Skip to main content

Sol–Gel Coatings for Electrochromic Devices

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Electrochromic (EC) devices are commercially used as smart windows, displays, and automatically dimming automotive rearview mirrors. EC devices change their optical properties (transmittance or reflection) reversibly by applying a voltage and a current flow due to a reduction and oxidation reaction of the coatings they consist of. This chapter describes first the principles and configurations of electrochromic devices and then reviews the components of the EC devices especially fabricated by the sol–gel technique: the transparent conductive coatings, electrochromic coatings, counter electrodes, and electrolytes. After that the review presents prototypes and EC devices such as EC windows and displays which were realized with the described sol–gel coatings, showing their electrooptical properties, their long-term behavior, as well as their advantages and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aegerter MA. Sol–gel chromogenic materials and devices. In: Reisfeld R, Jorgensen CK, editors. Structure and bonding, vol. 85. Berlin: Springer; 1996. p. 149–94.

    Google Scholar 

  • Aegerter MA. Sol–gel niobium pentoxide: a promising material for electrochemical coatings, batteries, nanocrystalline solar cells and catalysis. Sol Energy Mater Sol Cells. 2001;68:401–22.

    Article  Google Scholar 

  • Aegerter MA, Avellaneda CO, Pawlicka A, Atik M. Electrochromism in materials prepared by the sol–gel process. J Sol–Gel Sci Technol. 1997;8:689–96.

    Google Scholar 

  • Agrawal A, Habibi HR, Agrawal RK, Cronin JP, Roberts DM, Caron-Popowich R, Lapert CM. Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films. Thin Solid Films. 1992;221:239–53.

    Article  Google Scholar 

  • Agrawal A, Cronin JP, Zhang R. Review of solid state electrochromic coatings using sol–gel techniques. Sol Energy Mater Sol Cells. 1993;31:9–21.

    Article  Google Scholar 

  • Artuso F, Picardi G, Bonino F, Decker F, Bencic S, Surca Vuk A, Opara Krašovec U, Orel B. Fe-containing CeVO4 films as Li intercalation transparent counter-electrodes. Electrochim Acta. 2001;6:2077–84.

    Article  Google Scholar 

  • Avellaneda CO, Bulhoes LOS. Intercalation in WO3 and WO3: Li films. Solid State Ion. 2003;165(1–4):59–64.

    Article  Google Scholar 

  • Avellaneda CO, Pawlicka A. Preparation of transparent CeO2–TiO2 coatings for electrochromic devices. Thin Solid Films. 1998;335(1–2):245–8.

    Article  Google Scholar 

  • Avellaneda CO, Macêdo MA, Ariovaldo OF, Aegerter MA. Proceedings of SPIE, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, vol. 2255; 1994; Bellingham. p. 38–51.

    Google Scholar 

  • Avellaneda CO, Dahmouche K, Bulhoes LOS, Pawlicka A. Characterization of an all sol–gel electrochromic device WO3/ormolyte/CeO2–TiO2. J Sol–Gel Sci Technol. 2000;19:447–51.

    Article  Google Scholar 

  • Avellaneda CO, Bueno PR, Bulhoes LOS. Synthesis and electrochromic behavior of lithium-doped WO3 films. J Non Cryst Solids. 2001a;290:115–21.

    Article  Google Scholar 

  • Avellaneda CO, Bueno PR, Faria RC, Bulhões LOS. Electrochromic properties of lithium-doped WO3 films. Electrochim Acta. 2001b;46:1977–81.

    Article  Google Scholar 

  • Avellaneda CO, Dahmouche K, Bulhoes LOS. All sol–gel electrochromic smart windows: CeO2–TiO2/ormolyte/WO3. Mol Cryst Liq Cryst A. 2002;374:113–8.

    Article  Google Scholar 

  • Azens A, Granqvist CG. Electrochromic smart windows: progress on energy efficiency, durability and manufacturability. Proc SPIE. 2001;4458:104–11.

    Article  Google Scholar 

  • Azens A, Granqvist CG. Electrochromic smart windows: energy efficiency and device aspects. J Solid State Electrochem. 2003;7:64–8.

    Article  Google Scholar 

  • Azens A, Kullmann L, Vaivars G, Nordborg H, Granqvist CG. Sputter-deposited nickel oxide for electrochromic applications. Solid State Ion. 1998;113–115:449–56.

    Article  Google Scholar 

  • Azens A, Gustavsson G, Karmhag R, Granqvist CG. Electrochromic devices on polyester foil. Solid State Ion. 2003;165:1–5.

    Article  Google Scholar 

  • Bach U, Corr D, Lupo D, Pichot F, Ryan M. Nanomaterials-based electrochromics for paper-quality displays. Adv Mater. 2002;14(11):845–8.

    Article  Google Scholar 

  • Bange K, Gambke T. Electrochromic materials for optical switching devices. Adv Mater. 1990;2:10–6.

    Article  Google Scholar 

  • Batchelor R. Pilkington PLC, W097/28484. 1997.

    Google Scholar 

  • Baudry P, Rodrigues ACM, Aegerter MA, Bulhoes LO. Dip-coated TiO2–CeO2 films as transparent counter electrode for transmissive electrochromic devices. J Non Cryst Solids. 1990;121(1–3):319–22.

    Article  Google Scholar 

  • Bauer FT, Bechtel JH. Automatic rearview mirror for automotive vehicles. Gentex Corporation, US patent 4,443,057. 1984.

    Google Scholar 

  • Bechtel JH, Byker HJ. Automatic rearview mirror system for automotive vehicles. Gentex Corporation, US patent 4,917,477. 1990.

    Google Scholar 

  • Becker H, Wittkopf H. Variable solar control glazing – an outstanding application for electrochromics. In: Proceedings of the Third International Meeting on Electrochromics; London. Proc Electrochim Acta. 1999;44:3268.

    Google Scholar 

  • Bell MJ, Skryabin IL. Sustainable Technologies, Australia, WO 9816870.

    Google Scholar 

  • Bell JM, Skryabin IL. Failure modes of sol–gel deposited electrochromic devices. Sol Energy Mater Sol Cells. 1999;56:437–48.

    Article  Google Scholar 

  • Bell JM, Barczynska J, Evans LA, Mac Donald KA, Wang J, Green DC, Smith GB. Electrochromism in sol–gel deposited TiO2 films. In: Proceedings of SPIE, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, vol. 2255; 1994; Bellingham. p. 324–31.

    Google Scholar 

  • Bell JM, Matthews JP, Skryabin IL, Wang J, Monsma BG. Sol–gel deposited electrochromic devices. Renew Energy. 1998;15:312–7.

    Article  Google Scholar 

  • Bell JM, Skryabin IL, Koplick AJ. Large area electrochromic films – preparation and performance. Sol Energy Mater Sol Cells. 2001;68:239–47.

    Article  Google Scholar 

  • Benčič S, Orel B, Šurca A, Lavrenčič Štangar U. Structural and electrochromic properties of nanosized Fe/V-oxide films with FeVO4 and Fe2V4O13 grains: comparative studies with crystalline V2O5. Sol Energy. 2000;68:499.

    Article  Google Scholar 

  • Berton MAC, Avellaneda CO. Electrochemical properties of CeO2–SnO2 and CeO2–SnO2:X (X = Li, C, Si) films. Mater Res. 2001;4(4):241–4.

    Article  Google Scholar 

  • Berton MAC, Avellaneda CO, Bulhoes LOS. Thin film of CeO2–SiO2: a new ion-storage layer for smart windows. Sol Energy Mater Sol Cells. 2003;80(4):443–9.

    Article  Google Scholar 

  • Bessière A, Badot JC, Certiat MC, Livage J, Lucas V, Baffler N. Sol–gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate. Electrochim Acta. 2001;46(13–14):2251–6.

    Article  Google Scholar 

  • Béteille F, Boire Ph, Giron J-C. Highly durable all-solid-state elctrochromic glazings. In: Proceedings of SPIE, Switchable Materials and Flat Panel Displays, vol. 3788; 1999 July 21–22; Denver. Bellingham: SPIE. p. 70–4.

    Google Scholar 

  • Boschloo G, Corr D, Cummins D, Fitzmaurice D, Rao SN. PCT Publication No. WO/0127690. 1999.

    Google Scholar 

  • Bueno PR, Avellaneda CO, Faria RC, Bulhoes LOS. Electrochromic properties of undoped and lithium doped Nb2O5 films prepared by the sol–gel method. Electrochim Acta. 2001;46:2113–8.

    Article  Google Scholar 

  • Burdis MS. WO patent 97/31291. 1997 Aug 28.

    Google Scholar 

  • Byker HJ. Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof. Gentex Corporation, US patent 4,902,108. 1990.

    Google Scholar 

  • Byker HJ. Variable reflectance motor vehicle mirror. Gentex Corporation, US patent 5,128,799. 1992.

    Google Scholar 

  • Camino D, Deroo D, Salardenne J, Treuil N. (CeO2) x (TiO2)(1–x): counter electrode materials for lithium electrochromic devices. Sol Energy Mater Sol Cells. 1995;39(2–4):349–66.

    Article  Google Scholar 

  • Cere Koroŝec R, Bukovec P. The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol–gel method. Part II. Thermochim Acta. 2004;410:65–71.

    Article  Google Scholar 

  • Cere Koroŝec R, Bukovec P, Pihlar B, Padežnik Gomilšek J. The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol–gel method. Part I. Thermochim Acta. 2003a;402:57–67.

    Article  Google Scholar 

  • Cere Koroŝec R, Bukovec P, Pihlar B, Šurca Vuk A, Orel B, Dražič G. Preparation and structural investigations of electrochromic nanosized NiO x made via the sol–gel route. Solid State Ion. 2003b;165:191–200.

    Article  Google Scholar 

  • Chemseddine A, Morineau R, Livage J. Electrochromism of colloidal tungsten oxide. Solid State Ion. 1983;9–10:357–61.

    Article  Google Scholar 

  • Cheng SD, Kam CH, Zhou Y, Lam YL, Chan YC, Sun Z, Gan WS, Pita K. The microstructure dependence on processing temperature in sol–gel derived thin ferroelectric films of LiNbO3 on SiO2/Si substrate. Ferroelectrics. 1999;231(1–4):805–10.

    Google Scholar 

  • Cheng W, Baudrin E, Dunn B, Zink JI. Synthesis and electrochromic properties of mesoporous tungsten oxide. J Mater Chem. 2001;11:92–7.

    Article  Google Scholar 

  • Cinnseleach R, Boschloo G, Rao SN, Fitzmaurice D. Electrochromic windows based on viologen-modified nanostructured TiO2 films. Sol Energy Mater Sol Cells. 1998;55:215–33.

    Article  Google Scholar 

  • Cogan SF, Plante TD, Parker MA, Rauh RD. Electrochromic solar attenuation in crystalline and amorphous Li x WO3. Sol Energy Mater Sol Cells. 1986;14:185–93.

    Article  Google Scholar 

  • Coleman JP, Lynch AT, Madhukar P, Wagenknecht JH. Antimony-doped tin oxide powders; Electrochromic materials for printed displays. Sol Energy Mater Sol Cells. 1999;56:375–94.

    Article  Google Scholar 

  • Corr D, Bach U, Fay D, Kinsella M, McAtamney C, O’Reilly F, Rao SN, Stobie N. Coloured electrochromic “paper-quality” displays based on modified mesoporous electrodes. Solid State Ion. 2003;165:315–21.

    Article  Google Scholar 

  • Cronin JP, Tarico DJ, Agrawal A, Zhang RL. Method for depositing electrochromic layers. US patent 5,252,354. 1993a Oct 12.

    Google Scholar 

  • Cronin JP, Tarico DJ, Tonazzi JCC, Agrawal A, Kennedy SR. Microstructure and properties of sol–gel deposited WO3 coatings for large area electrochromic windows. Sol Energy Mater Sol Cells. 1993b;29(4):371–86.

    Google Scholar 

  • Cronin JP, Tarico DJ, Agrawal A, Zhang RL. Method for depositing high performing electrochromic layers. US patent 5,277,986. 1994 Jan 11.

    Google Scholar 

  • Cummins D, Boschloo G, Ryan M, Corr D, Rao SN, Fitzmaurice D. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J Phys Chem B. 2000;104:11449–59.

    Article  Google Scholar 

  • Czanderna AW, Benson DK, Jorgensen GJ, Zhang J-G, Tracy CE, Deb SK. Durability issues and service lifetime prediction of electrochromic windows for buildings applications. Sol Energy Mater Sol Cells. 1999;56:419–36.

    Article  Google Scholar 

  • Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Aegerter MA, Judeinstein P. Investigation of new ion-conducting ORMOLYTES: structure and properties. J Sol–Gel Sci Technol. 1997;8(1–3):711–5.

    Google Scholar 

  • Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Judeinstein P, Aegerter MA. New Li+ ion-conducting ormolytes. Sol Energy Mater Sol Cells. 1998;54:1–8.

    Article  Google Scholar 

  • de Vries GC. Electrochromic variable transmission glass for picture tubes. Electrochim Acta. 1999;44:3185–95.

    Article  Google Scholar 

  • Denesuk M, Cronin JP, Kennedy SR, Law KJ, Nielson GF, Uhlmann DR. Coloration behaviour of hybrid electrochromic films. In: Proceedings of SPIE optical materials technology for energy efficiency and solar energy conversion XIII, vol. 2255; 1994; Bellingham. SPIE. p. 52–61.

    Google Scholar 

  • Djaoued Y, Badilescu S, Ashrit PV, Bersani D, Lottici PP, Brüning R. Low temperature sol–gel preparation of nanocrystalline TiO2 thin films. J Sol–Gel Sci Technol. 2002;24:247–54.

    Article  Google Scholar 

  • Doeuff S, Sanchez C. Electrochromic properties of anatase TiO2 films prepared by the sol–gel process. CR Acad Sci II. 1989;309(6):531–4.

    Google Scholar 

  • Dornan CA, Habibi H, Lynam NR, McCabe IA. Electrochromic mirrors and devices. Donnelly Corporation, WO patent 95 30 495. 1994.

    Google Scholar 

  • Edwards MOM, Boschloo G, Gruszecki T, Petterson H, Sohlberg R, Hagfeldt A. “Electric-paint displays” with carbon counter electrode. Electrochim Acta. 2001;46:2187–93.

    Article  Google Scholar 

  • Faria RC, Bulhões LOS. A novel synthetic route to Nb2O5 thin films for electrochromic devices. J Electrochem Soc. 1994;141(3):L29–30.

    Article  Google Scholar 

  • Fitzmaurice D, Rao SN, Cinnseleach R, Enright B. European Patent Application 98/9032735. 1998.

    Google Scholar 

  • Garcia J, Allen S, Rougier A, Blyr A. Synthesis and crystal structures of dimethylaminoethanol adducts of Ni(II)acetate and Ni(II)acetylacetonate. Precursors for the sol–gel deposition of electrochromic nickel oxide thin films. J Mater Chem. 2001;11:2329–34.

    Article  Google Scholar 

  • Garcia-Miquel JL, Zhang Q, Allen SJ, Rougier A, Blyr A, Davies HO, Jones AC, Leedham TJ, Williams PA, Impey SA. Nickel oxide sol–gel films from nickel diacetate for electrochromic applications. Thin Solid Films. 2003;424:165–70.

    Article  Google Scholar 

  • Georg A, Graf W, Opara Krasovec U, Schulz J, Orel B, Wittwer V. Gasochromic coatings. In: Aegerter MA, Mennig M, editors. Sol–gel technologies for glass producers and users. Kluwer; 2004.

    Google Scholar 

  • Ghodsi FE, Tepehan FZ, Tepehan GG. Optical and electrochromic properties of sol–gel made CeO2–TiO2 thin films. Electrochim Acta. 1999;44:3127–36.

    Article  Google Scholar 

  • Gläser HJ. Dünnfilmtechnologie auf Flachglas. Schondorf: Verlag Karl Hoffmann; 1999. p. 291–3.

    Google Scholar 

  • Götsche J, Hinsh A, Wittwer V. Electrochromic mixed WO3TiO2 thin films produced by sputtering and the sol–gel technique: a comparison. Sol Energy Mater Sol Cells. 1993;31:415–28.

    Article  Google Scholar 

  • Granqvist CG. Transparent conductive electrodes for electrochromic devices: a review. Appl Phys. 1993a;A57:19–24.

    Article  Google Scholar 

  • Granqvist CG. Electrochromics and smart windows. Solid State Ion. 1993b;60(1–3):213–4.

    Article  Google Scholar 

  • Granqvist CG. Handbook of inorganic electrochromic materials. Amsterdam: Elsevier; 1995.

    Google Scholar 

  • Granqvist CG. Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells. 2000;60:201–62.

    Article  Google Scholar 

  • Granqvist CG. “Charge your glasses” with electrochromic glazing. Int Glas Rev. 2001a;2:67–8.

    Google Scholar 

  • Granqvist CG. Electrochromic windows: toward an energy efficient architecture. Interface. 2001b;3:18–9.

    Google Scholar 

  • Granqvist CG, Avendaño E, Azens A. Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films. 2003;442:201–11.

    Article  Google Scholar 

  • Grošelj N, Gaberšček M, Opara Krašovec U, Orel B, Dražič G, Judeinstein P. Electrical and IR spectroscopic studies of peroxopolytungstic acid/–inorganic hybrid gels. Solid State Ion. 1999;125:125.

    Article  Google Scholar 

  • Hagfeld A, Vlachopoulos N, Gilbert S, Grätzel M. Electrochromic switching with nanocrystalline TiO2 semiconductor films. In: Proceedings of SPIE, optical materials technology for energy efficiency and solar energy conversion XIII, vol. 2255; 1994a; Bellingham. SPIE. p. 297–303.

    Google Scholar 

  • Hagfeld A, Vlachopoulos N, Grätzel M. Fast electrochromic switching with nanocrystalline oxide semiconductor films. J Electrochem Soc. 1994b;141:L82–4.

    Google Scholar 

  • Heusing S, Zapp P. Memory effect of large area electrochromic devices. In: Jahresbericht 1999. Saarbruecken: INM Institut fuer Neue Materialien. 1999 p. 22–3.

    Google Scholar 

  • Heusing S, Sun DL, Otero-Anaya J, Aegerter MA. Grey, brown and blue coloring sol-gel electrochromic devices. Thin Solid Films. 2006;502:240--5.

    Google Scholar 

  • Heusing S, Munro B, Zapp P, Mennig M, Schmidt H. Effect of ITO and FTO conductive layers on switching properties of large area sol–gel electrochromic devices. In: Proceedings of the International Meeting on Electrochromism, IME-3; 1998 Sept 7–9; London.

    Google Scholar 

  • Heusing S, Munro B, Koch T, Zapp P, Mennig M, Schmidt H. Weiterentwicklung elektrochromer Dünnschichtsysteme auf Glas über naßchemische Verfahren. In: Proceedings of the 73 Glastechnische Tagung; 1999 May 31–June 02; Halle (Saale). p. 40–3.

    Google Scholar 

  • Heusing S, Niegisch N, Zapp P, Mennig M, Schmidt H, Krings LHN, Aartsen HJ. Zur Entwicklung eines großflächigen elektrochromen Displayfensters aus Glas. In: Proceedings of the 743 Glastechnische Tagung; 2000a May 29–31; Ulm. p. 278–81.

    Google Scholar 

  • Heusing S, Niegisch N, Zapp P, Mennig M, Schmidt H, Laackmann P, Krings LHM, Aartsen HJ. Large area electrochromic displays. In: Proceedings of the International Meeting on Electrochromism, IME-4; 2000b Aug 21–23; Uppsala.

    Google Scholar 

  • Heusing S, Sun D-L, Aegerter MA. Grey, brown and blue colouring sol–gel electrochromic devices. In: Proceedings of the 5th International Conference on Coatings on Glass ICCG; 2004 July 4–8; Saarbruecken.

    Google Scholar 

  • Hinokuma K, Ogasawara K, Kishimoto A, Takano S, Kudo T. Electrochromism of spin-coated MoO3 · nH2O thin films from peroxo-polymolybdate. Solid State Ion. 1992;53–56:507–12.

    Article  Google Scholar 

  • Hirano S, Yogo T, Sakamoto W, Takeichi Y, Ono S. Processing of highly oriented LiNbO3 thin films through a metal-organic precursor solution. J Eur Ceram Soc. 2004;24(2):435–40.

    Article  Google Scholar 

  • Huggins RA. Alloy negative electrodes for lithium batteries formed in-situ from oxides. Ionics. 1997;3:245–55.

    Article  Google Scholar 

  • Jaksic NI, Salahifar C. A feasibility study of electrochromic windows in vehicles. Sol Energy Mater Sol Cells. 2003;79:409–23.

    Article  Google Scholar 

  • Jiao Z, Wu M, Qin Z, Xu H. The electrochromic characteristics of sol–gel-prepared NiO thin films. Nanotechnology. 2003;14:458–61.

    Article  Google Scholar 

  • Jiménez-González AE, Cambray JG. Deposition of NiO x thin films by sol–gel technique. Surf Eng. 2000;16(1):73–6.

    Article  Google Scholar 

  • Judeinstein P, Livage J. Role of the water content on the electrochromic properties of WO3, nH2O thin films. Mater Sci Eng. 1989;B3:129–32.

    Article  Google Scholar 

  • Judeinstein P, Livage J, Zarudiansky A, Rose R. An ‘All gel’ electrochromic device. Solid State Ion. 1988;28&30:1722–5.

    Article  Google Scholar 

  • Judeinstein P, Livage J. Sol–gel synthesis of WO3 thin-films. J Mater Chem. 1991;1(4):621–7.

    Article  Google Scholar 

  • Judeinstein P, Titman J, Stamm M, Schmidt H. Investigation of ion-conducting ormolytes: structure–property relationships. Chem Mater. 1994;6:127–34.

    Article  Google Scholar 

  • Karllson J, Roos A. Angle-resolved optical characterisation of an electrochromic device. Sol Energy. 2000;68(6):493–7.

    Article  Google Scholar 

  • Kéomany D, Poinsignon C, Deroo D. Sol–gel preparation of mixed cerium-titanium oxide thin films. Sol Energy Mater Sol Cells. 1994;33:429–41.

    Article  Google Scholar 

  • Kéomany D, Petit JP, Deroo D. Electrochemical insertion in sol–gel made CeO2–TiO2 from lithium conducting polymer electrolyte – relation with the material structure. Sol Energy Mater Sol Cells. 1995;36(4):397–408.

    Article  Google Scholar 

  • Koplick A. Australian Patent Application PP0274. 1997.

    Google Scholar 

  • Koplick A, Jenkins S. Preparation of metal alkoxides, PCT/AU98/00921, International patent publication WO99/23865.

    Google Scholar 

  • Kozjek Škofic I, Šturm S, Čeh M, Bukovec N. CeO2 thin films obtained by sol–gel deposition and annealed in air or argon. Thin Solid Films. 2002;422:170–5.

    Article  Google Scholar 

  • Krc J, Topic M, Smole F, Krasovec UO, Stangar UL, Orel B. Three-state regulator for electrochromic windows. Sol Energy Mater Sol Cells. 2002;71(3):387–95.

    Article  Google Scholar 

  • Krings LHM, Talen W. Wet chemical preparation and characterization of electrochromic WO3. Sol Energy Mater Sol Cells. 1998;54(1–4):27–37.

    Article  Google Scholar 

  • Kudo T. A new heteropolyacid with carbon as a heteroatom in a Keggin-like structure. Nature. 1984;312:537–8.

    Article  Google Scholar 

  • Lampert CM. Smart switchable glazing for solar energy and daylight control. Sol Energy Mater Sol Cells. 1998;52:207–21.

    Article  Google Scholar 

  • Lampert CM. The world of large-area glazing and displays. In: Proceedings of SPIE, switchable materials and flat panel displays, vol. 3788; 1999 July 21–22; Denver. Bellingham: SPIE. p. 2–11.

    Google Scholar 

  • Lampert CM. Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells. 2003;76:489–99.

    Article  Google Scholar 

  • Lampert CM, Agrawal A, Baertlien C, Nagai J. Durability evaluation of electrochromic devices – an industry perspective. Sol Energy Mater Sol Cells. 1999;56:449–63.

    Article  Google Scholar 

  • Lavrenĉiĉ-Ŝtangar U, Groselj N, Orel B, Colomban Ph. Structure of and interactions between P/SiWA keggin nanocrystals dispersed in an organically modified electrolyte membrane. Chem Mater. 2000;12(12):3745–53.

    Google Scholar 

  • Lavrenčič-Štangar U, Groselj N, Orel B, Schmitz A, Colomban Ph. Proton-conducting sol–gel hybrids containing heteropoly acids. Solid State Ion. 2001;145(1–4):109–18.

    Google Scholar 

  • Lee GR, Crayston JA. Electrochromic Nb2O5 and Nb2O5 silicone composite thin-films prepared by sol–gel processing. J Mater Chem. 1991;1(3):381–6.

    Article  Google Scholar 

  • Li Y, Kudo T. Electrochromic properties of spin-coated thin films from peroxo-polymolybdovanadate solutions. J Electrochem Soc. 1995;142(4):1194–9.

    Article  Google Scholar 

  • Livage J, Ganguli D. Sol–gel electrochromic coatings and devices: a review. Sol Energy Mater Sol Cells. 2001;68:365–81.

    Article  Google Scholar 

  • Luo X, Zhu B, Xia C, Niklasson GA, Granqvist CG. Transparent ion-conducting ceria-zirconia films made by sol–gel technology. Sol Energy Mater Sol Cells. 1998;53(3–4):341–7.

    Article  Google Scholar 

  • Lynam NR. Smart windows for automobiles. SAE Technical Paper series (900419), International Congress and Exposition; 1990 Feb 26–Mar 2; Detroit.

    Google Scholar 

  • Lynam NR, Agrawal A. Automotive applications of chromogenic materials. In: Lampert CM, Granqvist CG, editors. Proceedings of SPIE, large-area chromogenics: materials and devices for transmittance control, vol. IS 4. Bellingham; 1988. p. 46–84.

    Google Scholar 

  • Macêdo MA, Aegerter MA. Sol–gel electrochromic device. J Sol–Gel Sci Technol. 1994;2:667–71.

    Article  Google Scholar 

  • Macedo MA, Dall’Antonia LH, Valla B, Aegerter MA. Electrochromic smart windows. J Non Cryst Solids. 1992;147:792–8.

    Article  Google Scholar 

  • Macfarlane DR, Sun J, Forsyth M, Bell JM, Evans LA, Skryabin IL. Polymer electrolytes for electrochromic window applications. Solid State Ion. 1996;86–88:959–64.

    Article  Google Scholar 

  • Maheswari SP, Habib MA. Electrochromic aspects of phosphotungstic acid. Sol Energy Mater Sol Cells. 1988;18:75–82.

    Article  Google Scholar 

  • Makishima A, Kubo H, Wada K, Kitami Y, Shimohira T. Yellow coatings produced on glasses and aluminum by the sol–gel process. J Am Ceram Soc. 1986;69(6):C127–9.

    Google Scholar 

  • Makishima A, Asami M, Wada K. Preparation of CeO2–TiO2 coatings by the sol–gel process. J Non Cryst Solids. 1988;100:321–4.

    Article  Google Scholar 

  • Marguerettaz X, O’Neill R, Fitzmaurice DJ. Heterodyads – electron-transfer at a semiconductor electrode liquid electrolyte interface modified by an adsorbed spacer acceptor complex. J Am Chem Soc. 1994;116(6):2629–30.

    Article  Google Scholar 

  • Matthews JP, Skryabin IL, Wang J, Monsma BG. Sol–gel deposited electrochromic devices. Renew Energy. 1998;15:312–7.

    Article  Google Scholar 

  • Mehrotra RC. Transition-metal alkoxides. Adv Inorg Chem Radiochem. 1983;26:1983.

    Google Scholar 

  • Mendez-Vivar J, Campero A, Livage J, Sanchez C. The sol–gel route to molybdenum oxides. J Non Cryst Solids. 1990;121:26–30.

    Article  Google Scholar 

  • Mennig M, Fink-Straube C, Heusing S, Kalleder A, Koch T, Munro B, Zapp P, Schmidt H. Large area decorative and functional sol–gel coatings on glass. In: Proceedings of 2nd International Conference on Coatings on Glass (ICCG); 1998 Sept 6–10; Saarbruecken.

    Google Scholar 

  • Mennig M, Heusing S, Zapp P, Niegisch N, Schmidt H. Fabrication of large area, curved electrochromic modules for automotive application. In: Proceedings of the Third International Conference on Coatings on Glass (ICCG); 2000 Oct 29–Nov 02; Maastricht.

    Google Scholar 

  • Miki T, Yoshimura K, Tai Y, Tazawa M, Jin P, Tanemura S. Electrochromic properties of nickel oxide thin films prepared by the sol–gel method. Proc SPIE. 1995;2531:135–42.

    Article  Google Scholar 

  • Monk PMS, Mortimer RJ, Rosseinsky DR. Electrochromism-fundamentals and applications. Weinheim: VCH; 1995.

    Google Scholar 

  • Moser FH, Lyman NR. US patent 4,855,166. 1989a.

    Google Scholar 

  • Moser FH, Lynam NR. US patent 4,855,161. 1989b Sept 25.

    Google Scholar 

  • Moser FH, Lynam NR. US patent 4,959,247. 1990 Sept 25.

    Google Scholar 

  • Munro B, Krämer S, Zapp P, Krug H, Schmidt H. Development of electrochromic smart windows by sol–gel techniques. Proc SPIE Sol–Gel Optics IV. 1997a;3136:470–9.

    Google Scholar 

  • Munro B, Krämer S, Zapp P, Krug H, Schmidt H. All sol–gel electrochromic system for plate glass. J Non Cryst Solids. 1997b;218:185–8.

    Article  Google Scholar 

  • Munro B, Krämer S, Zapp P, Krug H. Characterization of electrochromic WO3-layers prepared by sol–gel nanotechnology. J Sol–Gel Sci Technol. 1998a;13:673–8.

    Article  Google Scholar 

  • Munro B, Conrad P, Krämer S, Schmidt H, Zapp P. Development of electrochromic cells by the sol–gel process. Sol Energy Mater Sol Cells. 1998b;54:131–7.

    Article  Google Scholar 

  • Nabavi M, Doeuff S, Sanchez C, Livage J. Sol–gel synthesis of electrochromic films. Mater Sci Eng. 1989;3(1–2):203–7.

    Article  Google Scholar 

  • Nagai J. Characterization of evaporated nickel-oxide and its application to electrochromic glazing. Sol Energy Mater Sol Cells. 1993;31(2):291–9.

    Article  Google Scholar 

  • Nagai J, Kamimori T, Mizuhashi M. Electrochromism in thin films of 3d transition metal oxides. Proc SPIE. 1984;502:59.

    Google Scholar 

  • Nagai J, McMeeking GD, Saitoh Y. Durability of electrochromic glazing. Sol Energy Mater Sol Cells. 1999;56:309–19.

    Article  Google Scholar 

  • Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc. 1993;115(14):6382–90.

    Article  Google Scholar 

  • O’Brian NA, Gordon J, Mathew H, Hichwa BP. Electrochromic coatings-applications and manufacturing issues. Thin Solid Films. 1999;345:312–8.

    Article  Google Scholar 

  • O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–40.

    Article  Google Scholar 

  • Ohtani B, Iwai K, Nishimoto S-I, Inui T. Electrochromism of Niobium oxide thin films prepared by the sol–gel process. J Electrochem Soc. 1994;141(9):2439–42.

    Article  Google Scholar 

  • Opara Krašovec U, Orel B, Hočevar S, Muševič I. Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion-storage capacity. J Electrochem Soc. 1997;144(10):3398–409.

    Article  Google Scholar 

  • Opara Krašovec U, Orel B, Reisfeld R. Electrochromism of CeVO4 and Ce/V-oxide ion-storage films prepared by the sol–gel route. Electrochem Solid State Lett. 1998;1(2):104–6.

    Article  Google Scholar 

  • Opara Krašovec U, Orel B, Surca A, Bukovec N, Reisfeld R. Structural and spectroelectrochemical investigations of tetragonal CeVO4 and Ce/V-oxide sol–gel derived ion-storage films. Solid State Ion. 1999;118(3–4):195–214.

    Article  Google Scholar 

  • Opara Krašovec U, Šurca Vuk A, Orel B. Comparative studies of “all sol–gel” electrochromic windows employing various counter electrodes. Sol Energy Mater Sol Cells. 2002;73:21–37.

    Article  Google Scholar 

  • Orel ZC, Orel B. Electrochemical and optical properties of sol–gel derived CeO2 and mixed CeO2/SnO2 coatings. In: Proceedings of SPIE optical materials technology for energy efficiency and solar energy conversion XIII, vol. 2255; 1994. Bellingham, Washington, p. 285–96.

    Google Scholar 

  • Orel ZC, Orel B. Ion storage properties of CeO2 and mixed CeO2/SnO2 coatings. J Mater Sci. 1995;30:2284–90.

    Article  Google Scholar 

  • Orel B, Lavrenčič Štangar U, Opara U, Gaberšček M, Kalcher K. Preparation and characterization of Mo and Sb:Mo doped SnO2 sol–gel derived films for counter electrode applications in electrochromic devices. J Mater Chem. 1995;5:617.

    Article  Google Scholar 

  • Orel B, Opara Krašovec U, Lavrenčič Štangar U, Judeinstein P. All sol–gel electrochromic devices with Li+ ionic conductor, WO3 electrochromic films and SnO2 counter-electrode films. J Sol–Gel Sci Technol. 1998a;11:87–104.

    Article  Google Scholar 

  • Orel B, Surca A, Opara Krasovec U. Recent progress in sol–gel derived electrochromic devices. Acta Chim Slov. 1998b;45(4):487–506.

    Google Scholar 

  • Orel B, Opara Krašovec U, Maček M, Švegl F, Lavrenčič Štangar U. Comparative studies of “all sol–gel” electrochromic devices with optically passive counter-electrode films, ormolyte Li+ ion- conductor and WO3 or Nb2O5electrochromic films. Sol Energy Mater Sol Cells. 1999;56:343–73.

    Article  Google Scholar 

  • Orel B, Šurca Vuk A, Jese R, Lianos P, Stathatos E, Judeinstein P, Colomban Ph. Development of sol–gel redox I3 /I electrolytes and their application in hybrid electrochromic device. Solid State Ion. 2003;165:235–46.

    Google Scholar 

  • Özer N. Reproducibility of the coloration processes in TiO2 films. Thin Solid Films. 1992;214(1):17–24.

    Article  Google Scholar 

  • Ozer N, Lampert CM. Electrochemical lithium insertion in sol–gel deposited LiNbO3 films. Sol Energy Mater Sol Cells. 1995;39(2–4):367–75.

    Article  Google Scholar 

  • Özer N, Lampert CM. Structural and optical properties of sol–gel deposited proton conducting Ta2O5 films. J Sol–Gel Sci Technol. 1997;8:703–9.

    Google Scholar 

  • Özer N, Lampert CM. Electrochemical characterization of sol–gel deposited coatings. Sol Energy Mater Sol Cells. 1998;54:147–56.

    Article  Google Scholar 

  • Özer N, Chen DG, Simmons JH. Ceram Trans Glasses Electron Appl. 1991;20:253.

    Google Scholar 

  • Özer N, Tepehan F, Bozkurt N. An “all-gel” electrochromic device. Thin Solid Films. 1992;219:193–8.

    Article  Google Scholar 

  • Özer N, He Y, Lampert CM. Ionic conductivity of tantalum oxide films prepared by the sol–gel process for electrochromic devices. In: Proceedings of SPIE Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, vol. 2255; 1994. Bellingham, Washington, p. 456–66.

    Google Scholar 

  • Özer N, De Souza S, Lampert CM. Optical and electrochemical properties of sol–gel spin coated CeO2–TiO2 films. Proc SPIE. 1995a;2531:143–51.

    Article  Google Scholar 

  • Özer N, Baretto T, Büyüklimanli T, Lampert CM. Characterization of sol–gel deposited niobium pentoxide films for electrochromic devices. Sol Energy Mater Sol Cells. 1995b;36:433–43.

    Article  Google Scholar 

  • Ozkan E, Lee S-H, Liu P, Tracy CE, Tepehan FZ, Pitts JR, Deb SK. Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ion. 2002;149:139–46.

    Article  Google Scholar 

  • Ozkan Zayim E, Liu P, Lee S-H, Tracy CE, Turner JA, Pitts JR, Deb SK. Mesoporous sol–gel WO3 thin films via poly(styrene-co-allyl-alcohol) copolymer templates. Solid State Ion. 2003;165:65–72.

    Article  Google Scholar 

  • Passerini S, Scrosati B, Gorenstein A. The intercalation of lithium in nickel oxide and its electrochromic properties. J Electrochem Soc. 1990;137(10):3297–300.

    Article  Google Scholar 

  • Pawlicka A, Avellaneda CO. Thin film sol–gel of CeO2–ZrO2: the candidate for counter electrode in electrochromic devices. Mol Cryst Liq Cryst. 2000;354:1051–61.

    Article  Google Scholar 

  • Pawlicka A, Atik A, Aegerter MA. Synthesis of multicolor Nb2O5 thin films for electrochromic devices. J Mater Sci Lett. 1995;14:1568–70.

    Article  Google Scholar 

  • Pawlicka A, Atik A, Aegerter MA. Synthesis of multicolor Nb2O5 coatings for electrochromic devices. Thin Solid Films. 1997;301:236–41.

    Article  Google Scholar 

  • Picardi G, Varsano F, Decker F, Opara Krašovec U, Surca A, Orel B. Electrochemical characterization of optically passive CeVO4 counter electrodes. Electrochim Acta. 1999;44:3157–64.

    Article  Google Scholar 

  • Puetz J, Aegerter MA. Transparent conducting oxide coatings. In: Aegerter MA, Mennig M, editors. Sol–gel technologies for glass producers and users. Boston: Kluwer; 2004.

    Google Scholar 

  • Pyper O, Schöllhorn R, Donkers JJTM, Krings LHM. Nanocrystalline structure of WO3 thin films prepared by the sol–gel technique. Mater Res Bull. 1998;33(7):1095–101.

    Article  Google Scholar 

  • Rauh RD. Electrochromic windows: an overview. Electrochim Acta. 1999;44:3165–76.

    Article  Google Scholar 

  • Rosario AV, Pereira EC. Comparison of the electrochemical behavior of CeO2–SnO2 and CeO2–TiO2 electrodes produced by the Peccini method. Thin Solid Films. 2002;410:1–7.

    Article  Google Scholar 

  • Santos López D. Development and characterization of a counterelectrode of mixed nickel and titanium oxide made by sol–gel route for an electrochromic window, workdiplom for the degree of Industrial Engineering Specialty Materials Engineering. Saabrücken: Institut für Neue Materialien; 2003.

    Google Scholar 

  • Sbar N, Badding M, Budziak R, Cortez K, Laby L, Michalski L, Ngo T, Schulz S, Urbanik K. Progress toward durables, cost effective electrochromic window glazing. Sol Energy Mater Sol Cells. 1999;56:321–41.

    Article  Google Scholar 

  • Schmidt H, Krug H, Merl N, Moses A, Judeinstein P, Berni A. Electrochromic thin-film systems and components thereof. Patent WO 95/28663. 1994 Apr 18.

    Google Scholar 

  • Schmitt M, Aegerter MA. Electrochromic properties of Nb2O5 and Nb2O5: X (X = Sn, Zr, Li, Ti, Mo). In: Proceedings of the SPIE conference on switchable materials and flat panel displays, vol. 3788; 1999a July; Denver. SPIE. p. 93–102.

    Google Scholar 

  • Schmitt M, Aegerter MA. Properties of electrochromic devices made with Nb2Os and Nb2Os:X(X = Li, Ti or Mo) as coloring electrode. In: Proceedings of the SPIE conference on switchable materials and flat panel displays, vol. 3788; 1999b July; Denver. SPIE. p. 75–83.

    Google Scholar 

  • Schmitt M, Aegerter MA. Electrochromic properties of pure and doped Nb2Os coatings and devices. Electrochim Acta. 2001;46(13–14):2105–11.

    Article  Google Scholar 

  • Schmitt M, Heusing S, Aegerter MA, Pawlicka C, Avellaneda CO. Electrochromic properties of Nb2O5 sol–gel coatings. In: Proceedings of the EuroSun 1996; Sept 16–18; Freiburg; Sol Energy Mater Sol Cells 1998;54:9–17.

    Google Scholar 

  • Scrosati B. Laminated electrochromic displays and windows. In: Scrosati B, editor. Applications of electroactive polymers. London: Chapman and Hall; 1993. p. 250–88.

    Chapter  Google Scholar 

  • Selkowitz SE, Lampert CM. Proceedings of SPIE V IS4; 1990. p. 22.

    Google Scholar 

  • Sevar S, Muševič I. Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion-storage capacity. J Electrochem Soc. 1997;144:3398.

    Article  Google Scholar 

  • Sharma PK, Fantini MCA, Gorenstein A. Synthesis characterization and electrochromic properties of NiOxHy thin film prepared by a sol–gel method. Solid State Ion. 1998;113–115:457–63.

    Article  Google Scholar 

  • Sharma PK, Mracia MCA, Fischer H, Craievich AF, Gorenstein A. Factors influencing the electrochromic properties of nickel oxide thin films derived from sol–gel method by dip-coating. Mater Res Soc Symp Proc. 1999;547:351–6.

    Article  Google Scholar 

  • Štangar UL, Orel B, Grabec I, Ogorevc B, Kalcher K. Optical and electrochemical properties of CeO2 and CeO2–TiO2 coatings. Sol Energy Mater Sol Cells. 1993;31(2):171–85.

    Article  Google Scholar 

  • Štangar UL, Orel B, Hutchins MG. Electrochromism of phosphotungstic acid incorporated in titanium alkoxide xerogel films. In: Proceedings of SPIE, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, vol. 2255; 1994 Apr 19–22; Freiburg/Bellingham. p. 261–72.

    Google Scholar 

  • Sun D-L, Puetz J, Heusing S, Aegerter MA. Influence of water on the electrochemical properties of CeO2–TiO2 sol–gel coatings and electrochromic devices. Proc SPIE Sol–Gel Optics VI. 2002;4804:17–25.

    Google Scholar 

  • Sun DL, Heusing S, Puetz J, Aegerter MA. Influence of water on the electrochemical properties of (CeO2) x (TiO2)1–x and WO3 sol–gel coatings and electrochromic devices. In: Proceedings of IME-5; 2002 Aug 6–8; Denver. Solid State Ion. 2003a;165(1–4):181–9.

    Google Scholar 

  • Sun DL, Heusing S, Puetz J, Aegerter MA. Influence of water on the electrochromic properties of Nb2O5:Mo, WO3 and (CeO2) x (TiO2)1–x; sol–gel coatings and electrochromic devices. In: Proceedings of the 203rd Meeting of the Electrochemical Society; 2003b Apr 27–May 2; Paris.

    Google Scholar 

  • Šurca A, Orel B. Sol–gel derived hydrated nickel oxide electrochromic films: optical, spectroelectrochemical and structural properties. J Sol–Gel Sci Technol. 1997;8:743–9.

    Google Scholar 

  • Šurca A, Orel B, Pihlar B, Bukovec P. Optical, spectroelectrochemical and structural properties of sol–gel derived Ni-oxide electrochromic film. J Electroanal Chem. 1996;408:83–100.

    Article  Google Scholar 

  • Šurca A, Benčič S, Orel B, Pihlar B. Spectroelectrochemical studies of V/Ti-, V/Ti/Zr- and V/Ti/Ce-oxide counter-electrode films. Electrochim Acta. 1999;44:3075–84.

    Article  Google Scholar 

  • Šurca A, Orel B, Opara Krašovec U, Lavrenčič Stangar U. Electrochromic and structural studies of nanocrystalline Fe/V (l:2)-oxide and crystalline Fe2V4O13 films. J Electrochem Soc. 2000;147:2358.

    Article  Google Scholar 

  • Šurca Vuk A, Orel B, Spreizer H, Colomban Ph. In situ resonance micro-Raman and UV-visible spectroelectrochemical studies of an electrochromic device with an I3 /I redox sol–gel electrolyte. Solid State Ion. 2003;165:247–55.

    Google Scholar 

  • Švegl F, Orel B, Kaučič V. Electrochromic properties of lithiated Co-oxide (Li x CoO2) and Ni-oxide (Li x NiO2) thin films prepared by the sol–gel route. Sol Energy. 2000;68(6):523–40.

    Article  Google Scholar 

  • Svensson JSEM, Granqvist C. Electrochromic coatings for smart windows – crystalline and amorphous WO3 films. Thin Solid Films. 1985;126(1–2):31–6.

    Article  Google Scholar 

  • Svensson JSEM, Granqvist CG. Electrochromic hydrated nickel-oxide coatings for energy-efficient windows – optical-properties and coloration mechanism. Appl Phys Lett. 1986;49(23):1566–8.

    Article  Google Scholar 

  • Takano S, Kishimoto A, Hinokuma KL, Kudo T. Electrochromic thin-films coated from peroxo-polymolybdotungstate solutions. Solid State Ion. 1994;70:636–41.

    Article  Google Scholar 

  • Tonazzi JCL, Valla B, Macedo MA, Baudry P, Aegerter MA, Rodriguez ACM, Bulhões, LO. Proceedings of Sol–Gel Optics, SPIE, vol. 1328; 1990; Bellingham. p. 375.

    Google Scholar 

  • Tracy CE, Zhang J-G, Benson DK, Czanderna AW, Deb SK. Accelerated durability testing of electrochromic windows. Electrochim Acta. 1999;44:3195–202.

    Article  Google Scholar 

  • Truong VV, Giroud FE, Ashrit PV. In: Lampert CM, Granqvist CG, editors. Proceedings of SPIE, large-area chromogenics: materials and devices for transmittance control. Bellingham: SPIE, Optical Engineering Press; 1990. p. 386.

    Google Scholar 

  • Vaivars G, Furlani M, Mellander B-E, Granqvist CG. Proton-conducting zirconium phosphate/poly(vinyl acetate)/glycerine gel electrolytes. J Solid State Electrochem. 2003;7:724–8.

    Article  Google Scholar 

  • Varsano F, Decker F, Masetti E, Cardellini F, Licciulli A. Optical and electrochemical properties of cerium-zirconium mixed oxide thin films deposited by sol–gel and r.f. sputtering. Electrochim Acta. 1999;44(18):3149–56.

    Article  Google Scholar 

  • Veszelei M, Kullman L, Azens A, Granqvist C, Hjörvasson B. Transparent ion intercalation films of Zr-Ce oxide. J Appl Phys. 1997;81(4):2024–6.

    Article  Google Scholar 

  • Veszelei M, Kullman L, Stromme Mattsson M, Azens A, Granqvist C. Optical and electrochemical properties of Li+ intercalated Zr-Ce oxide and Hf-Ce oxide films. J Appl Phys. 1998;83(3):1670–6.

    Article  Google Scholar 

  • Vroon ZAEP, Spee CIMA. Sol–gel coatings on large area glass sheets for electrochromic devices. J Non Cryst Solids. 1997;218:189–95.

    Article  Google Scholar 

  • Wang Z, Hu X. Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films. 1999;352:62–5.

    Article  Google Scholar 

  • Wang Z, Hu X. Electrochromic properties of TiO2-doped WO3 films spin-coated from Ti-stabilized peroxotungstic acid. Electrochim Acta. 2001;46:1951–6.

    Article  Google Scholar 

  • Wang B, Cheng J, Zhon W. Huadong Huagong Xueynan XueBao. 1992;18:48.

    Google Scholar 

  • Wang L, Zhang Z, Cao YJ. Preparation of nickel oxide films by Sol-Gel process. Ceram Soc Jpn. 1993;101:227.

    Google Scholar 

  • Williams PA, Jones AC, Bickley JF, Steiner A, Davies HO, Leedham TJ, Impey AS, Garcia J, Allen S, Rougier A, Blyr A. J Mater Chem. 2001;11:2329–34.

    Article  Google Scholar 

  • Yanovshaya MI, Obvintseva IE, Kessler VG, Galyamov BSh, Kucheiko SI, Shifrina RR, Turova NY. Hydrolysis of molybdenum and tungsten alkoxides – sols, powders and films. J Non Cryst Solids. 1990;124(2–3):155–66.

    Google Scholar 

  • Yoshiaki I, Osamu N, Hideyuki K. All-solid electrochromic anti-glare mirror. Murakami Kaimeido Co. US patent 6,061,168. 1998.

    Google Scholar 

  • Yoshino T, Baba N, Yasuka K. Preparation of WO3–MoO3 mixed thin-films by the sol–gel method and its electrochromic properties. Nippon Kagaku Kaishi. 1988;9:1525–9.

    Article  Google Scholar 

  • Yu PC, Nazri G, Lampert CM. Spectroscopic and electrochemical studies of electrochormic hydrated nickel oxide films. Proc SPIE. 1986;653:16.

    Article  Google Scholar 

  • Zhu B, Luo Z, Xia C. Transparent conducting CeO2–SiO2 thin films. Mater Res Bull. 1999;34(10, 11):1507–12.

    Article  Google Scholar 

  • Zhu B, Xia C, Luo X, Niklasson G. Transparent two-phase composite oxide thin films with high conductivity. Thin Solid Films. 2001;385:209–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Heusing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Heusing, S., Aegerter, M.A. (2016). Sol–Gel Coatings for Electrochromic Devices. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_86-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_86-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics