the Natural Sciences and Engineering Council of Canada for Discovery and Ship Time grants to SPL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Maldonado, M. et al. (2017). Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-21012-4_24

Download citation

Publish with us

Policies and ethics