Skip to main content

Carbon Aerogels

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Carbon aerogels are a unique class of high-surface-area materials derived by sol–gel chemistry. Their high mass-specific surface area and electrical conductivity, environmental compatibility, and chemical inertness make them very promising materials for many applications, such as energy storage, catalysis, sorbents, and desalination. Since the first carbon aerogels were made via pyrolysis of resorcinol-formaldehyde-based organic aerogels, in the late 1980s, the field has really grown. Recently, in addition to RF-derived amorphous carbon aerogels, several other carbon allotropes have been realized in aerogel form: carbon nanotubes, graphene, and diamond. Furthermore, use of the carbon-based aerogels as a platform for making polymer composites has produced order of magnitude improvements in the polymer’s conductive and mechanical properties. Finally, functionalization of these new carbon aerogels via surface engineering has led to a host of interesting composite aerogels that could make aerogels promising candidates for an even wider array of applications. In this chapter, we will present recent work covering the novel synthesis of CNT, graphene, and composite aerogels, as well as their performance in a number of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Muhtaseb SA, Ritter JA. Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater. 2003;15(2):101–14.

    Article  Google Scholar 

  • An GM, et al. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon. 2007;45(9):1795–801.

    Article  Google Scholar 

  • Bai H, et al. On the gelation of graphene oxide. J Phys Chem C. 2011;115(13):5545–51.

    Article  Google Scholar 

  • Baumann TF, et al. Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Adv Mater. 2005;17(12):1546–8.

    Article  Google Scholar 

  • Baumann TF, et al. High surface area carbon aerogel monoliths with hierarchical porosity. J Non-Cryst Solids. 2008;354(29):3513–5.

    Article  Google Scholar 

  • Bi H, et al. Low temperature casting of graphene with high compressive strength. Adv Mater. 2012;24(37):5124–9.

    Article  Google Scholar 

  • Bryning MB, et al. Carbon nanotube aerogels. Adv Mater. 2007;19(5):661.

    Article  Google Scholar 

  • Chen W, Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale. 2011;3(8):3132–7.

    Article  Google Scholar 

  • Chen G, Wang ZY, Xia DG. One-pot synthesis of carbon nanotube@SnO2-Au coaxial nanocable for lithium-ion batteries with high rate capability. Chem Mater. 2008a;20(22):6951–6.

    Article  Google Scholar 

  • Chen Y-J, et al. High capacity and excellent cycling stability of single-walled carbon nanotube/SnO[sub 2] core-shell structures as Li-insertion materials. Appl Phys Lett. 2008b;92(22):223101.

    Article  Google Scholar 

  • Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev. 2012;112(11):6027–53.

    Article  Google Scholar 

  • Ding KL, et al. A simple route to coat mesoporous SiO2 layer on carbon nanotubes. J Mater Chem. 2009;19(22):3725–31.

    Article  Google Scholar 

  • Du C, et al. A novel CNT@SnO2 core-sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochem Commun. 2009;11(2):496.

    Article  Google Scholar 

  • Du G, et al. Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim Acta. 2010;55(7):2582.

    Article  Google Scholar 

  • Dyke CA, Tour JM. Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A. 2004;108(51):11151–9.

    Article  Google Scholar 

  • Fu Q, Lu CG, Liu J. Selective coating of single wall carbon nanotubes with thin SiO2 layer. Nano Lett. 2002;2(4):329–32.

    Article  Google Scholar 

  • Fu Y, et al. Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater Lett. 2009;63(22):1946.

    Article  Google Scholar 

  • Gao W, et al. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.

    Article  Google Scholar 

  • Gavalas VG, et al. Carbon nanotube Sol–gel composite materials. Nano Lett. 2001;1(12):719.

    Article  Google Scholar 

  • Gong J, Sun J, Chen Q. Micromachined sol–gel carbon nanotube/SnO2 nanocomposite hydrogen sensor. Sensors Actuators B Chem. 2008;130(2):829.

    Article  Google Scholar 

  • Gross J, et al. Elastic nonlinearity of aerogels. Phys Rev B. 1992;45(22):12774–7.

    Article  Google Scholar 

  • Grossiord N, et al. High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv Funct Mater. 2008;18(20):3226–34.

    Article  Google Scholar 

  • Guo SJ, et al. Carbon nanotube/silica coaxial nanocable as a three-dimensional support for loading diverse ultra-high-density metal nanostructures: facile preparation and use as enhanced materials for electrochemical devices and SERS. Chem Mater. 2009;21(11):2247–57.

    Article  Google Scholar 

  • Halpin JC. Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater. 1969;3:732.

    Google Scholar 

  • Han W-Q, Zettl A. Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 2003;3(5):681.

    Article  Google Scholar 

  • Hernadi K, et al. Synthesis of MWNT-based composite materials with inorganic coating. Acta Mater. 2003;51(5):1447–52.

    Article  Google Scholar 

  • Hsu RS, Higgins D, Chen Z. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells. Nanotechnology. 2010;21(16):165705.

    Article  Google Scholar 

  • Hummers W, Offman R. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(null):1339.

    Google Scholar 

  • Iler RK. The chemistry of silica. New York: Wiley; 1979. p. 896.

    Google Scholar 

  • Kucheyev SO, et al. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2. J Electron Spectrosc Relat Phenom. 2005;144:609–612.

    Article  Google Scholar 

  • Kucheyev SO et al. Nanoengineering mechanically robust aerogels via control of foam morphology. Appl Phys Lett. 2006;89(4).

    Google Scholar 

  • Kuhn J, et al. In situ infrared observation of the pyrolysis process of carbon aerogels. J Non-Cryst Solids. 1998;225:58–63.

    Article  Google Scholar 

  • Lee SA, et al. A mesoporous composite template composed of self-assembled silica nanotube and multi-walled carbon nanotube. Microporous Mesoporous Mater. 2008;111(1–3):292–9.

    Article  Google Scholar 

  • Leventis N, et al. Nanoengineering strong silica aerogels. Nano Lett. 2002;2(9):957–60.

    Article  Google Scholar 

  • Li JH, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J Mater Chem A. 2014;2(9):2934–41.

    Article  Google Scholar 

  • Liu F, Seo TS. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv Funct Mater. 2010;20(12):1930–6.

    Article  Google Scholar 

  • Liu B, Zeng HC. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem Mater. 2008;20(8):2711–8.

    Article  Google Scholar 

  • Ma Y, et al. Core excitons and vibronic coupling in diamond and graphite. Phys Rev Lett. 1993;71(22):3725–8.

    Article  Google Scholar 

  • Mathur RB, et al. Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Compos. 2008;29(7):717–27.

    Article  Google Scholar 

  • McAllister MJ, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater. 2007;19(18):4396–404.

    Article  Google Scholar 

  • Mishra A, et al. Synthesis of carbon nanotube-TiO2 nanotubular material for reversible hydrogen storage. Nanotechnology. 2008;19(44):445607.

    Article  Google Scholar 

  • Morris CA, et al. Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science. 1999;284(5414):622–4.

    Article  Google Scholar 

  • Niu Z, et al. A leavening strategy to prepare reduced graphene oxide foams. Adv Mater. 2012;24:4144–50.

    Article  Google Scholar 

  • Olek M, et al. Quantum dot modified multiwall carbon nanotubes. J Phys Chem B. 2006;110(26):12901–4.

    Article  Google Scholar 

  • Orlanducci S, et al. Nanocrystalline TiO2 on single walled carbon nanotube arrays: towards the assembly of organized C/TiO2 nanosystems. Carbon. 2006;44(13):2839–43.

    Article  Google Scholar 

  • Pajonk GM. Catalytic aerogels. Catal Today. 1997;35(3):319–37.

    Article  Google Scholar 

  • Pauzauskie PJ, et al. Synthesis and characterization of a nanocrystalline diamond aerogel. Proc Natl Acad Sci U S A. 2011;108(21):8550–3.

    Article  Google Scholar 

  • Peigney A, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001;39(4):507.

    Article  Google Scholar 

  • Pekala RW. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci. 1989;24(9):3221–7.

    Article  Google Scholar 

  • Pekala RW, Kong FM. Resorcinol-formaldehyde aerogels and their carbonized derivatives. Abstr Pap Am Chem Soc. 1989;197:113-POLY.

    Google Scholar 

  • Pekala R, Alviso C, LeMay J. Organic aerogels: microstructural dependence of mechanical properties in compression. J Non-Cryst Solids. 1990;125(1):67–75.

    Article  Google Scholar 

  • Pekala RW, et al. New organic aerogels based upon a phenolic-furfural reaction. J Non-Cryst Solids. 1995;188(1–2):34–40.

    Article  Google Scholar 

  • Qiu L, et al. Biomimetic superelastic graphene-based cellular monoliths. Nat Commun. 2012;3:1241.

    Article  Google Scholar 

  • Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed. 2003;42(40):4908–11.

    Article  Google Scholar 

  • Sheng KX, et al. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 2011;26(1):9–15.

    Article  Google Scholar 

  • Shin HS, et al. Photoinduced self-assembly of TiO2 and SiO2 nanoparticles on sidewalls of single-walled carbon nanotubes. Adv Mater. 2007;19(19):2873.

    Article  Google Scholar 

  • Stöhr J. NEXAFS spectroscopy, Springer series in surface sciences. Berlin/Heidelberg/New York: Springer; 1992.

    Book  Google Scholar 

  • Sui Z, et al. Easy and green synthesis of reduced graphite oxide-based hydrogels. Carbon. 2011;49(13):4314–21.

    Article  Google Scholar 

  • Sun HY, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater. 2013;25(18):2554–60.

    Article  Google Scholar 

  • Taguchi A, Schuth F. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2005;77(1):1–45.

    Article  Google Scholar 

  • Takai K, et al. Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects. Phys Rev B. 2003;67(21):214202.

    Article  Google Scholar 

  • Tang ZH, et al. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed. 2010;49(27):4603–7.

    Article  Google Scholar 

  • Thostenson ET, Ren ZF, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61(13):1899–912.

    Article  Google Scholar 

  • Wang J, Ellsworth M. Graphene aerogels. ECS Trans. 2009;19(5):241.

    Article  Google Scholar 

  • Wang J, et al. Carbon aerogel composite electrodes. Anal Chem. 1993;65(17):2300–3.

    Article  Google Scholar 

  • Wang WD, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J Mol Catal A Chem. 2005;235(1–2):194–9.

    Article  Google Scholar 

  • Wang WD, et al. Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater Res Bull. 2008a;43(4):958–67.

    Article  Google Scholar 

  • Wang D-W, et al. Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv Funct Mater. 2008b;18(23):3787–93.

    Article  Google Scholar 

  • Winey KI, Kashiwagi T, Mu MF. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull. 2007;32(4):348–53.

    Article  Google Scholar 

  • Woignier T, et al. Different kinds of structure in aerogels: relationships with the mechanical properties. J Non-Cryst Solids. 1998;241:45.

    Article  Google Scholar 

  • Worsley MA, et al. Mechanically robust and electrically conductive carbon nanotube foams. Appl Phys Lett. 2009a;94(7):073115.

    Article  Google Scholar 

  • Worsley MA, et al. Stiff and electrically conductive composites of carbon nanotube aerogels and polymers. J Mater Chem. 2009b;19(21):3370–2.

    Article  Google Scholar 

  • Worsley MA, et al. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading. Acta Mater. 2009c;57(17):5131–6.

    Article  Google Scholar 

  • Worsley MA, et al. Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc. 2010;132(40):14067–9.

    Article  Google Scholar 

  • Worsley MA, et al. Carbon scaffolds for stiff and highly conductive monolithic oxide-carbon nanotube composites. Chem Mater. 2011a;23(12):3054–61.

    Article  Google Scholar 

  • Worsley MA, et al. High surface area, sp(2)-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett. 2011b;2(8):921–5.

    Article  Google Scholar 

  • Worsley MA, et al. Mechanically robust 3D graphene macroassembly with high surface area. Chem Commun. 2012;48(67):8428–30.

    Article  Google Scholar 

  • Worsley MA, et al. Thick, binder-free carbon-nanotube-based electrodes for high power applications. Ecs J Solid State Sci Technol. 2013;2(10):M3140–4.

    Article  Google Scholar 

  • Worsley MA, et al. Toward macroscale, isotropic carbons with graphene-sheet-like electrical and mechanical properties. Adv Funct Mater. 2014;24(27):4259–64.

    Article  Google Scholar 

  • Wu Z-S, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano. 2009;3(2):411.

    Article  Google Scholar 

  • Xie J, Varadan VK. Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials. Mater Chem Phys. 2005;91(2–3):274.

    Article  Google Scholar 

  • Xu Y, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010;4(7):4324.

    Article  Google Scholar 

  • Yang YD, et al. Electrophoresis coating of titanium dioxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials. Adv Mater. 2007;19(9):1239.

    Article  Google Scholar 

  • Yang M, et al. H2 sensing characteristics of SnO2 coated single wall carbon nanotube network sensors. Nanotechnology. 2010;21(21):215501.

    Article  Google Scholar 

  • Yin S, Niu Z, Chen X. Assembly of graphene sheets into 3D macroscopic structures. Small. 2012;8(16):2458.

    Article  Google Scholar 

  • Yoo E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008;8(8):2277–82.

    Article  Google Scholar 

  • Yu HT, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J Phys Chem C. 2007;111(35):12987–91.

    Article  Google Scholar 

  • Zhang M, et al. Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation. J Mater Chem. 2010;20(28):5835–42.

    Article  Google Scholar 

  • Zhang X, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem. 2011;21(18):6494–7.

    Article  Google Scholar 

  • Zhu C-L, et al. High capacity and good cycling stability of multi-walled carbon nanotube/SnO2 core-shell structures as anode materials of lithium-ion batteries. Mater Res Bull. 2010a;45(4):437.

    Article  Google Scholar 

  • Zhu YW, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010b;22(35):3906–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus A. Worsley or Theodore F. Baumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Worsley, M.A., Baumann, T.F. (2016). Carbon Aerogels. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics