Skip to main content

Seston Quality and Available Food: Importance in the Benthic Biogeochemical Cycles

  • Reference work entry
  • First Online:
Marine Animal Forests

Abstract

Seston refers to the organisms (bioseston) and nonliving matter (abioseston) swimming or floating in a water body. Bioseston includes plankton as well as nekton. The abioseston comprises mainly detritus as well as minerals. A classical approach is to correlate sedimentary organics to quantitative benthic fauna characteristics. This poses two main problems: (a) finding the most appropriate unit to assess organics in the sediment and (b) the nutritional process is complex encompassing ingestion, absorption, and assimilation and thus cannot be assessed linearly. For example, selectivity is associated to ingestion, but not everything ingested is digested and absorbed by the consumers, and incorporation is dependent on meeting specific nutritional requirements. Fate of particulate organic matter (POM) is influenced by benthic fauna through nutrition and bioturbation, and in turn POM influences benthic faunal biomass, reproductive output and abundance, making relationships between seston and benthic fauna bidirectional.

As nutrition results from processes which do not affect the whole sedimentary POM pool, there is little hope of linking benthic secondary production and biomass to bulk descriptors. This makes essential to identify and use more specific biochemical parameters. Quality of seston can be assessed through total organic matter, organic carbon, nitrogen content, total and available proteins (TPRT and APRT), carbohydrates, lipids, and total and enzymatically hydrolysable (available) amino acids (THAA and EHAA, respectively). Parameters such as digestibility and composition are key to understand seston nutritional value. So far, available amino acids and lipids have been shown to be the best descriptors of food nutritional value and they are associated to the most labile fraction of particular organic matter.

Suspension feeders and other sessile and vagile organisms have adapted their feeding strategies to use both biotic and abiotic seston. These organisms compose a highly diverse benthic community, regardless of their original food source being similar or not. In this chapter, the relationship of animal forest components (benthos filter feeders) and seston quantity and quality are described and their relationships explored. Organisms may adapt to changes in seston though storage and then consumption at times of low seston presence. Notably, a lot of organisms change their activity either by feeding on different prey or by constraining activity to highly nutritious times. A clear example of the latter is the coupling between phytodetritus pulses and reproductive activity observed in many benthic communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertelli G, Covazzi-Harriage A, Danovaro R, Fabiano M, Fraschetti S, Pusceddu A. Differential responses of bacteria, meiofauna, and macrofauna in a shelf area (Ligurian Sea, NW Mediterranean): role of food availability. J Sea Res. 1999;42:11–26.

    Article  Google Scholar 

  • Ambrose WG, Renaud PE. Does a pulsed food supply to benthos affect polychaete recruitment patterns in the Northeast Water Polynya? Journal of Marine Systems, 1997;10:483–495.

    Article  Google Scholar 

  • Asmus RM, Asmus H. Mussel beds: limiting or promoting phytoplankton? J Exp Mar Biol Ecol. 1991;148:215–32.

    Article  Google Scholar 

  • Azam F, Long RA. Oceanography: sea snow microcosms. Nature. 2001;414(6863):495–8.

    Article  CAS  PubMed  Google Scholar 

  • Bayne BL, Iglesias JIP, Hawkins AJS, Navarro E, Héral M, Deslous-Paoli JM. Feeding behaviour of the mussel, Mytilus edulis: responses to variations in both quantity and organic content of seston. J Mar Biol Assoc UK. 1993;73:813–29.

    Article  Google Scholar 

  • Billet DSM, Lampitt RS, Rice AL, Mantoura RFC. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature. 1983;302:520–2.

    Article  Google Scholar 

  • Burdloff D, Gasparini S, Sautour B, Etcheber H, Castel J. Is the copepod egg production in a highly turbid estuary (the Gironde, France) a function of the biochemical composition of seston? Aquat Ecol. 2000;34(2):165–75.

    Article  CAS  Google Scholar 

  • Cammen, LM. Ingestion rate: An empirical model for aquatic deposit feeders and detritivores. Oecologia 1980;44(3):303–310.

    Article  Google Scholar 

  • Chien Y-H, Hsu W-H. Effects of diets, their concentrations and clam size on filtration rate of hard clams (Meretrix lusoria). J Shellfish Res. 2006;25(1):15–22.

    Article  Google Scholar 

  • Clough LM, Renaud PE, Ambrose WG. Impacts of water depth, sediment pigment concentration, and benthic macrofaunal biomass on sediment oxygen demand in the western Arctic Ocean. Can J Aquat Sci. 2005;62:1756–65.

    Article  CAS  Google Scholar 

  • Coma R, Ribes M, Gili JM, Zabala M. Seasonality in coastal benthic ecosystems. Trends Ecol Evol. 2000;15:448–53.

    Article  CAS  PubMed  Google Scholar 

  • Danovaro R, Tselepides A, Otegui A, Della Croce N. Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Prog Oceanogr. 2000;46:367–400.

    Article  Google Scholar 

  • de Jonge VN, van Beukesom JEE. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol Oceanogr. 1995;40:766–78.

    Google Scholar 

  • Díaz E, Valencia V, Villate F. Size-fractionated seston abundance and biochemical composition, over the anchovy spawning period in the Basque shelf (Bay of Biscay), during years 2000 and 2001. J Exp Mar Biol Ecol. 2007;341(1):45–59.

    Article  Google Scholar 

  • Elias-Piera F. Biomarkers of bentho-pelagic coupling in antarctica: a spatio-temporal comparison in the Weddell sea. PhD thesis, p. 178. ISBN 9788449050107. http://ddd.uab.cat/record/129020 (2014).

  • Fabiano M, Danovaro R. Meiofauna distribution and mesoscale variability in two sites of the Ross Sea (Antarctica) with contrasting food supply. Polar Biol. 1999;22:115–23.

    Article  Google Scholar 

  • Galimany E, Rose JM, Dixon MS, Wikfors GH. Transplant experiment to evaluate the feeding behaviour of the Atlantic ribbed mussel, Geukensia demissa, moved to a high inorganic seston area. Mar Fresh Water Res. 2015;66:220–5.

    Article  CAS  Google Scholar 

  • Gasol JM, Del Giorgio PA, Duarte CM. Biomass distribution in marine planktonic communities. Limnol Oceanogr. 1997;42:1353–63.

    Article  CAS  Google Scholar 

  • Gili JM, Coma R, Orejas C, López-González PJ, Zabala M. Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol. 2001;4:473–85.

    Article  Google Scholar 

  • Gili JM, Rossi S, Pagès F, Orejas C, Teixidó N, López-González PJ, Arntz WE. A new trophic link between the pelagic and benthic systems on the Antarctic shelf. Marine Ecology Progress Series 2006;322:43–49.

    Article  Google Scholar 

  • Graf G, Bengtsson U, Schulz R, Theede H. Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Mar Biol. 1982;67:201–8.

    Article  Google Scholar 

  • Grémare A, Amouroux JM, Charles F, Dinet A, Riaux-Gobin C, Baudart J, Medernach L, Bodiou JY, Vétion G, Colomines JC, Albert P. Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders: a two year study. Mar Ecol Prog Ser. 1997;150:195–206.

    Article  Google Scholar 

  • Grémare A, Medernach L, DeBovee F, Amouroux JM, Vétion G, Albert P. Relationships between sedimentary organics and benthic meiofauna on the continental shelf and the upper slope of the Gulf of Lions (NW Mediterranean). Marine ecology. Progress series. 2002;234:85–94.

    Article  Google Scholar 

  • Grémare A, Amouroux JM, Cauwet G, Charles F, Courties C, DeBoveé F, Dinet A, Devenon JL, Durrieu de Madron X, Ferre’ B, Fraunie’ P, Joux F, Lantoine F, Lebaron P, Naudin JJ, Pujo-Pay M, Zudaire L. The effects of a strong winter storm on physical and biological variables at a shelf site in the Mediterranean. Oceanol Acta. 2003;26:407–19.

    Article  Google Scholar 

  • Hily C. Is the activity of benthic suspension feeders a factor controlling water quality in the Bay of Brest? Mar Ecol Prog Ser. 1991;69:179–88.

    Article  Google Scholar 

  • Ibarrola I, Iglesias JIP, Navarro E. Differential absorption of biochemical components in the diet of the cockle Cerastoderma edule: enzymatic responses to variations in seston composition. Can J Zool. 1996;74:1887–97.

    Article  CAS  Google Scholar 

  • Isla E, Rossi S, Palanques A, Gili J-M, Gerdes D, Arntz W. Biochemical composition of marine sediment from the eastern Weddell Sea (Antarctica): high nutritive value in a high benthic-biomass environment. J Mar Syst. 2006;60:255–67.

    Article  Google Scholar 

  • Ittekkot V, Deuser WG, Degens ET. Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Sargasso Sea. Deep Sea Research Part A. Oceanographic Research Papers. 1984;31(9):1057–69.

    Google Scholar 

  • Ivan Valiela Marine Ecological Processes Springer, 1995; SBN 9781441928405, 9781475741254. DOI 10.1007/978-1-4757-4125-4.

    Google Scholar 

  • Luckenbach MV. Sediment stability around animal tubes: the roles of hydrodynamic processes and biotic activity. Limnology and Oceanography 1986;31(4):779–787.

    Google Scholar 

  • Mayer LM, Schick LL, Sawyer T, Plante CJ, Jumars PA, Self RL. Bioavailable amino acids in sediments: a biomimetic, kinetic-based approach. Limnol Oceanogr. 1995;40:511–20.

    Article  CAS  Google Scholar 

  • Medernach L, Grémare A, Amouroux JM, Colomines JC, Vétion G. Temporal changes in the amino acid contents of particulate organic matter sedimenting in the Bay of Banyuls-sur-Mer (northwestern Mediterranean). Mar Ecol Prog Ser. 2001;214:55–65.

    Article  CAS  Google Scholar 

  • Meyers PA. Preservation of elemental and isotopic source identification of sedimentary organic-matter. Chem Geol. 1994;114(3–4):289–302.

    Article  CAS  Google Scholar 

  • Navarro JM, Thompson RJ. Seasonal fluctuations in the size spectra, biochemical composition and nutritive value of seston available to a suspension- feeder bivalve in a subarctic environment. Mar Ecol Prog Ser. 1995;125:95–106.

    Article  CAS  Google Scholar 

  • Navarro JM, Claslng E, Urrutia G, Asencio G, Stead R, Herrera C. Biochemical composition and nutritive value of suspended particulate matter over a tidal flat of southern Chile. Estuar Coast Shelf Sci. 1993;37:59–73.

    Article  CAS  Google Scholar 

  • Neira C, Sellanes J, Soto A, Gutierrez D, Gallardo VA. Meiofauna and sedimentary organic matter off Central Chile: response to changes caused by the 1997–1998 El Niño. Oceanol Acta. 2001;24:313–28.

    Article  CAS  Google Scholar 

  • Relexans JC, Deming J, Dinet A, Gaillard JF, Sibuet M. Sedimentary organic matter and micro–meiobenthos with relation to trophic conditions in the tropical northeast Atlantic. Deep-Sea Res. 1996;43:1343–68.

    Article  CAS  Google Scholar 

  • Renaud PE, Morata N, Ambrose Jr AG, Bowie JJ, Chiuchiolo A. Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf. J Exp Mar Biol Ecol. 2007;349:248–60.

    Article  CAS  Google Scholar 

  • Ribes M, Comes R, Gili J-M. Seasonal variation in particulate organic carbon, dissolved organic carbon and the contribution of microbial communities to the live particulate organic carbon in a shallow near-bottom ecosystem at the Northwest Mediterranean Sea. J Plankton Res. 1991;21(6):1077–100.

    Article  Google Scholar 

  • Ribes M, Coma R, Atkinson MJ, Kinzie III RA. Sponges and ascidians control renoval of particulate organic nitrógeno from coral reef water. Limnology and Oceanography, 2005;50:1480–1489.

    Article  CAS  Google Scholar 

  • Rossi S, Gili JM. Short-time-scale variability of near-bottom seston composition during spring in a warm temperate sea. Hydrobiologia. 2007;575(1):373–88.

    Google Scholar 

  • Rossi S, Gili JM. Temporal variation and composition of near-bottom seston features in a Mediterranean coastal area. Estuar Coast Shelf Sci. 2005;65:385–95.

    Article  CAS  Google Scholar 

  • Rossi S, Grémare A, Gili JM, Amouroux JM, Jordana E, Vétion G. Biochemical characteristics of settling particulate organic matter at two north-western Mediterranean sites: a seasonal comparison. Estuar Coast Shelf Sci. 2003;58:423–34.

    Article  CAS  Google Scholar 

  • Rossi S, Gili JM, Coma R, Linares C, Gori A, Vert N. Seasonal cycles of protein, carbohydrate and lipid concentrations in Paramuricea clavata: (anthozoa, octocorallia): evidences for summer–autumn feeding constraints. Mar Biol. 2006;149:643–51.

    Article  CAS  Google Scholar 

  • Shimeta J, Jumars PA. Physical mechanisms and rates of particle capture by suspension feeders. Oceanogr Mar Biol Annu Rev. 1991;29:191–257.

    Google Scholar 

  • Thomsen L, van Weering TCE. Spatial and temporal variability of particulate matter in the benthic boundary layer at the N.W. European Continental Margin (Goban Spur). Prog Oceanogr. 1998;42:61–76.

    Article  Google Scholar 

  • Tsounis G, Rossi S, Laudien J, Bramanti L, Fernández N, Gili J-M, Arntz W. Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Mar Biol. 2006;149:313–25.

    Article  Google Scholar 

  • Vetter EW, Dayton PK. Organic enrichment by macrophyte detritus and abundance patterns of megafaunal populations in submarine canyons. Mar Ecol Prog Ser. 1999;186:137–48.

    Article  Google Scholar 

  • Ward JE, Shumway SE. Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol. 2004;300:83–130.

    Article  Google Scholar 

  • Witte U. Seasonal reproduction in deep-sea sponges – triggered by vertical particleflux? Mar Biol. 1996;124:571–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carme Huguet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Huguet, C. (2017). Seston Quality and Available Food: Importance in the Benthic Biogeochemical Cycles. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-21012-4_22

Download citation

Publish with us

Policies and ethics