Skip to main content

Antiparkinsonian Agents

  • Living reference work entry
  • First Online:
Critical Care Toxicology

Abstract

Parkinson disease, named after James Parkinson who first described the disorder in 1817, is a chronic, progressive neurologic disorder clinically characterized by a combination of tremor, rigidity, and bradykinesia [1, 2]. Estimates of the incidence of Parkinson disease range from 5 to 20 new cases per 100,000 individuals per year, occurring with a slightly greater frequency in middle-aged and elderly men of European and North American descent [1, 3]. The cause of Parkinson disease is unknown, but it has been observed in humans and induced in primates by exposure to 1-methyl-4-phenylpyridine (MPP+), a metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which poisons complex I of the mitochondrial electron transport chain (Fig. 1) [4]. Other risk factors associated with the development of Parkinson disease include oxidant stress, reduced glutathione stores, tobacco smoking (linked inversely to the development of Parkinson disease), and caffeine consumption (correlated with reduced risk) [3, 4]. Current scientific evidence suggests that Parkinson disease does not have a substantial genetic component [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aminoff MJ. Parkinson’s disease. Neurol Clin. 2001;19(119):128.

    Google Scholar 

  2. Olanow CW, Watts RL, Koller WC. An algorithm (decision tree) for the management of Parkinson’s disease (2001): treatment guidelines. Neurology. 2001;56(11 Suppl 5):S1–88.

    Article  CAS  PubMed  Google Scholar 

  3. Siderowf A. Parkinson’s disease: clinical features, epidemiology and genetics. Neurol Clin. 2001;19:565–78.

    Article  CAS  PubMed  Google Scholar 

  4. Marsden CD. Problems with long-term levodopa therapy for Parkinson’s disease. Clin Neuropharmacol. 1994;17:32–4.

    Article  Google Scholar 

  5. Amnioff MJ. Parkinson’s disease and other extrapyramidal disorders. In: Braunwald E, Fauci AS, Kasper DL, et al., editors. Harrison’s principles of internal medicine. 15th ed. New York: McGraw-Hill; 2001. p. 2356–9.

    Google Scholar 

  6. Badger JL, Cordero-Llana O, Hartfield EM, Wade-Martins R. Parkinson’s disease in a dish – using stem cells as a molecular tool. Neuropharmacology. 2014;76(Pt A):88–96.

    Article  CAS  PubMed  Google Scholar 

  7. Singer C. Managing the patient with newly diagnosed Parkinson disease. Cleve Clin J Med. 2012;79 Suppl 2:S3–7.

    Article  PubMed  Google Scholar 

  8. Drouin-Ouellet J, Barker RA. Stem cell therapies for Parkinson’s disease: are trials just around the corner? Regen Med. 2014;9(5):553–5.

    Article  CAS  PubMed  Google Scholar 

  9. Cedarbaum JM. Clinical pharmacokinetics of anti-parkinsonian drugs. Clin Pharmacokinet. 1987;13:141–78.

    Article  CAS  PubMed  Google Scholar 

  10. Standaert DG, Young AB. Treatment of central nervous system degenerative disorders. In: Hardman JG, Limbird LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill; 1996. p. 552–60.

    Google Scholar 

  11. Sporer KA. Carbidopa-levodopa overdose. Am J Emerg Med. 1991;9:47–8.

    Article  CAS  PubMed  Google Scholar 

  12. Olanow CW. Preventing levodopa-induced dyskinesias. Ann Neurol. 2000;47:S167–78.

    CAS  PubMed  Google Scholar 

  13. Rascol O. The pharmacological therapeutic management of levodopa-induced dyskinesias in patients with Parkinson’s disease. J Neurol. 2000;247:51–7.

    Article  Google Scholar 

  14. Nausieda PA. Sinemet “abusers”. Clin Neuropharmacol. 1985;8:318–27.

    Article  CAS  PubMed  Google Scholar 

  15. Pfeiffer RF. Antiparkinsonian agents: drug interactions of clinical significance. Drug Saf. 1996;14:343–54.

    Article  CAS  PubMed  Google Scholar 

  16. Murer MG, Raisman-Vozari R, Gershanik O. Levodopa in Parkinson’s disease: neurotoxicity issue laid to rest? Drug Saf. 1999;21:339–52.

    Article  CAS  PubMed  Google Scholar 

  17. Delmas G, Rothmann G, Flesch F. Acute overdose with controlled-release levodopa-carbidopa. ClinToxicol (Phila). 2008;46(3):274–7.

    Article  CAS  Google Scholar 

  18. Hoehn MM, Rutledge CO. Acute overdose with levodopa. Neurology. 1974;25:792–4.

    Article  Google Scholar 

  19. Factor SA, Molho ES. Emergency department presentations of patients with Parkinson’s disease. Am J Emerg Med. 2000;18:209–15.

    Article  CAS  PubMed  Google Scholar 

  20. Ong KC, Chew EL, Ong YY. Neuroleptic malignant syndrome without neuroleptics. Singapore Med J. 2001;42(2):85–8.

    CAS  PubMed  Google Scholar 

  21. Wu YF, Kan YS, Yang CH. Neuroleptic malignant syndrome associated with bromocriptine withdrawal in Parkinson’s disease – a case report. Gen Hosp Psychiatry. 2011;33(3):301.e7–8.

    Article  Google Scholar 

  22. Chan TC, Evans SD, Clark R. Drug-induced hyperthermia. Crit Care Clin. 1997;13:785–808.

    Article  CAS  PubMed  Google Scholar 

  23. Stuerenburg HJ, Schoser BG. Acute overdosage and intoxication with carbidopa/levodopa can be detected in the subacute stage by measurement of 3-O-methyldopa. J Neurol Neurosurg Psychiatry. 1999;67:122–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grace RF. Benztropine abuse and overdose: case report and review. Adverse Drug React Toxicol Rev. 1997;16:103–12.

    CAS  PubMed  Google Scholar 

  25. Craig DH, Rosen P. Abuse of antiparkinsonian drugs. Ann Emerg Med. 1981;10:98–100.

    Article  CAS  PubMed  Google Scholar 

  26. Weiner M. Update on antiparkinsonian agents. Geriatrics. 1982;37:81–91.

    CAS  PubMed  Google Scholar 

  27. Fahy P, Arnold P, Curry SC, Bond R. Serial serum drug concentrations and prolonged anticholinergic toxicity after benztropine (Cogentin) overdose. Am J Emerg Med. 1989;7:199–202.

    Article  CAS  PubMed  Google Scholar 

  28. Howrie DL, Rowley AH, Krenzelok EP. Benztropine-induced acute dystonic reaction. Ann Emerg Med. 1986;15:141–3.

    Article  Google Scholar 

  29. Dilaveris P, Pantazis A, Vlasseros J, Gialafos J. Non-sustained ventricular tachycardia due to low-dose orphenadrine. Am J Med. 2001;111:418–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mao YC, Hung DZ, Yang CC, Wang JD. Full recovery from a potentially lethal dose of orphenadrine ingestion using conservative treatment: a case report. Hum Exp Toxicol. 2010;29(11):961–3.

    Article  PubMed  Google Scholar 

  31. Catterson ML, Martin RL. Anticholinergic toxicity masquerading as neuroleptic malignant syndrome: a case report and review. Ann Clin Psychiatry. 1994;6:267–9.

    Article  CAS  PubMed  Google Scholar 

  32. Aoki FY, Sitar DS. Clinical pharmacokinetics of amantadine hydrochloride. Clin Pharmacokinet. 1988;14:35–51.

    Article  CAS  PubMed  Google Scholar 

  33. Snoey ER, Bessen HA. Acute psychosis after amantadine overdose. Ann Emerg Med. 1990;19:668–70.

    Article  CAS  PubMed  Google Scholar 

  34. Macchio GJ, Ito V, Sahgal V. Amantadine-induced coma. Arch Phys Med Rehabil. 1993;74:1119–20.

    Article  CAS  PubMed  Google Scholar 

  35. Claudet I, Maréchal C. Status epilepticus in a pediatric patient with amantadine overdose. Pediatr Neurol. 2009;40(2):120–2.

    Article  PubMed  Google Scholar 

  36. Schwartz M, Patel M, Kazzi Z, Morgan B. Cardiotoxicity after massive amantadine overdose. J Med Toxicol. 2008;4(3):173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sartori M, Pratt CM, Young JB. Torsade de pointes malignant cardiac arrhythmia induced by amantadine poisoning. Am J Med. 1984;77:388–91.

    Article  CAS  PubMed  Google Scholar 

  38. Manini AF, Raspberry D, Hoffman RS, Nelson LS. QT prolongation and Torsades de Pointes following overdose of ziprasidone and amantadine. J Med Toxicol. 2007;3(4):178–81.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Strong DK, Eisenstat DD, Bryson SM, et al. Amantadine neurotoxicity in a pediatric patient with renal insufficiency. Ann Pharmacother. 1991;25:1175–7.

    CAS  Google Scholar 

  40. Pimentel L, Hughes B. Amantadine toxicity presenting with complex ventricular ectopy and hallucinations. Pediatr Emerg Care. 1991;7:89–92.

    Article  CAS  PubMed  Google Scholar 

  41. Berkowitz CD. Treatment of acute amantadine toxicity with physostigmine. J Pediatr. 1979;95:144–5.

    Article  CAS  PubMed  Google Scholar 

  42. Gerlach M, Youdim MBH, Riederer P. Pharmacology of selegiline. Neurology. 1996;47:S137–45.

    Article  CAS  PubMed  Google Scholar 

  43. Baldessarini RJ. Drugs and the treatment of psychiatric disorders. In: Hardman JG, Limbird LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill; 1996. p. 447–83.

    Google Scholar 

  44. Heinomen EH, Anttila MI, Lammintansta RAS. Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin Pharmacol Ther. 1994;56:742–9.

    Article  Google Scholar 

  45. Lambert D, Waters CH. Comparative tolerability of the newer generation antiparkinsonian agents. Drugs Aging. 2000;16:55–65.

    Article  CAS  PubMed  Google Scholar 

  46. Churchyard A. Selegiline-induced postural hypotension in Parkinson’s disease: a longitudinal study on the effects of drug withdrawal. Mov Disord. 1999;14:246–51.

    Article  CAS  PubMed  Google Scholar 

  47. Richard IH, Kurlan R, Tanner C, et al. Serotonin syndrome and the combined use of deprenyl and an antidepressant in Parkinson’s disease. Neurology. 1997;48:1070–7.

    Article  CAS  PubMed  Google Scholar 

  48. Hinds NP, Hillier CEM, Wiles CM. Possible serotonin syndrome arising from an interaction between nortriptyline and selegiline in a lady with parkinsonism. J Neurol. 2000;247:811.

    Article  CAS  PubMed  Google Scholar 

  49. Fujita Y, Takahashi K, Takei M, Niitsu H, Aoki Y, Onodera M, Fujino Y, Inoue Y, Endo S. Detection of levorotatory methamphetamine and levorotatory amphetamine in urine after ingestion of an overdose of selegiline. Yakugaku Zasshi. 2008;128(10):1507–12.

    Article  CAS  PubMed  Google Scholar 

  50. Factor SA. Parkinson’s disease and parkinsonian syndromes: dopamine agonists. Med Clin North Am. 1999;83:415–43.

    Article  CAS  PubMed  Google Scholar 

  51. Mack RB. Mairzydoats and dozy doats and a kiddle eat almost anything. N C Med J. 1988;49:17–8.

    CAS  PubMed  Google Scholar 

  52. Warren DE, Nakfoor E. Acute overdose of bromocriptine. Drug Intell Clin Pharm. 1983;17:374.

    CAS  PubMed  Google Scholar 

  53. Vermunt SH, Goldstein RG, Romano AA, Atwood SJ. Accidental bromocriptine ingestion in childhood. J Pediatr. 1984;105:838–40.

    Article  Google Scholar 

  54. Hack JB, Powell G, Nelson LS, et al. Acute pediatric exposure to pramipexole dihydrochloride (Mirapex). J Toxicol Clin Toxicol. 1999;37:891–2.

    Article  CAS  PubMed  Google Scholar 

  55. Jorga KM, Fotteler B, Heizmann P, Zurcher G. Pharmacokinetics and pharmacodynamics after oral and intravenous administration of tolcapone, a novel adjunct to Parkinson’s disease therapy. Eur J Clin Pharmacol. 1998;54:443–7.

    Article  CAS  PubMed  Google Scholar 

  56. Keranen T, et al. Inhibition of soluble catechol O-methyltransferase and single dose pharmacokinetics after oral and intravenous administration of entacapone. Eur J Clin Pharmacol. 1994;46:151–7.

    Article  CAS  PubMed  Google Scholar 

  57. Watkins P. COMT inhibitors and liver toxicity. Neurology. 2000;55(11 Suppl 4):S51–6.

    CAS  PubMed  Google Scholar 

  58. Waters C. Catechol-O-methyltransferase (COMT) inhibitors in Parkinson’s disease. J Am Geriatr Soc. 2000;48:692–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Walsh .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Walsh, S.J., Katz, K.D. (2015). Antiparkinsonian Agents. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics