Skip to main content

Hybrid Materials for Molecular Sieves

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Hybrid microporous organosilica membranes for molecular separations made by acid-catalyzed solgel synthesis from bridged silsesquioxane precursors have demonstrated good performance in terms of flux and selectivity and remarkable hydrothermal stability in various pervaporation and gas separation processes. The availability of wide range of α,ω-bis(trialkoxysilyl)alkane and 1,4-bis(triethoxysilyl)benzene precursors allows tuning of membrane properties such as pore size and chemistry. This chapter presents an overview of the synthesis and application of hybrid organosilica microporous membranes in liquid and gas separation processes. After a concise discussion of the history of solgel-derived microporous ceramic membranes for molecular separations, the solgel chemistry of bridged silsesquioxanes and all relevant processing steps needed to obtain a supported microporous films suitable for molecular separations are discussed. The performance of these membranes is correlated with the membrane compositional properties, such as nature, stiffness and length of the bridging group, and details of the solgel process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adewole JK, Ahmad AL, Ismail S, Leo CP. Current challenges in membrane separation of CO2 from natural gas: a review. Int J Greenhouse Gas Control. 2013;17:46–65.

    Article  Google Scholar 

  • Agirre I, Guemez MB, van Veen HM, Motelica A, Vente JF, Arias PL. Acetalization reaction of ethanol with butyraldehyde coupled with pervaporation. Semi-batch pervaporation studies and resistance of HybSi (R) membranes to catalyst impacts. J Membr Sci. 2011;371(1–2):179–88.

    Article  Google Scholar 

  • Agirre I, Arias PL, Castricum HL, Creatore M, ten Elshof JE, Paradis GG, et al. Hybrid organosilica membranes and processes: status and outlook. Sep Purif Technol. 2014;121:2–12.

    Article  Google Scholar 

  • Besselink R, Venkatachalam S, van Wullen L, ten Elshof J. Incorporation of niobium into bridged silsesquioxane based silica networks. J Sol-Gel Sci Technol. 2014;70(3):473–81.

    Article  Google Scholar 

  • Besselink R, Qureshi HF, Winnubst L, ten Elshof JE. A novel malonamide bridged silsesquioxane precursor for enhanced dispersion of transition metal ions in hybrid silica membranes. Microporous Mesoporous Mater. 2015;214:45–53.

    Article  Google Scholar 

  • Boffa V, ten Elshof JE, Petukhov AV, Blank DHA. Microporous niobia-silica membrane with very low CO2 permeability. ChemSusChem. 2008;1(5):437–43.

    Article  Google Scholar 

  • Boffa V, Castricum HL, Garcia R, Schmuhl R, Petukhov AV, Blank DHA, et al. Structure and growth of polymeric niobia-silica mixed-oxide sols for microporous molecular sieving membranes: a SAXS study. Chem Mater. 2009;21(9):1822–8.

    Article  Google Scholar 

  • Boffa V, Magnacca G, Jorgensen LB, Wehner A, Dornhofer A, Yue YZ. Toward the effective design of steam-stable silica-based membranes. Microporous Mesoporous Mater. 2013;179:242–9.

    Article  Google Scholar 

  • Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Boston: Academic; 1990. 912 p.

    Google Scholar 

  • Campaniello J, Engelen CWR, Haije WG, Pex P, Vente JF. Long-term pervaporation performance of microporous methylated silica membranes. Chem Commun. 2004;7:834–5.

    Article  Google Scholar 

  • Castricum HL, Kreiter R, van Veen HM, Blank DHA, Vente JF, ten Elshof JE. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability. J Membr Sci. 2008a;324(1–2):111–8.

    Article  Google Scholar 

  • Castricum HL, Sah A, Geenevasen JAJ, Kreiter R, Blank DHA, Vente JF, et al. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes. J Sol-Gel Sci Technol. 2008b;48(1–2):11–7.

    Article  Google Scholar 

  • Castricum HL, Sah A, Kreiter R, Blank DHA, Vente JF, ten Elshof JE. Hybrid ceramic nanosieves: stabilizing nanopores with organic links. Chem Commun. 2008c;9:1103–5.

    Article  Google Scholar 

  • Castricum HL, Sah A, Kreiter R, Blank DHA, Vente JF, ten Elshof JE. Hydrothermally stable molecular separation membranes from organically linked silica. J Mater Chem. 2008d;18(18):2150–8.

    Article  Google Scholar 

  • Castricum HL, Paradis GG, Mittelmeijer-Hazeleger MC, Kreiter R, Vente JF, ten Elshof JE. Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group. Adv Funct Mater. 2011;21(12):2319–29.

    Article  Google Scholar 

  • Castricum HL, Paradis GG, Mittelmeijer-Hazeleger MC, Bras W, Eeckhaut G, Vente JF, et al. Tuning the nanopore structure and separation behavior of hybrid organosilica membranes. Microporous Mesoporous Mater. 2014;185:224–34.

    Article  Google Scholar 

  • Castricum HL, Qureshi HF, Nijmeijer A, Winnubst L. Hybrid silica membranes with enhanced hydrogen and CO2 separation properties. J Membr Sci. 2015;488:121–8.

    Article  Google Scholar 

  • Chang KS, Yoshioka T, Kanezashi M, Tsuru T, Tung KL. A molecular dynamics simulation of a homogeneous organic-inorganic hybrid silica membrane. Chem Commun. 2010;46(48):9140–2.

    Article  Google Scholar 

  • Chang KS, Yoshioka T, Kanezashi M, Tsuru T, Tung KL. Molecular simulation of micro-structures and gas diffusion behavior of organic-inorganic hybrid amorphous silica membranes. J Membr Sci. 2011;381(1–2):90–101.

    Article  Google Scholar 

  • Chapman PD, Oliveira T, Livingston AG, Li K. Membranes for the dehydration of solvents by pervaporation. J Membr Sci. 2008;318(1–2):5–37.

    Article  Google Scholar 

  • de Vos RM, Verweij H. High-selectivity, high-flux silica membranes for gas separation. Science. 1998;279(5357):1710–1.

    Article  Google Scholar 

  • de Vos RM, Maier WF, Verweij H. Hydrophobic silica membranes for gas separation. J Membr Sci. 1999;158(1–2):277–88.

    Article  Google Scholar 

  • Dubois G, Volksen W, Magbitang T, Miller RD, Gage DM, Dauskardt RH. Molecular network reinforcement of sol-gel glasses. Adv Mater. 2007;19(22):3989–94.

    Article  Google Scholar 

  • Elferink WJ, Nair BN, DeVos RM, Keizer K, Verweij H. Sol-gel synthesis and characterization of microporous silica membranes.2. Tailor-making porosity. J Colloid Interface Sci. 1996;180(1):127–34.

    Article  Google Scholar 

  • Fotou GP, Lin YS, Pratsinis SE. Hydrothermal stability of pure and modified microporous silica membranes. J Mater Sci. 1995;30(11):2803–8.

    Article  Google Scholar 

  • Gallego-Lizon T, Edwards E, Lobiundo G, dos Santos LF. Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes. J Membr Sci. 2002;197(1–2):309–19.

    Article  Google Scholar 

  • Glatter O, Kratky O. Small angle X-ray scattering. London: Academic Press. 1982: 525 p.

    Google Scholar 

  • Ibrahim SM, Xu R, Nagasawa H, Naka A, Ohshita J, Yoshioka T, et al. A closer look at the development and performance of organic-inorganic membranes using 2,4,6-tris- 3(triethoxysilyl)-1-propoxyl -1,3,5-triazine (TTESPT). RSC Adv. 2014a;4(24):12404–7.

    Article  Google Scholar 

  • Ibrahim SM, Xu R, Nagasawa H, Naka A, Ohshita J, Yoshioka T, et al. Insight into the pore tuning of triazine-based nitrogen-rich organoalkoxysilane membranes for use in water desalination. RSC Adv. 2014b;4(45):23759–69.

    Article  Google Scholar 

  • Kanezashi M, Yada K, Yoshioka T, Tsuru T. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability. J Am Chem Soc. 2009;131(2):414–5.

    Article  Google Scholar 

  • Kanezashi M, Yada K, Yoshioka T, Tsuru T. Organic-inorganic hybrid silica membranes with controlled silica network size: preparation and gas permeation characteristics. J Membr Sci. 2010;348(1–2):310–8.

    Article  Google Scholar 

  • Kanezashi M, Kawano M, Yoshioka T, Tsuru T. Organic-inorganic hybrid silica membranes with controlled silica network size for propylene/propane separation. Ind Eng Chem Res. 2012a;51(2):944–53.

    Article  Google Scholar 

  • Kanezashi M, Shazwani WN, Yoshioka T, Tsuru T. Separation of propylene/propane binary mixtures by bis(triethoxysilyl) methane (BTESM)-derived silica membranes fabricated at different calcination temperatures. J Membr Sci. 2012b;415:478–85.

    Article  Google Scholar 

  • Kanezashi M, Miyauchi S, Nagasawa H, Yoshioka T, Tsuru T. Pore size control of Al-doping into bis (triethoxysilyl) methane (BTESM)-derived membranes for improved gas permeation properties. RSC Adv. 2013;3(30):12080–3.

    Article  Google Scholar 

  • Kanezashi M, Miyauchi S, Nagasawa H, Yoshioka T, Tsuru T. Gas permeation properties through Al-doped organosilica membranes with controlled network size. J Membr Sci. 2014;466:246–52.

    Article  Google Scholar 

  • Keizer K, Uhlhorn RJR, Vanvuren RJ, Burggraaf AJ. Gas separation mechanisms in microporous modified gamma-Al2O3 membranes. J Membr Sci. 1988;39(3):285–300.

    Article  Google Scholar 

  • Kreiter R, Rietkerk MDA, Castricum HL, van Veen HM, ten Elshof JE, Vente JF. Stable hybrid silica nanosieve membranes for the dehydration of lower alcohols. ChemSusChem. 2009;2(2):158–60.

    Article  Google Scholar 

  • Kreiter R, Rietkerk MDA, Castricum HL, van Veen HM, ten Elshof JE, Vente JF. Evaluation of hybrid silica sols for stable microporous membranes using high-throughput screening. J Sol-Gel Sci Technol. 2011;57(3):245–52.

    Article  Google Scholar 

  • Leenaars AFM, Keizer K, Burggraaf AJ. The preparation and characterization of alumina membranes with ultra-fine pores. J Mater Sci. 1984;19(4):1077–88.

    Article  Google Scholar 

  • Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P. Universality in colloid aggregation. Nature. 1989;339(6223):360–2.

    Article  Google Scholar 

  • Lin YS, Kumakiri I, Nair BN, Alsyouri H. Microporous inorganic membranes. Sep Purif Methods. 2002;31(2):229–379.

    Article  Google Scholar 

  • Loy DA, Carpenter JP, Myers SA, Assink RA, Small JH, Greaves J, et al. Intramolecular condensation reactions of alpha, omega-bis(triethoxysilyl)alkanes. Formation of cyclic disilsesquioxanes. J Am Chem Soc. 1996;118(35):8501–2.

    Article  Google Scholar 

  • Lu GQ, da Costa JCD, Duke M, Giessler S, Socolow R, Williams RH, et al. Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci. 2007;314(2):589–603.

    Article  Google Scholar 

  • Maene N, Nair BN, D’Hooghe P, Nakao SI, Keizer K. Silica-polymers for processing gas separation membranes: high temperature growth of fractal structure. J Sol-Gel Sci Technol. 1998;12(2):117–34.

    Article  Google Scholar 

  • Nair BN, Keizer K, Suematsu H, Suma Y, Kaneko N, Ono S, et al. Synthesis of gas and vapor molecular sieving silica membranes and analysis of pore size and connectivity. Langmuir. 2000;16(10):4558–62.

    Article  Google Scholar 

  • Ockwig NW, Nenoff TM. Membranes for hydrogen separation. Chem Rev. 2007;107(10):4078–110.

    Article  Google Scholar 

  • Paradis GG, Kreiter R, van Tuel MMA, Nijmeijer A, Vente JF. Amino-functionalized microporous hybrid silica membranes. J Mater Chem. 2012;22(15):7258–64.

    Article  Google Scholar 

  • Paradis GG, Shanahan DP, Kreiter R, van Veen HM, Castricum HL, Nijmeijer A, et al. From hydrophilic to hydrophobic HybSi (R) membranes: a change of affinity and applicability. J Membr Sci. 2013;428:157–62.

    Article  Google Scholar 

  • Prabhu AK, Oyama ST. Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases. J Membr Sci. 2000;176(2):233–48.

    Article  Google Scholar 

  • Qi H, Han J, Xu NP, Bouwmeester HJM. Hybrid organic-inorganic microporous membranes with high hydrothermal stability for the separation of carbon dioxide. ChemSusChem. 2010;3(12):1375–8.

    Article  Google Scholar 

  • Qi H, Chen HR, Li L, Zhu GZ, Xu NP. Effect of Nb content on hydrothermal stability of a novel ethylene-bridged silsesquioxane molecular sieving membrane for H2/CO2 separation. J Membr Sci. 2012;421:190–200.

    Article  Google Scholar 

  • Qureshi HF, Nijmeijer A, Winnubst L. Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes. J Membr Sci. 2013;446:19–25.

    Article  Google Scholar 

  • Qureshi HF, Besselink R, ten Elshof JE, Nijmeijer A, Winnubst L. Doped microporous hybrid silica membranes for gas separation. J Sol-Gel Sci Technol. 2015;75(1):180–8.

    Article  Google Scholar 

  • Sekulic J, Luiten MWJ, ten Elshof JE, Benes NE, Keizer K. Microporous silica and doped silica membrane for alcohol dehydration by pervaporation. Desalination. 2002;148(1–3):19–23.

    Article  Google Scholar 

  • Sekulic J, ten Elshof JE, Blank DHA. A microporous titania membrane for nanofiltration and pervaporation. Adv Mater. 2004;16(17):1546–50.

    Article  Google Scholar 

  • Shea KJ, Loy DA. A mechanistic investigation of gelation. The sol-gel polymerization of precursors to bridged polysilsesquioxanes. Acc Chem Res 2001;34(9):707–16.

    Google Scholar 

  • Shimoyama T, Yoshioka T, Nagasawa H, Kanezashi M, Tsuru T. Molecular dynamics simulation study on characterization of bis(triethoxysilyl)-ethane and bis(triethoxysilyl)ethylene derived silica-based membranes. Desalin Water Treat. 2013;51(25–27):5248–53.

    Article  Google Scholar 

  • Spijksma GI, Huiskes C, Benes NE, Kruidhof H, Blank DHA, Kessler VG, et al. Microporous zirconia-titania composite membranes derived from diethanolamine-modified precursors. Adv Mater. 2006;18(16):2165–8.

    Article  Google Scholar 

  • ten Elshof JE, Abadal CR, Sekulic J, Chowdhury SR, Blank DHA. Transport mechanisms of water and organic solvents through microporous silica in the pervaporation of binary liquids. Microporous Mesoporous Mater. 2003;65(2–3):197–208.

    Article  Google Scholar 

  • Tsuru T, Takata Y, Kondo H, Hirano F, Yoshioka T, Asaeda M. Characterization of sol-gel derived membranes and zeolite membranes by nanopermporometry. Sep Purif Technol. 2003;32(1–3):23–7.

    Article  Google Scholar 

  • Tsuru T, Shintani H, Yoshioka T, Asaeda M. A bimodal catalytic membrane having a hydrogen-permselective silica layer on a bimodal catalytic support: preparation and application to the steam reforming of methane. Appl Catal A Gen. 2006;302(1):78–85.

    Article  Google Scholar 

  • Tsuru T, Shibata T, Wang JH, Lee HR, Kanezashi M, Yoshioka T. Pervaporation of acetic acid aqueous solutions by organosilica membranes. J Membr Sci. 2012;421:25–31.

    Article  Google Scholar 

  • Uhlhorn RJR, Keizer K, Burggraaf AJ. Gas and surface diffusion in modified gamma-alumina systems. J Membr Sci. 1989;46(2–3):225–41.

    Article  Google Scholar 

  • Uhlhorn RJR, Keizer K, Burggraaf AJ. Gas-transport and separation with ceramic membranes. 2. Synthesis and separation properties of microporous membranes. J Membr Sci. 1992;66(2–3):271–87.

    Article  Google Scholar 

  • van Veen HM, Rietkerk MDA, Shanahan DP, van Tuel MMA, Kreiter R, Castricum HL, et al. Pushing membrane stability boundaries with HybSi (R) pervaporation membranes. J Membr Sci. 2011;380(1–2):124–31.

    Google Scholar 

  • Wei Q, Wang F, Nie ZR, Song CL, Wang YL, Li QY. Highly hydrothermally stable microporous silica membranes for hydrogen separation. J Phys Chem B. 2008;112(31):9354–9.

    Article  Google Scholar 

  • Xu R, Ibrahim SM, Kanezashi M, Yoshioka T, Ito K, Ohshita J, et al. New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges. ACS Appl Mater Interfaces. 2014;6(12):9357–64.

    Article  Google Scholar 

  • Zhang Y, Sunarso J, Liu SM, Wang R. Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenhouse Gas Control. 2013;12:84–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan E. ten Elshof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

ten Elshof, J.E. (2016). Hybrid Materials for Molecular Sieves. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics