Skip to main content

Microorganism-Hydrophobic Compound Interactions

  • Living reference work entry
  • First Online:
Cellular Ecophysiology of Microbe

Abstract

The low solubility and high hydrophobicity of hydrocarbons means that they sorb to various solids and nonaqueous-phase liquids (NAPLs), obliging hydrocarbon-degrading microorganisms to physically interact with these phases. This has various implications for the physicochemical characteristics of these microbes, their modes of hydrocarbon uptake, and their behavioral and physiological strategies aimed at promoting such interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2967–2702

    Google Scholar 

  • Baumgarten T, Sperling S, Seifert J, vonBergen M, Steiniger F, Wick LY, Heipieper HJ (2012) Membrane vesicle formation as multiple stress response mechanism enhances cell surface hydrophobicity and biofilm formation of Pseudomonas putida DOT-T1E. Appl Environ Microbiol 78:6217–6224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastiaens L et al (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH) degrading bacteria using PAH sorbing carriers. Appl Environ Microbiol 66:1834–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena, 1st edn. Wiley, New York

    Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ Sci Technol 31:248–252

    Article  CAS  Google Scholar 

  • Brown DG (2007) Relationship between micellar and hemi-micellar processes and the bioavailability of surfactant-solubilized hydrophobic organic compounds. Environ Sci Technol 41:1194–1199.

    Article  CAS  PubMed  Google Scholar 

  • Buffle J, Leppard GG (1995) Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ Sci Technol 29:2169–2175

    Article  CAS  PubMed  Google Scholar 

  • Busscher HJ, van de Beltgritter B, van derMei HC (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell-surface hydrophobicity: 1. Zeta potentials of hydrocarbon droplets. Colloids Surf B Biointerfaces 5:111–116

    Article  CAS  Google Scholar 

  • de Carvalho CCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320

    Article  CAS  PubMed  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbon partitioned into an organic solvent. Appl Environ Microbiol 57:1441–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endo S, Bauerfeind J, Goss KU (2012) Partitioning of neutral organic compounds to structural proteins. Environ Sci Technol 46:12697–12703

    Article  CAS  PubMed  Google Scholar 

  • Endo S, Escher BI, Goss KU (2011) Capacities of membrane lipids to accumulate neutral organic chemicals. Environ Sci Technol 45:5912–5921

    Article  CAS  PubMed  Google Scholar 

  • Garcia JM, Wick LY, Harms H (2001) Influence of the nonionic surfactant Brij 35 on the bioavailability of solid and sorbed dibenzofuran. Environ Sci Technol 35:2033–2039

    Article  CAS  PubMed  Google Scholar 

  • Gilbert D, Jakobsen HH, Winding A, Mayer P (2014) Co-Transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions. Environ Sci Technol 48:4368–4375

    Article  CAS  PubMed  Google Scholar 

  • Guha S, Jaffé PR (1996a) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:605–611

    Article  CAS  Google Scholar 

  • Guha S, Jaffé PR (1996b) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:1382–1391

    Article  CAS  Google Scholar 

  • Guha S, Jaffé PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32:2317–2324

    Article  CAS  Google Scholar 

  • Hanzel J, Thullner M, Harms H, Wick LY (2011) Microbial growth with vapor-phase substrate. Environ Poll 159:858–864

    Article  CAS  Google Scholar 

  • Harms H, Wick LY (2004) Mobilization of organic compounds and iron by microorganisms. In: van Leeuwen HP, Köster W (eds) Physicochemical kinetics and transport at biointerfaces. Wiley, Chichester, pp 401–444.

    Google Scholar 

  • Harms H, Zehnder AJB (1994) Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl Environ Microbiol 60:2736–2745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harms H, Zehnder AJB (1995) Bioavailability of Sorbed 3-Chlorodibenzofuran. Appl Environ Microbiol 61:27–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nature Rev Microbiol 4:173–182

    Article  CAS  Google Scholar 

  • Holman HN, Nieman K, Sorensen DL, Miller CD,Martin MC, Borch T, McKinney WR, Sims RC (2002) Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environ Sci Technol 36:1276–1280

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  • Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R (2008) Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane – water interface by Marinobacter hydrocarbonoclasticus SP17. Res Microbiol 159:137–144

    Article  CAS  PubMed  Google Scholar 

  • Krell T, Lacal J, Reyes-Darias JA, Jimenez-Sanchez C, Sungthong R, Ortega-Calvo JJ (2012) Bioavailability of pollutants and chemotaxis. Curr Opin Biotechnol 24:451–456

    Article  PubMed  Google Scholar 

  • Köster W, van Leeuwen HP (2004) Physicochemical kinetics and transport at the biointerface: setting the stage. In: van Leeuwen HP, Köster W (eds) Physicochemical kinetics and transport at biointerfaces. Wiley, Chichester, pp 2–14.

    Google Scholar 

  • Laor Y, Strom PF, Farmer WJ (1999) Bioavailability of phenanthrene sorbed to mineral-associated humic acid. Water Res 33:1719–1729

    Article  CAS  Google Scholar 

  • Levich V (1962) Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Maurice PA, Manecki M, Fein JB, Schaefer J (2004) Fractionation of an aquatic fulvic acid upon adsorption to the bacterium, Bacillus subtilis. Geomicrobiol J 21:69–78

    Article  CAS  Google Scholar 

  • Mayer P, Fernqvist MM, Christensen PS, Karlson U, Trapp S (2007) Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions. Environ Sci Technol 41:6148–6155

    Article  CAS  PubMed  Google Scholar 

  • Mayer P, Karlson U, Christensen PS, Johnsen AR, Trapp S (2005) Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers. Environ Sci Technol 39:6123–6129

    Article  CAS  PubMed  Google Scholar 

  • McLee AG, Davies SL (1972) Linear growth of a Torulopsis sp. on n-alkanes. Canad J Microbiol 18:315–319

    Article  CAS  Google Scholar 

  • Mounier J, Camus A, Mitteau I, Vaysse PJ, Goulas P, Grimaud R, Sivadon P (2014) The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. Fems Microbiol Ecol 90:816–831

    Article  CAS  PubMed  Google Scholar 

  • Mulder H, Breure AM, van Honschooten D, Grotenhuis JT, Andel JGV, Rulkens WH (1998) Effect of biofilm formation by Pseudomonas 8909N on the bioavailability of solid naphthalene. Appl Microbiol Biotechnol 50:277–283

    Article  CAS  Google Scholar 

  • Naether DJ, Slawtschew S, Stasik S, Engel M, Olzog M, Wick LY, Timmis KN, Heipieper HJ (2013) Adaptation of hydrocarbonoclastic Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds – a physiological and transcriptomic approach. Appl Environ Microbiol 79:4282–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noordman WH, Ji W, Brusseau ML, Janssen DB (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol 32:1806–1812

    Article  CAS  Google Scholar 

  • Ogram AV, Jessup RE, Ou LT, Rao PS (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 49:582–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orench-Rivera N, Kuehn MJ (2016) Environmentally controlled bacterial vesicle-mediated export. Cellular Microbiology 18:1525–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Calvo JJ, Saiz-Jimenez C (1998) Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Appl Environ Microbiol 64:3123–3126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otto S, Banitz T, Thullner M, Harms H, Wick LY (2016) Effects of facilitated bacterial dispersal on the degradation and emission of a desorbing contaminant. Environ Sci Technol 50:6320–6326

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter cacoaceticus RAG-1 on hexadecane. J Bacteriol 148:51–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schamfuss S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY (2013) Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol 47:6908–6915

    CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Sikkema J, Debont JAM, Poolman B (1994) Interactions of Cyclic Hydrocarbons With Biological-Membranes. J Biol Chem 269:8022–8028

    CAS  PubMed  Google Scholar 

  • Sikkema J, deBont JAM, Poolman B (1995) Mechanism of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KEC, Thullner M, Wick LY, Harms H (2009) Sorption to humic acids enhances polycyclic aromatic hydrocarbon biodegradation. Environ Sci Technol 43:7205–7211

    Article  CAS  PubMed  Google Scholar 

  • Smith KEC, Thullner M, Wick LY, Harms H (2011) Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase. Environ Sci Technol 45:8741–8747

    Article  CAS  PubMed  Google Scholar 

  • Southam G, Whitney M, Knickerbocker C (2001) Structural characterization of the hydrocarbon degrading bacteria-oil interface: implications for bioremediation. International Biodeter Biodeg 47:197–201

    Article  CAS  Google Scholar 

  • Späth R, Flemming HC, Wuertz S (1998) Sorption properties of biofilms. Wat Sci Technol 37:207–210

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    Article  CAS  PubMed  Google Scholar 

  • Taylor MG, Simkiss K (2004) Transport of colloids and particles across biological memnbranes. In: van Leuven HP, Koester W (eds) Physicochemical kinetics and transport at chemical-biological interphases. Wiley, Chichester, pp 358–400

    Google Scholar 

  • Tejeda-Agredano M-C, Mayer P, Ortega-Calvo J-J (2014) The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environ Pollut 184:435–442

    Article  CAS  PubMed  Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microb Rev 54:75–87

    Google Scholar 

  • Vigneault B, Percot A, Lafleur M, Campbell PGC (2000) Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ Sci Technol 3:3907–3913

    Article  Google Scholar 

  • Volkering F, Breure AM. van Andel JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wick LY, Colangelo T, Harms H (2001) Kinetics of mass-transfer-limited growth on solid PAHs. Environ Sci Technol 35:354–361

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, deMunain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

    Article  CAS  PubMed  Google Scholar 

  • Wick LY et al (2007) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41:500–505

    Article  CAS  PubMed  Google Scholar 

  • Witholt B et al (1990) Bioconversions of Aliphatic-Compounds by Pseudomonas-Oleovorans in Multiphase Bioreactors – Background and Economic-Potential. Trends Biotechnol. 8:46–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work contributes to the research topic Chemicals in the Environment (CITE) within the research program Terrestrial Environment of the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Y. Wick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Wick, L.Y., Harms, H., Smith, K.E. (2017). Microorganism-Hydrophobic Compound Interactions. In: Krell, T. (eds) Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-20796-4_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20796-4_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20796-4

  • Online ISBN: 978-3-319-20796-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics