Skip to main content

Centrally Acting Muscle Relaxants

  • Living reference work entry
  • First Online:
Critical Care Toxicology

Abstract

The centrally acting muscle relaxants are a group of drugs that act in the central nervous system (CNS) to mitigate tension and spasm of skeletal muscles. Drugs within this group are structurally heterogeneous and act at a variety of receptors in the CNS. Muscle relaxants that act at the level of the spinal cord, such as baclofen, or peripherally, such as dantrolene, are discussed in their respective chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Berger FM, Kletzkin M, Ludwig BJ, et al. Unusual s properties of N-isopropyl-2-methyl-2-propyl-1,3-propanediol dicarbamate (carisoprodol). J Pharmacol Exp Ther. 1959;127:66–74.

    CAS  PubMed  Google Scholar 

  2. Roberge RJ, Lin E, Krenzelok EP. Flumazenil reversal of carisoprodol (Soma) intoxication. J Emerg Med. 2000;18:61–4.

    Article  CAS  PubMed  Google Scholar 

  3. Council on Drugs. New and non-official drugs: chlorzoxazone (Paraflex). JAMA. 1959;170:195.

    Google Scholar 

  4. Roberge RJ, Atchley B, Ryan K, Krenzelok EP. Two chlorzoxazone (Parafon forte) overdoses and coma in one patient: reversal with flumazenil. Am J Emerg Med. 1998;16:393–5.

    Article  CAS  PubMed  Google Scholar 

  5. Li JR. Methocarbamol in the treatment of black widow spider poisoning. JAMA. 1960;173:662.

    Article  CAS  Google Scholar 

  6. Leventen EO, Vaccarino FP. Intravenous methocarbamol in 100 orthopaedic patients. Curr Ther Res. 1960;2:497–500.

    CAS  PubMed  Google Scholar 

  7. O’Neil MJ, Smith A, Heckelman PE, Obenchain JR, editors. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station: Merck & Co; 2001.

    Google Scholar 

  8. DiFrancesco A. Diazepam, a new tranquilizer. Am J Psychiatry. 1963;119:989–90.

    Article  CAS  PubMed  Google Scholar 

  9. Baselt RC. Disposition of toxic drugs and chemicals in man. Foster City: Chemical Toxicology Institute; 2000.

    Google Scholar 

  10. Fathie K. A second look at a skeletal muscle relaxant: a double-blind study of metaxalone. Curr Ther Res. 1964;6:677–83.

    CAS  PubMed  Google Scholar 

  11. Ashby P, Burke D, Rao S, Jones RF. Assessment of cyclobenzaprine in treatment of spasticity. J Neurol Neurosurg Psychiatry. 1972;35:599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Share NN, McFarlane CS. Cyclobenzaprine: a novel centrally acting skeletal muscle relaxant. Neuropharmacology. 1975;14:675–84.

    Article  CAS  PubMed  Google Scholar 

  13. Reeves RR, Burke RS. Carisoprodol: abuse potential and withdrawal syndrome. Curr Drug Abuse Rev. 2010;3(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lebby TI, Dugger K, Lipscomb JW, Leikin JB. Skeletal muscle relaxant ingestion. Vet Hum Toxicol. 1990;32:133–5.

    CAS  PubMed  Google Scholar 

  15. Slordal L, Gjerden P. Orphenadrine [letter]. Br J Psychiatry. 1999;174:275–6.

    CAS  PubMed  Google Scholar 

  16. Leikin JB, Paloucek FP, editors. Poisoning & toxicology compendium. Hudson: Lexi-Comp; 1998.

    Google Scholar 

  17. Data on file, Flexeril (cyclobenzaprine). West Point: Merck & Co; 1999

    Google Scholar 

  18. Data on file, Skelaxin (metaxalone). Cedar Knolls: Carnrick Laboratories; 1998.

    Google Scholar 

  19. Logan BK, Case GA, Gordon AM. Carisoprodol, meprobamate, and driving impairment. J Forensic Sci. 2000;45:619–23.

    CAS  PubMed  Google Scholar 

  20. Davis GG, Alexander CB. A review of carisoprodol deaths in Jefferson County, Alabama. South Med J. 1998;91:726–30.

    Article  CAS  PubMed  Google Scholar 

  21. Reeves RR, Liberto V. Abuse of combinations of carisoprodol and tramadol. South Med J. 2001;94:512–4.

    Article  CAS  PubMed  Google Scholar 

  22. Roth BA, Vinson DR, Kim S. Carisoprodol-induced myoclonic encephalopathy. J Toxicol Clin Toxicol. 1998;36:609–12.

    Article  CAS  PubMed  Google Scholar 

  23. Spiller HA, Winter ML, Mann KV, et al. Five-year multicenter retrospective review of cyclobenzaprine toxicity. J Emerg Med. 1995;13:781–5.

    Article  CAS  PubMed  Google Scholar 

  24. Danze LK, Langdorf MI. Reversal of orphenadrine-induced ventricular tachycardia with physostigmine. J Emerg Med. 1991;9:453–7.

    Article  CAS  PubMed  Google Scholar 

  25. Van Herreweghe I, Mertens K, Maes V, Ramet J. Orphenadrine poisoning in a child: clinical and analytical data. Intensive Care Med. 1999;25:1134–6.

    Article  PubMed  Google Scholar 

  26. Jacobsen D, Wiik-Larsen E, Saltvedt E, Bredesen JE. Meprobamate kinetics during and after terminated hemoperfusion in acute intoxications. J Toxicol Clin Toxicol. 1987;25:317–31.

    Article  CAS  PubMed  Google Scholar 

  27. Charron C, Mekontso-Dessap A, Chergui K, Rabiller A, Jardin F, Vieillard-Baron A. Incidence, causes and prognosis of hypotension related to meprobamate poisoning. Intensive Care Med. 2005;31(11):1582–6.

    Article  PubMed  Google Scholar 

  28. Buire AC, Vitry F, Hoizey G, Lamiable D, Trenque T. Overdose of meprobamate: plasma concentration and Glasgow Coma Scale. Br J Clin Pharmacol. 2009;68(1):126–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wyller TB, Korsmo G, Gadeholt G. Dependence on carisoprodol (Somadril)? A prospective withdrawal study among prisoners. Tidsskr Nor Laegeforen. 1991;111:193–5.

    CAS  PubMed  Google Scholar 

  30. Reeves RR, Beddingfield JJ, Mack JE. Carisoprodol withdrawal syndrome. Pharmacother J Hum Pharmacol Drug Ther. 2004;24(12):1804–6.

    Article  Google Scholar 

  31. Matos ME, Burns MM, Shannon MW. False-positive tricyclic antidepressant drug screen results leading to the diagnosis of carbamazepine intoxication. Pediatrics. 2000;105(5):E66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madeline L. McCarthy or Carl R. Baum .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

McCarthy, M.L., Baum, C.R. (2016). Centrally Acting Muscle Relaxants. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics