Skip to main content

Inorganic-Organic Hybrids for Biomedical Applications

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Flexible sol-gel procedure is an excellent route to prepare inorganic-organic hybrids where homogenous precursor solutions yield solid or porous gels and composites in the size from macroscopic ranges (cm, mm) to microscopic (μm) and nanoscopic (nm) ranges. The present chapter first provides short introduction of inorganic-organic hybrids: historical aspects, constitution, and inorganic and organic components to be hybridized as well as their possible biomedical applications. Their biocompatibility is the most significant, and it is discussed in detail in terms of the fixation of various hybrid materials with hard and soft tissues. The primary topics are the behaviors of inorganic species like Si─OH, Ti─OH, calcium ions, and hydroxycarbonate apatite (HCA) deposition, as well as the roles of short peptides like arginine-glycine-aspartate (Arg-Gly-Asp; RGD) and mediating layers. Inorganic-organic layers with Ti─O or P─O favor anti-blood clotting (thrombosis) and polymer-apatite bonding in dentistry. Described are several biomedically applicable porous hybrids among a few silanes, natural polymers (gelatin, chitosan, collagen, and silk fibroin), and synthetic polymers poly(dimethylsilane), poly(lactic acid), and poly(caprolactone). Some are promising to repair damaged nerve systems. Electrospinning, bioprinting, and liquid phase deposition techniques are presented as versatile methods to fabricate fibrous membranes, 3-D architecture, and intermediating oxide layers. Hybrid nanoparticles are introduced as the promising drug delivery and therapeutic vehicles, such as cerasomes (ceramic + liposome), magnetoliposomes, nanomachines, or mesoporous silica. Finally, a few paragraphs stress the significance of quantum dots in the biomedical fields like biosensing or bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aburatani Y, Tsuru K, Hayakawa S, Osaka A. Mechanical property and microstructure of bioactive organic-inorganic hybrids containing colloidal silica particles. J Ceram Soc Jpn. 2003a;111:247–51.

    Article  Google Scholar 

  • Aburatani Y, Tsuru K, Hayakawa S, Osaka A. Bioactivity and viscoelastic Ormosil-type organic-inorganic hybrids containing colloidal silica particles. J Ceram Soc Jpn. 2003b;111:318–22.

    Article  Google Scholar 

  • Aburatani Y, Uchida T, Shirosaki Y, Tsuru K, Hayakawa S, Osaka A. Response to osteoblastic cells of bioactive organic-inorganic hybrid. In: Ben-Nissan B, Sher D, Walsh W, editors. Key engineering materials, Vols. 240-242, Bioceramics Vol. 15Zurich: Trans Tech Pub; 2003c. p. 683–6.

    Google Scholar 

  • Almeida RM, Guiton TA, Pantano CG. Detection of LO mode in v-SiO2 by infrared diffuse reflectance spectroscopy. J Non-Cryst Solids. 1990;119:225–41.

    Article  Google Scholar 

  • Amado S, Simões MJ, Armada da Silva PAS, Luís AL, Shirosaki Y, Lopes MA, Santos JD, Fregnan F, Gambarotta G, Raimondo S, Fornaro M, Veloso AP, Varejão ASP, Maurício AC, Geuna S. Use of hybrid chitosan membrane and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials. 2008;29:4409–19.

    Article  Google Scholar 

  • Amberg-Schwab S, Katschored H, Veber U, Hoffmann M, Burger A. Barrier properties of inorganic-organic polymers: influence of starting compounds, curing conditions and storage-scaling-up to industrial application. J Solgel Sci Technol. 2000;19:125–9.

    Article  Google Scholar 

  • Areva S, Peltola T, Säilynoja E, Laajalehto K, Lindén M, Rosenholm JB. Effect of albumin and fibrinogen on calcium phosphate formation on sol-gel-derived titania coatings in vitro. Chem Mater. 2002;14:1614–24.

    Article  Google Scholar 

  • Areva S, Paldan H, Peltola T, Närhi T, Jokinen M, Lindén M. Use of sol-gel-derived titania coating for direct soft tissue attachment. J Biomed Mater Res. 2004;70A:169–78.

    Article  Google Scholar 

  • Areva S, Ääritalo V, Tuusa S, Jokinen M, Lindén M, Peltola T. Sol-gel-derived TiO2─SiO2 implant coatings for direct tissue attachment. Part II: evaluation of cell response. J Mater Sci Mater Med. 2007;18:1633–42.

    Article  Google Scholar 

  • Asano T, Tsuru K, Hayakawa S, Osaka A. Bilirubin adsorption property of sol-gel-derived titania particles for blood purification therapy. Acta Biomater. 2008;4:1067–72.

    Article  Google Scholar 

  • Ayers MR, Hunt AJ. Synthesis and properties of chitosan-silica hybrid aerogels. J Non-Cryst Solids. 2001;285:123–7.

    Article  Google Scholar 

  • Ayres CE, Shekhar JB, Sell SA, Bowlin GL, Simpson DG. Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function. Nanotech Soft Tissue Eng. 2010;2:20–34.

    Google Scholar 

  • Babonneau F, Gualandris V, Pauthe M. NMR characterization of the chemical homogeneity in sol-gel derived siloxane-silica materials. In: Coltrain B, Sanchez C, Schaefer DW, Wilkes GL, editors. Better ceramics through chemistry VII: organic/inorganic hybrid materials, Materials research society symposium proceedings, Vol. 435Warrendale: Materials Research Society; 1996. p. 119–30.

    Google Scholar 

  • Babonneau F, Gualandris V, Maquet J, Massio D, Janicke MT, Chemelka BF. Newly applied two-dimensional solid-state NMR correlation techniques for the characterization of organically modified silicates. J Solgel Sci Technol. 2000;19:113–7.

    Article  Google Scholar 

  • Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

    Article  Google Scholar 

  • Barker T. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials. 2011;32:4211–4.

    Article  Google Scholar 

  • Basoglu H, Bilgin MD, Demir MM. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: fabrication, characterization and in vitro study. Photodiagn Photodyn Ther. 2016;13:81–90.

    Article  Google Scholar 

  • Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32:4205–10.

    Article  Google Scholar 

  • Bescher E, Mackenzie JD. Hybrid organic-inorganic sensors. Mater Sci Eng. 1998;C6:145–54.

    Article  Google Scholar 

  • Bielby RC, Pryce RS, Hench LL, Polak JM. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass. Tissue Eng. 2005;11:479–88.

    Article  Google Scholar 

  • Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    Article  Google Scholar 

  • Bolfarini GC, Siqueira-Moura MP, Demets GJF, Morais PC, Tedesco AC. In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbit[7]uril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B Biol. 2012;115:1–4.

    Article  Google Scholar 

  • Bradley DC, Merhotra RC, Gauer DP. Physical properties of metal alkoxides. In: Metal alkoxides (Chap. 3). New York: Academic Press; 1978. p. 42–147.

    Google Scholar 

  • Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processng. New York: Academic; 1990.

    Google Scholar 

  • Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release. 2014;190:465–76.

    Article  Google Scholar 

  • Cao N, Li M, Zhao Y, Qiu L, Zou X, Zhang Y, Sun L. Fabrication of SnO2/porous silica/polyethyleneimine nanoparticles for pH-responsive drug delivery. Mater Sci Eng C. 2016;59:319–23.

    Article  Google Scholar 

  • Carvalho A, Martins MBF, Corvo ML, Feio G. Enhanced contrast efficiency in MRI by PEGylated magnetoliposomes loaded with PEGylated SPION: effect of SPION coating and micro-environment. Mater Sci Eng C. 2014;43:521–6.

    Article  Google Scholar 

  • Carvalho M, Costa LM, Pereira JE, Shirosaki Y, Hayakawa S, Santos JD, Geuna S, Fregnan F, Cabrita AM, Maurício AC, Varejão AS. The role of hybrid chitosan membranes on scarring process following lumber surgery: post-laminectomy experimental model. Neurol Res. 2015;37:23–9.

    Article  Google Scholar 

  • Chang C-C, Tanaka J. XPS study for the microstructure development of hydroxyapatite-collagen nanocomposites cross-linked using glutaraldehyde. Biomaterials. 2002;23:25.79–85.

    Google Scholar 

  • Chang M-C, Ikoma T, Kikuchi M, Tanaka J. The cross-linkage effect of hydroxyapatite/collagen nanocomposites on a self-organization phenomenon. J Mater Sci Mater Med. 2002;13:993–7.

    Article  Google Scholar 

  • Chang M-C, Ko C-C, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003a;24:2853–62.

    Article  Google Scholar 

  • Chang M-C, Ko C-C, Douglas WH. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials. 2003b;24:3087–94.

    Article  Google Scholar 

  • Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym. 2013;91:7–13.

    Article  Google Scholar 

  • Chen Q, Miyaji F, Kokubo T, Nakamura T. Apatite formation on PDMS-modified CaO─SiO2─TiO2 hybrids prepared by sol-gel process. Biomaterials. 1999;20:1127–32.

    Article  Google Scholar 

  • Chen Q, Kamitakahara M, Miyata N, Kokubo T, Nakamura T. Preparation of bioactive PDMS-modified CaO─SiO2─TiO2 hybrids by the sol-gel method. J Solgel Sci Technol. 2000a;19:101–5.

    Article  Google Scholar 

  • Chen Q, Miyata N, Kokubo T, Nakamura T. Bioactivity and mechanical properties of PDMS-modified CaO─SiO2─TiO2 hybrids prepared by sol-gel process. J Biomed Mater Res. 2000b;51:605–11.

    Article  Google Scholar 

  • Chen Q, Miyata N, Kokubo T, Nakamura T. Effect of heat treatment on bioactivity and mechanical properties of PDMS-modified CaO─SiO2─TiO2 hybrids via sol-gel process. J Mater Sci Mater Med. 2001;12:515–22.

    Article  Google Scholar 

  • Chen S, Osaka A, Hanagata N. Collagen-templated sol-gel fabrication, microstructure, in vitro apatite deposition, and osteoblastic cell MC3T3-E1 compatibility of novel silica nanotube compacts. J Mater Chem. 2011a;21:4332–8.

    Article  Google Scholar 

  • Chen S, Osaka A, Ikoma T, Morita H, Li J, Takeguchie M, Hanagata N. Fabrication, microstructure, and BMP-2 delivery of novel biodegradable and biocompatible silicate–collagen hybrid fibril sheets. J Mater Chem. 2011b;21:10942–8.

    Article  Google Scholar 

  • Chen S, Zhang H, Chinnathambi S, Hanagata N. Synthesis of novel chitosan–silica/CpG oligodeoxynucleotide nanohybrids with enhanced delivery efficiency. Mater Sci Eng C. 2013;33:3382–8.

    Article  Google Scholar 

  • Chesmel KD, Beight JL, Rothman RH, Tuan RS. TGF beta enhances osseointgration in vivo. Bioceramics. 1993;6:211–26.

    Google Scholar 

  • Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol. 2015;131:87–104.

    Article  Google Scholar 

  • Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T. Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc. 1995;78:1769–74.

    Article  Google Scholar 

  • Cho S-B, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T. Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media. J Biomed Mater Res. 1996;33:145–51.

    Article  Google Scholar 

  • Chow LC. Next generation calcium phosphate-based biomaterials. Dental Mat J. 2009;28:1–10.

    Article  Google Scholar 

  • Clares B, Biedma-Ortiz RA, Sáez-Fernández E, Prados JC, Melguizo C, Cabeza L, Ortiz R, Arias JL. Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer. Eur J Pharm Biopharm. 2013;85:329–38.

    Article  Google Scholar 

  • Cölfen H. A crystal-clear view. Nat Mater. 2010;9:960–2.

    Article  Google Scholar 

  • Collier JH, Segura T. Evolving the use of peptides as components of biomaterials. Biomaterials. 2011;32:4198–204.

    Article  Google Scholar 

  • D’souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci. 1991;16:246–50.

    Article  Google Scholar 

  • Dai Z. Liposomal nanohybrid cerasomes as an ideal drug/gene delivery system nanomedicine: nanotechnology. Biol Med. 2016;12:456–7.

    Google Scholar 

  • Dai X, Shivkumar S. Electrospinning of PVA-calcium phosphate sol precursors for the production of fibrous hydroxyapatite. J Am Ceram Soc. 2007;90:1412–9.

    Article  Google Scholar 

  • Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB, Bora U. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials. 2015a;62:66–75.

    Article  Google Scholar 

  • Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB, Bora U. Data in support of in vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Data Brief. 2015b;4:315–21.

    Article  Google Scholar 

  • de Hazan Y, Wozniak M, Heinecke J, Müller G, Graule T. New microshaping concepts for ceramic/polymer nanocomposite and nanoceramic fibers. J Am Ceram Soc. 2010;93:2456–9.

    Article  Google Scholar 

  • Deguchi K, Tsuru K, Hayashi T, Takaishi M, Nagahara M, Nagotani S, Sehara Y, Jin G, Zhang H-Z, Hayakawa S, Shoji M, Miyazaki M, Osaka A, Huh N-H, Abe K. Implantation of a new porous gelatin–siloxane hybrid into a brain lesion as a potential scaffold for tissue regeneration. J Cereb Blood Flow Metab. 2006;26:1263–73.

    Article  Google Scholar 

  • Deki S, Aoi Y, Asaoka Y, Kajinami A, Mizuhata M. Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal microbalance. J Mater Chem. 1997;7:733–6.

    Article  Google Scholar 

  • Della Santina CC, Lee S-C. Ceravital reconstruction of canal wall down mastoidectomy, long-term results. Arch Otolaryngol Head Neck Surg. 2006;132:617–23.

    Article  Google Scholar 

  • Desimone MF, Hélary C, Mosser G, Giraud-Guille M-M, Livagea J, Coradin T. Fibroblast encapsulation in hybrid silica–collagen hydrogels. J Mater Chem. 2010;20:666–8.

    Article  Google Scholar 

  • Dessolle V, Lafontaine E, Bayle JP, Judeinstein P. Anisotropy in hybrid materials: an alternative tool for characterization. In: Coltrain B, Sanchez C, Schaefer DW, Wilkes GL, editors. Better ceramics through chemistry VII: organic/inorganic hybrid materials, Materials research society symposium proceedings435 Warrendale: Materials Research Society; 1996. p. 475–80.

    Google Scholar 

  • Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, de With G, Sommerdijk NAJM. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater. 2010;9:1010–4.

    Article  Google Scholar 

  • Ding T, Luo Z-J, Zheng Y, Hu X-Y, Ye Z-X. Rapid repair and regeneration of damaged rabbit sciatic nerves by tissue-engineered scaffold made from nano-silver and collagen type I. Injury. 2010;41:522–7.

    Article  Google Scholar 

  • Diré S, Babonneau F. Sol-gel precursors: a spectroscopic study of transesterification reactions between silicon and titanium alkoxides. J Non-Cryst Solids. 1994;167:29–36.

    Article  Google Scholar 

  • Draye J-P, Delaey B, Vande A, Van Den Bulcke A, Bogdanov B, Schacht E. In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials. 1998;19:99–107.

    Article  Google Scholar 

  • Eglin D, Mosser G, Giraud-Guille MM, Livage J, Coradin T. Type I collagen, a versatile liquid crystal biological template for silica structuration from nano- to microscopic scales. Soft Matter. 2005;1:129–31.

    Article  Google Scholar 

  • El-Ghannam A, Ducheyne P, Shapiro IM. Bioactive material template for in vitro synthesis of bone. J Biomed Mater Res. 1995;29:359–70.

    Article  Google Scholar 

  • El-Ghannam AR, Ducheyne P, Risbud M, Adams CS, Shapiro IM, Castner D, Golledge S, Composto RJ. Model surfaces engineered with nanoscale roughness and RGD tripeptides promote osteoblast activity. J Biomed Mater Res. 2004;68A:615–27.

    Article  Google Scholar 

  • Fagundes LB, Sousa TGF, Sousa A, Silva VV, Sousa EMB. SBA-15-collagen hybrid material for drug delivery applications. J Non-Cryst Solids. 2006;352(32–35):3496–501.

    Article  Google Scholar 

  • Florinas S, Liu M, Fleming R, Ysla LVV, Ayriss J, Gilbreth R, Dimasi N, Gao C, Wu H, Xu Z-Q, Chen S, Dirisala A, Kataoka K, Cabral H, Christie RJ. A nanoparticle platform to evaluate bioconjugation and receptor-mediated cell uptake using crosslinked polyion complex micelles bearing antibody fragments. Biomacromolecules. 2016. doi:10.1021/acs.biomac.6b00239.

    Google Scholar 

  • Folliet N, Roiland C, Bégu S, Aubert A, Mineva T, Goursot A, Selvaraj K, Duma L, Tielens F, Mauri F, Laurent G, Bonhomme C, Gervais C, Babonneau F, Azaïs T. Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations. J Am Chem Soc. 2011;133:16815–27.

    Article  Google Scholar 

  • Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.

    Article  Google Scholar 

  • Freeman R, Girsh J, Willner I. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl Mater Interfaces. 2013;5:2815–34.

    Article  Google Scholar 

  • Fujiwara M, Shiokawa K, Morigaki K, Zhu Y, Nakahara Y. Calcium carbonate microcapsules encapsulating biomacromolecules. Chem Eng J. 2008;137:14–22.

    Article  Google Scholar 

  • Furuzono T, Sonoda T, Tanaka J. A hydroxyapatite coating covalently linked onto a silicone implant material. J Biomed Mater Res. 2001;56:9–16.

    Article  Google Scholar 

  • Furuzono T, Wang P-L, Korematsu A, Miyazaki K, Oido-Mori M, Kowashi Y, Ohura K, Tanaka J, Kishida A. Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material. J Biomed Mater Res B Appl Biomater. 2003;65B:217–26.

    Article  Google Scholar 

  • Gaillard ML, van den Brink J, van Blitterswijk CA, Luklinska ZB. Applying a calcium phosphate layer on PEO/PBT copolymers affects bone formation in vivo. J Mat Sci: Mat Med. 1994;5:424–8.

    Google Scholar 

  • Gao W, LinT, Li T, Yu M, Hu X, Duan D. Sodium alginate/heparin composites on PVC surfaces inhibit the thrombosis and platelet adhesion: applications in cardiac surgery. Int J Clin Exp Med. 2013;6:259–68.

    Google Scholar 

  • Gao Q, He Y, Fu J-Z, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203–15.

    Article  Google Scholar 

  • Gärtner A, Pereira T, Simões MJ, Armada-da Silva PAS, França ML, Sousa R, Bompasso S, Raimondo S, Shirosaki Y, Nakamura Y, Hayakawa S, Osaka A, Porto B, Luis AL, Varejão ASP, Maurício AC. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model. Neural Regen Res. 2012;7:2247–58.

    Google Scholar 

  • Glaser RH, Wilkes GL. Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials. J Non-Cryst Solids. 1989;113:725.7.

    Article  Google Scholar 

  • Gough JE, Jones JR, Hench LL. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials. 2004;25:2039–46.

    Article  Google Scholar 

  • Gross U, Brandes J, Strunz J, Bab I, Sela J. The ultrastructure of the interface between a glass ceramic and bone. J Biomed Mater Res. 1981;15:291–305.

    Article  Google Scholar 

  • Guo L, Lee JH, Beaucage G. Structural analysis of poly(dimethylsiloxane) modified silica xerogels. J Non-Cryst Solids. 1999;243:61–9.

    Article  Google Scholar 

  • Guo H, Chen W, Sun X, Liu Y-N, Li J, Wang J. Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr Polym. 2015;118:209–17.

    Article  Google Scholar 

  • Hanthamrongwit MH, Grant MH, Wilkinson R. Confocal laser scanning microscopy (CLSM) for the study of collagen sponge microstructure. J Biomed Mater Res. 1994;28:213–6.

    Article  Google Scholar 

  • Hayakawa S, Tsuru K, Uetsuki K, Akasaka K, Shirosaki Y, Osaka A. Calcium phosphate crystallization on titania in a flowing Kokubo solution. J Mater Sci Mater Med. 2015;26: article #222, 13 pages.

    Google Scholar 

  • Heinemann S, Heinemann C, Bernhardt R, Reinstorf A, Nies B, Meyer M, Worch H, Hanke T. Bioactive silica–collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomater. 2009;5:1979–90.

    Article  Google Scholar 

  • Heinemann S, Coradin T, Worch H, Wiesmann HP, Hanke T. Possibilities and limitations of preparing silica/collagen/hydroxyapatite composite xerogels as load-bearing biomaterials. Original Research ArticleCompos Sci Technol. 2011;71(16):1873–80.

    Article  Google Scholar 

  • Heinemann S, Heinemann C, Wenisch S, Alt V, Worch H, Hanke T. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater. 2013;9:4878–88.

    Article  Google Scholar 

  • Hemmer E, Takeshita H, Yamano T, Fujiki T, Kohl Y, Löw K, Venkatachalam N, Hyodo H, Kishimoto H, Soga K. vitro and in vivo investigations of upconversion and NIR emitting Gd2O3:Er3+,Yb3+ nanostructures for biomedical applications. J Mater Sci Mater Med. 2012;23:2399–412.

    Article  Google Scholar 

  • Hemmer E, Yamano T, Kishimoto H, Venkatachalam N, Hyodo H, Soga K. Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomater. 2013;9:4734–43.

    Article  Google Scholar 

  • Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  • Hench LL, Andersson Ö. Bioactive glasses. In: Hench LL, Wilson J, editors. An introduction to bioceramics (Chap. 3). Singapore: World Scientific; 1993. p. 41–62.

    Chapter  Google Scholar 

  • Hishinuma A, Goda T, Kitaoka M, Hayashi S, Kawahara H. Formation of silicon dioxide films in acidic solutions. Appl Surf Sci. 1991;48/49:405–8.

    Article  Google Scholar 

  • Hong S, Song S-J, Lee JY, Jang H, Choi J, Sun K, Park Y. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J Biosci Bioeng. 2013;116:224–30.

    Article  Google Scholar 

  • Hou R, Nie L, Du G, Xiong X, Fu J. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels. Colloids Surf B: Biointerfaces. 2015;132:146–54.

    Article  Google Scholar 

  • Hsieh F-Y, Lin H-H, Hsu S-H. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 2015;71:48–57.

    Article  Google Scholar 

  • Hu NH. 2004, private communication; unpublished data.

    Google Scholar 

  • Hu Y, Mackenzie JD. Rubber-like elasticity of organically modified silicates. J Mater Sci. 1992;27:4415–20.

    Article  Google Scholar 

  • Hu C, Liu S, Zhang Y, Li B, Yang H, Fan C, Cui W. Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions. Acta Biomater. 2013;9:7381–8.

    Article  Google Scholar 

  • Huang H-H, Orler B, Wilkes GL. Ceramers: hybrid materials incorporating polymeric/oligomeric species with inorganic glasses by a sol-gel process. 2. effect of acid content on the final properties. Polym Bull. 1985;14:557–64.

    Article  Google Scholar 

  • Hull, CWUS. 1981. Patent US 4575330 A: apparatus for production of three-dimensional objects by stereolithography; August 8, 1984 (see also Hull, J Appl photographic Eng. 1982;8:185–8).

    Google Scholar 

  • Hüsing N, Schubert U, Riegel B, Kiefer W. Chemical functionalization of silica aerogels. In: Coltrain B, Sanchez C, Schaefer DW, Wilkes GL, editors. Better ceramics through chemistry VII: organic/inorganic hybrid materials, Materials research society symposium proceedings, Vol. 435Warrendale: Materials Research Society; 1996. p. 339–44.

    Google Scholar 

  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.

    Article  Google Scholar 

  • Imamura K, Sakiyama T, Nakanishi K. In situ analysis of the removal behavior of protein adsorbed on a titanium surface by H2O2-electrolysis treatment. Langmuir. 2002;18:8033–39.

    Article  Google Scholar 

  • Innocenzi P, Brustain G, Babonneau F. Competitive polymerization between organic and inorganic networks in hybrid materials. Chem Mater. 2000a;12:3726–32.

    Article  Google Scholar 

  • Innocenzi P, Brustain G, Guglielmi M, Signorni R, Bozio R, Maggini M. 3-(Glycidoxypropyl)-trimethoxysilane-TiO2 hybrid organic-inorganic materials for optical limiting. J Non-Cryst Solids. 2000b;265:68–74.

    Article  Google Scholar 

  • Innocenzi P, Esposto M, Maddalena A. Mechanical properties of 3-glycidoxypropyltrimethoxysilane based hybrid organic-inorganic materials. J Solgel Sci Technol. 2001;20:293–301.

    Article  Google Scholar 

  • Iwamoto T, Mackenzie JD. Ormosil coatings of high hardness. J Mater Sci. 1995;30:2566–70.

    Article  Google Scholar 

  • Iwamoto T, Morita K, Mackenzie JD. Liquid state 29Si NMR study on the sol-gel reaction mechanisms of ormosils. J Non-Cryst Solids. 1993;159:65–72.

    Article  Google Scholar 

  • Jha BS, Colello RJ, Bowman JR, Sell SA, Lee KD, Bigbee JW, Bowlin GL, Chow WN, Mathern BE, Simpson DG. Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater. 2011;7:203–15.

    Article  Google Scholar 

  • Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Zhang Z. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials. 2009;30:4522–32.

    Article  Google Scholar 

  • Jiang YY, Zhu YJ, Li H, Zhang YG, Shen YQ, Sun TW, Chen F. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. J Colloid Interf Sci. 2017;497:266–75.

    Article  Google Scholar 

  • Jiao K, Niu L-N, Li Q-H, Chen F-M, Zhao W, Li J-J, Chen J-H, Cutler CW, Pashley DH, Tay FR. Biphasic silica/apatite co-mineralized collagen scaffolds stimulate osteogenesis and inhibit RANKL-mediated osteoclastogenesis. Acta Biomater. 2015;19:23–32.

    Article  Google Scholar 

  • Jokinen M, Pätsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB. Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2─SiO2 films deposited by dip-coating method. J Biomed Mater Res. 1998;42:295–302.

    Article  Google Scholar 

  • Jones SM, Friberg SE, Sjöblom J. A bioactive composite material produced by the sol-gel method. J Mater Sci. 1994;29:4075–80.

    Article  Google Scholar 

  • Kafi A, Ahmed El-Said W, Kim T-H., Choi J-W. Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays. Biomaterials. 2012;33:731–39.

    Google Scholar 

  • Kamachi Y, Bastakoti BP, Alshehri SM, Miyamoto N, Nakato T, Yamauchi Y. Thermo-responsive hydrogels containing mesoporous silica toward controlled and sustainable releases. Mater Lett. 2016;168:176–9.

    Article  Google Scholar 

  • Kanzaki N, Treboux G, Onuma K, Tsutsumi S, Ito A. Calcium phosphate clusters. Biomaterials. 2001;22:2921–9.

    Article  Google Scholar 

  • Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials. 2003;24:3247–53.

    Article  Google Scholar 

  • Kasuga T, Obata A, Maeda H, Ota Y, Yao X, Oribe K. Siloxane-poly(lactic acid)-vaterite composites with 3D cotton-like structure. J Mater Sci Mater Med. 2012;23:2349–57.

    Article  Google Scholar 

  • Katagiri K, Hamasaki R, Ariga K, Kikuchi J. Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic − inorganic hybrid. J Am Chem Soc. 2002;124:7892–3.

    Article  Google Scholar 

  • Katagiri K, Hashizume M, Ariga K, Terashima T, Kikuchi J. Preparation and characterization of a novel organic–inorganic nanohybrid “cerasome” formed with a liposomal membrane and silicate surface. Chem Eur J. 2007;13:5272–81. doi:10.1002/chem.200700175.

    Article  Google Scholar 

  • Katagiri K, Kamiya J, Koumoto K, Inumaru K. Preparation of hollow titania and strontium titanate spheres using sol-gel derived silica gel particles as templates. J Solgel Sci Technnol. 2012;63:366–72.

    Article  Google Scholar 

  • Kataoka K, Nagao Y, Nukui T, Akiyama I, Tsuru K, Hayakawa S, Osaka A, Huh NH. An organic–inorganic hybrid scaffold for the culture of HepG2 cells in a bioreactor. Biomaterials. 2005;26:2509–16.

    Article  Google Scholar 

  • Katoch A, Kim SS. Synthesis of hollow silica fibers with porous walls by coaxial electrospinning method. J Am Ceram Soc. 2012;95:553–6.

    Article  Google Scholar 

  • Keefer KD. Growth and structure of fractally rough silica colloids. In: Brinker CJ, Clark DE, Ulrich DR, editors. Better ceramics through chemistry, II, Materials research society symposium proceedings, Vol. 73Pittsburgh: Materials Research Society; 1986. p. 295–304.

    Google Scholar 

  • Ker EDF, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH, Campbell PG. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials. 2011;32:8097–107.

    Article  Google Scholar 

  • Ketkar-Atre A, Struys T, Dresselaers T, Hodenius M, Mannaerts I, Ni Y, Lambrichts I, Van Grunsven LA, De Cuyper M, Himmelreich U. In vivo hepatocyte MR imaging using lactose functionalized magnetoliposomes. Biomaterials. 2014;35:1015–24.

    Article  Google Scholar 

  • Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001;22:1705–11.

    Article  Google Scholar 

  • Kikuchi M, Itoh S, Matsumoto HN, Koyama Y, Takaura K, Shinomiya K, Tanaka J. Fibrillogenesis of hydroxyapatite/collagen self-organized composites. In: Ben-Nissan B, Sher D, Walsh W, editors. Key engineering materials, Vols. 240–242, Bioceramics Vol. 15Zurich: Trans Tech Pub; 2003. p. 567–70.

    Google Scholar 

  • Knowlton S, Onal S, Yu C-H, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trends Biotechnol. 2015;33:504–13.

    Article  Google Scholar 

  • Kodama H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum. 1981;52:1770. http://dx.doi.org/10.1063/1.1136492.

    Article  Google Scholar 

  • Kokubo T. Recent progress in glass-based materials for biomedical applications. J Ceram Soc Jpn (Seramikkusu Ronbunshi). 1991;99:965–73.

    Article  Google Scholar 

  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  • Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124–30.

    Article  Google Scholar 

  • Kubo M, Takashima S, Tsuru K, Hayakawa S, Osaka A, Ohtsuki C. Surface modification of polymers with grafting and coating of silane hybrids and their bioactivity. In: Klein L, Francis LF, De Guire MR, Mark JE, editors. Organic/inorganic hybrid materials II, Materials research society symposium proceedings, Vol. 576Warrendale: Materials Research Society; 1999. p. 377–82.

    Google Scholar 

  • Kuhn LT, Wu Y, Rey C, Gerstenfeld C, Grynpas MD, Ackerman JL, Kim H-M, Glimcher MJ. Structure, composition, and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures. J Bone Min Res. 2000;15:1301–1309.

    Google Scholar 

  • Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457–70.

    Article  Google Scholar 

  • Kwon K-Y, Wang E, Chang N, Lee S-W. Characterization of the dominant molecular step orientations on hydroxyapatite (100) surfaces. Langmuir. 2009;25:7205–8.

    Article  Google Scholar 

  • Latour Jr RA, Hench LL. A theoretical analysis of the thermodynamic contributions for the adsorption of individual protein residues on functional zed surface. Biomaterials. 2002;23:4633–48.

    Article  Google Scholar 

  • Lestelius M, Liedberg B, Tengvall P. In vitro plasma protein adsorption on o-functionalized alkanethiolate self-assembled monolayers. Langmuir. 1997;13:5900–08.

    Article  Google Scholar 

  • Li P, Ohtsuki C, KokuboT, Nakanishi K, Soga N, de Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res. 1994a;28:7–15.

    Article  Google Scholar 

  • Li P, Kangasniemi I, de Groot K, Kokubo T. Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J Am Ceram Soc. 1994b;77:1307–12.

    Article  Google Scholar 

  • Li P, Bakker D, van Blitterswijk CA. The bone-bonding polymer Polyactive® 80/20 induces hydroxycarbonate apatite formation in vitro. J Biomed Mater Res. 1997;34:79–86.

    Article  Google Scholar 

  • Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003;3:1167–71.

    Article  Google Scholar 

  • Li D, McCann JT, Xia Y, Marquez M. Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc. 2006;89:1861–9.

    Article  Google Scholar 

  • Li G, Zhang L, Yang Y. Tailoring of chitosan scaffolds with heparin and γ-aminopropyltriethoxysilane for promoting peripheral nerve regeneration. Colloids Surf B: Biointerfaces. 2015;134:413–22.

    Article  Google Scholar 

  • Lin JC, Chuang WH. Synthesis, surface characterization, and platelet reactivity evaluation for the self-assembled monolayer of alkanethiol with sulfonic acid functionality. J Biomed Mater Res. 2000;51:413–23.

    Article  Google Scholar 

  • Liu D, Zhuang Q, Zhang L, Zhang H, Wu S, Kikuchi J, Han Z, Zhang Q, Song X-M. Self-assembly of novel fluorescent quantum dot-cerasome hybrid for bioelectrochemistry. Talanta. 2016a;154:31–7.

    Article  Google Scholar 

  • Liu F, Wu Z, Wang D, Yu J, Jiang X, Chen X. Magnetic porous silica–graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol. Colloids Surf A Physicochem Eng Asp. 2016b;490:207–14.

    Article  Google Scholar 

  • Lu L, Mikos AG. The importance of new processing techniques in tissue engineering. Mater Res Soc Bull. 1996;21:28–32.

    Article  Google Scholar 

  • Luo J, SegghiR, Lannutti J. Effect of silane coupling agents on the wear resistance of polymer-nanoporous silica gel dental composites. Mater Sci Eng. 1997;C5:15–22.

    Article  Google Scholar 

  • Luo X-j, Yang H-y, L-n N, Mao J, Huang C, Pashley DH, Tay FR. Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica. Acta Biomater. 2016;31:378–87.

    Article  Google Scholar 

  • Ma G. Background-free in vivo time domain optical molecular imaging using colloidal quantum dots. ACS Appl Mater Interfaces. 2013;5:2835–44.

    Article  Google Scholar 

  • Ma PX, Zhang RY. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46:60–72.

    Article  Google Scholar 

  • Ma X, He Z, Han F, Zhong Z, Chen L, Li B. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B: Biointerfaces. 2016;143:81–7.

    Article  Google Scholar 

  • Mackenzie JD, Chung YJ, Hu Y. Rubbery Ormosils and their applications. J Non-Cryst Solids. 1992;147&148:271–9.

    Article  Google Scholar 

  • Mackenzie JD, Huang Q-X, Iwamoto T. Mechanical properties of Ormosils. J Solgel Sci Technol. 1996;7:151–61.

    Article  Google Scholar 

  • Maçon A, Kim TB, Valliant EM, other 21 people. A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med. 2015;26:115–24.

    Article  Google Scholar 

  • Maeda H, Kasuga T, Nogami M, Hibino Y, Hata K, Ueda M. Biomimetic apatite formation on poly(lactic acid) composites containing calcium carbonates. J Mater Res. 2002;17:727–30.

    Article  Google Scholar 

  • Maeda H, Kasuga T, Hench LL. Preparation of poly(l-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials. 2006;27:1216–22.

    Article  Google Scholar 

  • Makishima A, Mackenzie JD. Hardness equation for Ormosils. J Solgel Sci Technol. 2000;19:627–30.

    Article  Google Scholar 

  • Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34.

    Google Scholar 

  • Manso M, Ogueta S, Herrero-Feraandez P, VazquezL, Lnaglet M, Garcoa-Ruiz JP. Biological valuation of aerosol-gel-derived hydroxyapatite coatings with human mesenchymal stem cells. Biomaterials. 2003;23:3985–90.

    Article  Google Scholar 

  • Marques PAAP, Magalhães MCF, Correia RN. Inorganic plasma with physiological CO2/HCO3−CO2/HCO3- buffer. Biomaterials. 2003;24:1541–8.

    Article  Google Scholar 

  • Masuda Y, Bekki M, Sonezaki S, Ohji T, Kato K. Dye adsorption characteristics of anatase TiO2 film prepared in an aqueous solution. Thin Solid Films. 2009;518:845–9.

    Article  Google Scholar 

  • Matsui K, Sando S, Sera T, Aoyama Y, Sasaki Y, Komatsu T, Terashima T, Kikuchi J. Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size. J Am Chem Soc. 2006;128:3114–5.

    Article  Google Scholar 

  • Meinel AJ, Kubow KE, Klotzsch E, Garcia-Fuentes M, Smith ML, Vogel V, Merkle HP, Meinel L. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials. 2009;30:3058–67.

    Article  Google Scholar 

  • Mi P, Kokuryo D, Cabral H, Kumagai M, Nomoto T, Aoki I, Terada Y, Kishimura A, Nishiyama N, Kataoka K. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. J Control Release. 2014;174:63–71.

    Article  Google Scholar 

  • Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, Li Y, Aoki I, Ono K, Takahashi H, Cabral H, Nishiyama N, Kataoka K. Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano. 2015;9:5913–21.

    Article  Google Scholar 

  • Mitchell DJ, Ninham BW. Micelles, vesicles and microemulsions. J Chem Soc, Faraday Trans 2. 1981;77:601–29.

    Article  Google Scholar 

  • Miyata N, Fuke K, Chen Q, Kawashita M, Kokubo T, Nakamura T. Bioactivity and mechanical behavior of PTMO-modified CaO─SiO2 hybrids prepared by sol-gel process. In: Giannini S, Moroni A, editors. Key engineering materials, Vols. 192–195, Bioceramics 13Zurich: Trans Tech. Pub; 2000. p. 681–4.

    Google Scholar 

  • Miyata N, Fuke K, Chen Q, Kawashita M, KokuboT, Nakamura T. Apatite-forming ability and mechanical behavior of PTMO-modified CaO─TiO2 hybrids prepared by sol-gel processing. In: Brown S, Clarke I, Williams P, editors. Key Engineering Materials, Vols. 218–220, Bioceramics 14Zurich: Trans Tech. Pub; 2001. p. 117–22.

    Google Scholar 

  • Moriya O, Sugizaki T. Synthesis of polysiloxane having methacryloyloxy group from tributylstannyl ester of silicic acid and silane coupling agent. J Solgel Sci Technol. 2000;19:489–93.

    Article  Google Scholar 

  • Mottaghitalab F, Farokhi M, Zaminy A, Kokabi M, Soleimani M, Mirahmadi F, Shokrgozar MA, Sadeghizadeh M. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS ONE. 2013.; http://dx.doi.org/10.1371/journal.pone.0074417.

  • Mucalo MR, Yokogawa Y, Toriyama M, Suzuki T, Kawamoto Y, Nagata F, Nishizawa K. Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med. 1995a;6:597–605.

    Article  Google Scholar 

  • Mucalo MR, Yokogawa Y, Suzuki T, Kawamoto Y, Nagata F, Nishizawa K. Further studies of calcium phosphate growth on phosphorylated cotton fibres. J Mater Sci Mater Med. 1995b;6:658–69.

    Article  Google Scholar 

  • Muhonen V, Kujala S, Vuotikka A, Ääritalo V, Peltola T, Areva S, Närhi T, Tuukkanen J. Biocompatibility of sol-gel-derived titania–silica coated intramedullary NiTi nails. Acta Biomater. 2009;5:785–93.

    Article  Google Scholar 

  • Muir JMR, Costa D, Idriss H. DFT computational study of the RGD peptide interaction with the rutile TiO2 (110) surface. Surf Sci. 2014;624:8–14.

    Article  Google Scholar 

  • Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS. Inorganic-organic hybrid scaffolds for osteochondral regeneration. J Biomed Mater Res. 2010;94A:112–21.

    Article  Google Scholar 

  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article  Google Scholar 

  • Nacken M, Hoebbel D, Schmidt H. Formation and hydrolytic stability of oxygen bridged heterometal bonds (Si-O-Ti, Si-O-Zr, Si-O-Ta) in sol-gel materials. In: Klein LC, Francis LF, De Guire MR, Mark JE, editors. Organic/inorganic hybrid materials II, Materials research society symposium proceedings, Vol. 576Warrendale: Materials Research Society; 1999. p. 221–6.

    Google Scholar 

  • Nagayama H, Honda H, Kawahara H. A new process for silica coating. J Electrochem Soc. 1988;135:2013–6.

    Article  Google Scholar 

  • Nakanishi K. Pore structure control of silica gels based on phase separation. J Porous Mater. 1997;4:67–112.

    Article  Google Scholar 

  • Nakayama Y, Kim J-Y, Ueno H, Matsuda T. Development of high-performance stent: gelatinous photogel-coated stent that permits drug delivery and gene transfer. J Biomed Mater Res. 2001;57:559–66.

    Article  Google Scholar 

  • Neufurth M, Wang X, Schröder HC, Feng Q, Diehl-Seifert B, Ziebart T, Steffen R, Wang S, Müller WEG. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials. 2014;35:8810–9.

    Article  Google Scholar 

  • Nicolás P, Saleta M, Troiani H, Zysler R, Lassalle V, Ferreira ML. Preparation of iron oxide nanoparticles stabilized with biomolecules: experimental and mechanistic issues. Acta Biomater. 2013;9:4754–62.

    Article  Google Scholar 

  • Nicoll SB, Radin S, Santos EM, Tuan RS, Ducheyne P. In vitro release kinetics of biologically active transforming growth factor-b1 from a novel porous glass carrier. Biomaterials. 1997;18:8525.59.

    Article  Google Scholar 

  • Nicolson PC, Vogt J. Soft contact lens polymers: an evolution. Biomaterials. 2001;22:3273–83.

    Article  Google Scholar 

  • Nishi S, Nakayama Y, Ueda-Ishibashi H, Matsuda T. Embolization of experimental aneurysms using a heparin-loaded stent graft with micropores. Cardiovsc Radiat Med. 2003;4:29–33.

    Article  Google Scholar 

  • Nistor MT, Vasile C, Chiriac AP. Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C. 2015;53:212–21.

    Article  Google Scholar 

  • Nomoto T, Fukushima S, Kumagai M, Miyazaki K, Inoue A, Mi P, Maeda Y, Toh K, Matsumoto Y, Morimoto Y, Kishimura A, Nishiyama N, Kataoka K. Calcium phosphate-based organic–inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy. Biomater Sci. 2016. doi:10.1039/C6BM00011H.

    Google Scholar 

  • Obata A. Development of biomaterials with inorganic ions stimulating osteogenic cell functions. J Ceram Soc Jpn. 2013;121:377–81.

    Article  Google Scholar 

  • Obata A, Ozasa H, Kasuga T, Jones JR. Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. J Mater Sci: Mater Med. 2013;24:1649–58.

    Google Scholar 

  • Ohgushi H, Noshi T, Ikuchi M, Yoshikawa T, Dohi Y, Tateishi T. Quantitative analysis of bone formed in marrow/BMP/HA composites. In: Key engineering materials, Vols. 218–220, Bioceramics Vol. 14Zurich: Trans Tech Pub; 2002. p. 241–4.

    Google Scholar 

  • Ohtsuki C, KokuboT, Takatsuka K, Yamamuro T. Compositional dependence of bioactivity of glasses in the system CaO─SiO2─P2O5: Its in vitro evaluation. J Ceram Soc Jpn. 1991;99:1–6.

    Article  Google Scholar 

  • Ohtsuki C, KokuboT, Yamamuro T. Mechanism of apatite formation on CaO─SiO2─P2O5 glasses in a simulated body fluid. J Non-Cryst Solids. 1992;1425:4–92.

    Google Scholar 

  • Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K. Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full-thickness skin wounds. J Biomed Mater Res B Appl Biomater. 2009;90B:641–6.

    Article  Google Scholar 

  • Okada M, Masuda M, Tanaka R, Miyatake K, Kuroda D, Furuzono T. Preparation of hydroxyapatite-nanocrystal-coated stainless steel, and its cell interaction. J Biomed Mater Res. 2008;86A:589–96.

    Article  Google Scholar 

  • Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation: A new perspective. Mater Sci Eng R. 2007;58:77–116.

    Article  Google Scholar 

  • Onuma K, Ito A. Cluster growth model for hydroxyapatite. Chem Mater. 1998;10:3346–51.

    Article  Google Scholar 

  • Onuma K, Ito A, Tateishi T. Investigation of a growth unit of hydroxyapatite crystal from the measurements of step kinetics. J Cryst Growth. 1996;167:773–6.

    Article  Google Scholar 

  • Osaka A, Ren L, Yabuta T, Tsuru, K, Hayakawa S Poster-presented at 6th international symposium on aerogels (ISA6), Albuqurqui, Oct 15, 2000.

    Google Scholar 

  • Oya K, Tanaka Y, Saito H, Kurashima K, Nogi K, Tsutsumi H, Tsutsumi Y, Doi H, Nomura N, Hanawa T. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials. 2009;30:1281–6.

    Article  Google Scholar 

  • Oyane A. Development of apatite-based composites by a biomimetic process for biomedical applications. J Ceram Soc Jpn. 2010;118:77–81.

    Article  Google Scholar 

  • Oyane A, Onuma K, Kokubo T, Ito A. Clustering of calcium phosphate in the system CaCl2─H3PO4─KCl─H2O. J Phys Chem B. 1999;1025:230–8235.

    Google Scholar 

  • Oyane A, Onuma K, Ito A, Kim H-M, Kokubo T, Nakamura T. Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res A. 2003;64A:339–25.

    Article  Google Scholar 

  • Ozawa N, Kumazawa Y, Yao T. Effect of seed crystal and composition of solution on the formation of TiO2 thin film from aqueous solution. Thin Solid Films. 2002;418:102–11.

    Article  Google Scholar 

  • Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–43.

    Article  Google Scholar 

  • Paldan H, Areva S, Tirri T, Peltola T, Lindholm TC, Lassila L, Pelliniemi LJ, Happonen R-P, Närhi TO. Soft tissue attachment on sol-gel treated titanium implants in vivo. J Mater Sci Mater Med. 2008;19:1283–90.

    Article  Google Scholar 

  • Pan H, Zhao X, Darvell BW, Lu W. Apatite-formation ability – predictor of “bioactivity”? Acta Biomater. 2010;6:4181–8.

    Article  Google Scholar 

  • Park J-W, Kurashima K, Yusuke T, An C-H, Suh J-Y, Doi H, Nomura N, Noda K, Hanawa T, et al. Acta Biomater. 2011;7:3222–9.

    Article  Google Scholar 

  • Parkhurst CS, Doyle WF, Silverman LA, Singh S, Anderson MP, McClurg D, Wnek GE, Uhlman DR. Siloxane modified SiO2─TiO2 glasses via sol-gel. In: Brinker CJ, Clark DE, Ulrich DR, editors. Better ceramics through chemistry, II, Materials research society symposium proceedings, Vol. 73Pittsburgh: Materials Research Society; 1986. p. 769–73.

    Google Scholar 

  • Pasqui D, Atrei A, Giani G, Cagna MD, Barbucci R. Metal oxide nanoparticles as cross-linkers in polymeric hybrid hydrogels. Mater Lett. 2011;65:392–5.

    Article  Google Scholar 

  • Peltola T, Äärital V, Haltia AM, Vehviläinen M, Areva S, Jokinen M, Yli-Urpo A. In vitro bioactivity of sol-gel-derived silica fiber and P(L/D,L)LA composites. In: Key engineering materials, Vols. 240–242, Bioceramics Vol. 15Zurich: Trans Tech Pub; 2003. p. 159–62.

    Google Scholar 

  • Pereira MM, Clark AE, Hench LL. Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc. 1995;78:2463–8.

    Article  Google Scholar 

  • Perumal S, Ramadass SK, Madhan B. Sol-gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing. Eur J Pharm Sci. 2014;52:26–33.

    Article  Google Scholar 

  • Philip F, Schmidt H. New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process. J Non-Cryst Solids. 1984;63:283–92.

    Article  Google Scholar 

  • Pietschnig R, Spirk S. The Chemistry of Organo Silanetriols. Coord Chem Rev. 2016;323:87–106. Available online 30 March.

    Article  Google Scholar 

  • Poologasundarampillai G, Fujikura K, Obata A, Kasuga T. Modification and mechanical properties of electrospun blended fibermat of PLGA and siloxane containing vaterite/PLLA hybrids for bone repair. Express Polym Lett. 2011;5:873–81.

    Article  Google Scholar 

  • Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res. 1975;8:273–81.

    Article  Google Scholar 

  • Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. Pergamon: Oxford; 1966. Section 18.2.

    Google Scholar 

  • Qi R, Guo R, Zheng F, Liu H, Yu J, Shi X. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. Colloids Surf B: Biointerfaces. 2013;110:148–55.

    Article  Google Scholar 

  • Qiu D, An X. Controllable release from magnetoliposomes by magnetic stimulation and thermal stimulation. Colloids Surf B: Biointerfaces. 2013;104:326–9.

    Article  Google Scholar 

  • Que W, Zhou Y, Lam UL, Chan RC, Kam CH. Preparation and characterizations of TiO2/organically modified silane composite materials produced by the sol-gel method. J Solgel Sci Technol. 2001;20:187–95.

    Article  Google Scholar 

  • Radder AM, Leeders H, van Blitterswijk CA. Application of porous PEO/PBT copolymers for bone replacement. J Biomed Mater Res. 1996;30:341–51.

    Article  Google Scholar 

  • Rajkumar M, Kavitha K, Prabhu M, Meenakshisundaram N, Rajendran V. Nanohydroxyapatite–chitosan–gelatin polyelectrolyte complex with enhanced mechanical and bioactivity. Mater Sci Eng C. 2013;33:3237–44.

    Article  Google Scholar 

  • Ratcliffe A. Difficulties in the translation of functionalized biomaterials into regenerative medicine clinical products. Biomaterials. 2011;32:4215–7.

    Article  Google Scholar 

  • Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evansc BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35.

    Article  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A. Synthesis and characterization of gelatin-siloxane hybrids derived through sol-gel procedure. J Solgel Sci Technol. 2001a;21:115–21.

    Article  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A. Incorporation of Ca2+ ions in gelatin-siloxane hybrids through a sol-gel process. J Ceram Soc Jpn. 2001b;109:406–11.

    Article  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A. Sol-gel preparation and in vitro deposition of apatite on porous gelatin-siloxane hybrids. J Non-Cryst Solids. 2001c;285:116–22.

    Article  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A. Novel approach to fabricate porous gelatin–siloxane hybrids for bone tissue engineering. Biomaterials. 2002;23:4765–73.

    Article  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A. In vitro evaluation of osteoblast response to sol-gel derived gelatin-siloxane hybrids. J Solgel Sci Technol. 2003;26:1137–40.

    Article  Google Scholar 

  • Rhee S-H. Effect of calcium salt content in the poly(ε-caprolactone)/silica hybrid on the nucleation and growth behavior of apatite layer. In: Key engineering materials. 240–242, Bioceramics Vol. 15Zurich: Trans Tech Pub; 2003. p. 171–4. (Refer also to the succeeding three papers: 175–182, 179–182, 187–190).

    Google Scholar 

  • Rhee S-H, Tanaka J. Hydroxyapatite coating on a collagen membrane by a biomimetic method. J Am Ceram Soc. 1998;81:3029–31.

    Article  Google Scholar 

  • Rhee S-H, Suetsugu Y, Tanaka J. Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials. 2001;22:2843–7.

    Article  Google Scholar 

  • Rhee S-H, Hwang M-H, Choi J-Y. Effect of silica content in PMMA/silica hybrids containing calcium slat on calcium phosphate formation and cell responses. In: Key engineering materials, Vols. 240–242, Bioceramics Vol. 15Zurich: Trans Tech Pub; 2003. p. 183–6.

    Google Scholar 

  • Rodrigues ARO, Gomes IT, Almeida BG, Araújo JP, Castanheira EMS, Coutinho PJG. Magnetoliposomes based on nickel/silica core/shell nanoparticles: synthesis and characterization. Mater Chem Phys. 2014;148:978–87.

    Article  Google Scholar 

  • Ross-Murphy SB. Structure and rheology of gelatin gels: recent progress. Polymer. 1992;33:2622–6.

    Article  Google Scholar 

  • Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986;44:517–8.

    Article  Google Scholar 

  • Sadat-Shojai M, Khorasani M-T, Jamshidi A. A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem Eng J. 2016;289:38–47.

    Article  Google Scholar 

  • Sanchez C, Lebeau B. Design and properties of hybrid inorganic-organic nanocomposites for photonics. Mater Res Soc Bull. 2001;26:377–25.7.

    Article  Google Scholar 

  • Sánchez-Vaquero V, Satriano C, Tejera-Sánchez N, Méndez LG, Garcia Ruiz JP, Manso SM. Characterization and cytocompatibility of hybrid aminosilane-agarose hydrogel scaffolds. Biointerphases. 2010;5:23–9.

    Article  Google Scholar 

  • Sato K, Onodera D, Hinino M, Yao T. Development of bioactive organic polymer coated with ceramic thin films synthesized from aqueous solution. Key Eng Mater. 2006;309-311:771–4.

    Article  Google Scholar 

  • Sato T, Kochi A, Shirosaki Y, Hayakawa S, Aizawa M, Osaka A, Kikuchi M. Preparation of injectable hydroxyapatite/collagen paste using sodium alginate and influence of additives. J Ceram Soc Jpn. 2013;121:775–81.

    Article  Google Scholar 

  • Schmidt H. New type of non-crystalline solids between inorganic and organic materials. J Non-Cryst Solids. 1985;73:681–91.

    Article  Google Scholar 

  • Schmidt H. Chemistry of materials preparation by the sol-gel process. J Non-Cryst Solids. 1988;100:51–64.

    Article  Google Scholar 

  • Schwab JJ, Lichtenhan JD. Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organomet Chem. 1998;12:707–13.

    Article  Google Scholar 

  • Shimojima A, Kuroda K. Novel layered silica/organic polymer hybrid films with the interface linked by Si/C bonds. Chem Lett. 2000;29:1310–311.

    Google Scholar 

  • Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, Fernandes MH. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials. 2005;26:485–93.

    Google Scholar 

  • Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Takashima K. Cytocompatibility of silicone elastomer grafted with γ-methacriloxypropyltrimethoxysilane. J Ceram Soc Jpn. 2006;114:72–6.

    Article  Google Scholar 

  • Shirosaki Y, Okayama T, Tsuru K, Hayakawa S, Osaka A. Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application. Chem Eng J. 2008a;137:122–8.

    Article  Google Scholar 

  • Shirosaki Y, Tsuru K, Hayakawa S, Osaka A. Biodegradable chitosan-silicate porous hybrids for drug delivery. Key Eng Mater. 2008b;361-363:1219–22.

    Article  Google Scholar 

  • Shirosaki Y, Tsuru K, Moribayashi H, Hayakawa S, Nakamura Y, Gibson IR, Osaka A. Preparation of osteocompatible Si(IV)-enriched chitosan–silicate hybrids. J Ceram Soc Jpn. 2010;118:989–92.

    Google Scholar 

  • Shirosaki Y, Yoshihara H, Chen S, Blevins M, Nakamura Y, Hanagata N, Hayakawa S, Stamboulis A, Osaka A. Electrospun poly(vinyl alcohol) as a template of silica hollow and solid micro-fibrous mats. J Ceram Soc Jpn. 2012;120:520–4.

    Article  Google Scholar 

  • Shirosaki Y., Okamoto K., Hayakawa S., Osaka A., Asano T. Preparation of porous chitosan-siloxane hybrids coated with hydroxyapatite particles. Biomed Res Int. 2015a;392940: 6 pages (http://dx.doi.org/10.1155/2015/392940)

  • Shirosaki Y, Hirai M, Hayakawa S, Fujii E, Lopes MA, Santos JD, Osaka A. Preparation and in vitro cytocompatibility of chitosan–siloxane hybrid hydrogels. J Biomed Mater Res A. 2015b;103A:289–99.

    Article  Google Scholar 

  • Shirosaki Y, Furuse M, Asano T, Kinoshita Y, Miyazaki T, Kuroiwa T. Use of chitosan-siloxane porous hybrid scaffold as novel burr hole covers. Lett Appl NanoBioSci. 2016;5:342–5.

    Google Scholar 

  • Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC. Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc. 2006;89:395–407.

    Article  Google Scholar 

  • Simões MJ, Amado S, Gärtner A, Armada-da-Silva PAS, Raimondo S, Vieira M, Luís AL, Shirosaki Y, Veloso AP, Santos JD, Varejão ASP, Geuna S, Maurício AC. Use of chitosan scaffolds for repairing rat sciatic nerve defects. Ital J Anat Embryol. 2010;115:175–95.

    Google Scholar 

  • Simões MJ, Gärtner A, Shirosaki Y, Gil da Costa RM, Cortez PP, Gartnër F, Santos JD, Lopes MA, Geuna S, Varejão ASP, Maurício AC. In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction. Acta Medica Port. 2011;24:43–52.

    Google Scholar 

  • Singh Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol Sci Appl. 2016;9:15–28.

    Article  Google Scholar 

  • Soga K, Tokuzen K, Tsuji K, Yamano T, Hyodo H, Kishimoto H. NIR bioimaging: development of piposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes. Eur J Inorg Chem. 2010;2010:2673–7.

    Article  Google Scholar 

  • Song D-P, Chen M-J, Liang Y-C, Bai Q-S, Chen J-X, Zheng X-F. Adsorption of tripeptide RGD on rutile TiO2 nanotopography surface in aqueous solution. Acta Biomater. 2010;6:684–94.

    Article  Google Scholar 

  • Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y. The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon. 2015;95:1039–50.

    Article  Google Scholar 

  • Spera R, Apollonio F, Liberti M, Paffi A, Merla C, Pinto R, Petralito S. Controllable release from high-transition temperature magnetoliposomes by low-level magnetic stimulation. Colloids Surf B: Biointerfaces. 2015;131:136–40.

    Article  Google Scholar 

  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Article  Google Scholar 

  • Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci. 2005;96:557–69.

    Article  Google Scholar 

  • Tabata Y, Ikada Y. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials. 1999;20:2169–75.

    Article  Google Scholar 

  • Takadama H, Kim H-M, Kokubo T, Nakamura T. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J Biomed Mater Res. 2001;55:185–93.

    Article  Google Scholar 

  • Takemoto S, Yamamoto T, Tsuru K, Hayakawa S, Osaka A, Takashima S. Platelet adhesion on titanium oxide gels: effect of surface oxidation. Biomaterials. 2004;25:3485–92.

    Article  Google Scholar 

  • Tas C. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater. 2014;10:1771–92.

    Article  Google Scholar 

  • Tavangarian F, Li Y. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceram Int. 2012;38:6075–90.

    Article  Google Scholar 

  • Tavano L, Vivacqua M, Carito V, Muzzalupo R, Caroleo MC, Nicoletta F. Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids and Surfaces B: Biointerfaces. 2013;102:803–7.

    Article  Google Scholar 

  • Tavano L, Muzzalupo R. Multi-functional vesicles for cancer therapy: the ultimate magic bullet. Colloids Surf B: Biointerfaces. 2016;147:161–71.

    Article  Google Scholar 

  • Thula TT, Rodriguez DE, Lee MH, Pendi L, Podschun J, Gower LB. In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials. Acta Biomater. 2011;7:3158–69.

    Article  Google Scholar 

  • Tocce EJ, Broderick AH, Murphy KC, Liliensiek SJ, Murphy CJ, Lynn DM, Nealey PF. Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell–substrate interactions. J Biomed Mater Res A. 2012;100A:84–93.

    Article  Google Scholar 

  • Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18:567–75.

    Article  Google Scholar 

  • Tosatti S, Schwartz Z, Campbell C, Cochran DL, Vande-Vondele S, Hubbell JA, Denzer A, Simpson J, Wieland M, Lohmann CH, Textor M, Boyan BD. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. J Bioded Mater Res A. 2004;68A:458–72.

    Article  Google Scholar 

  • Tóth IY, Veress G, Szekeres M, Illés E, Tombácz E. Magnetic hyaluronate hydrogels: preparation and characterization. J Magn Magn Mater. 2015;380:175–80.

    Article  Google Scholar 

  • Tsuru K, Ohtsuki C, Osaka A, Iwamoto T, Mackenzie JD. Bioactivity of sol-gel derived organically modified silicates. J Mater Sci Mater Med. 1997;8:157–61.

    Article  Google Scholar 

  • Tsuru K, Hayakawa S, Ohtsuki C, Osaka A. Bioactive gel coatings derived from vinyltrimethoxysilane. J Solgel Sci Technol. 1998;13:237–40.

    Article  Google Scholar 

  • Tsuru K, Aburatani Y, Yabuta T, Hayakawa S, Ohtsuki C, Osaka A. Synthesis and in vitro behavior of organically modified silicate containing Ca ions. J Solgel Sci Technol. 2001a;21:89–96.

    Article  Google Scholar 

  • Tsuru K, Kubo M, Hayakawa S, Ohtsuki C, Osaka A. Kinetics of apatite deposition of silica gel dependent on the inorganic ion composition of simulated body fluids. J Ceram Soc Jpn. 2001b;109:412–8.

    Article  Google Scholar 

  • Tsuru K, Hayakawa S, Osaka A. Synthesis of bioactive and porous organic-inorganic hybrids for biomedical applications. J Solgel Sci Technol. 2004;32:201–5.

    Article  Google Scholar 

  • Tsuru K, Shirosaki Y, Hayakawa S, Osaka A. Sol-gel-derived silicate nano-hybrids for biomedical applications. Biol Pharm Bull. 2013;35:1683–7.

    Article  Google Scholar 

  • Uchida M, Oyane A, Kim H-M, Kokubo T, Ito A. Biomimetic coating of laminin – apatite composite on titanium metal and its excellent cell-adhesive properties. Adv Mater. 2004;16:1071–4.

    Article  Google Scholar 

  • Uetsuki K, Nakai S, Shirosaki Y, Hayakawa S, Osaka A. Nucleation and growth of apatite on an anatase layer irradiated with UV light under different environmental conditions. J Biomed Mater Res A. 2013;101A:712–9.

    Article  Google Scholar 

  • Unuma H. Morphology control and applications of ceramic materials synthesized in aqueous solutions. J Ceram Soc Jpn. 2013;121:919–24.

    Article  Google Scholar 

  • Uskoković V, Hoover C, Vukomanović M, Uskoković DP, Desai TA. Osteogenic and antimicrobial nanoparticulate calcium phosphate and/or poly-lactide-co-glycolide powders for the treatment of osteomyelitis. Mater Sci Eng C: Mater Biolog Appl. 2013;33:3362–73.

    Article  Google Scholar 

  • van den Beucken JJJP, Vos MRJ, Thüne PC, Hayakawa T, Fukushima T, Okahata Y, Walboomers XF, Sommerdijk NAJM, Nolte RJM, Jansen JA. Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials. 2006;27:691–701.

    Article  Google Scholar 

  • Varma HK, Yokogawa Y, Espinosa FF, Kawamoto Y, Nishizawa K, Nagata F, Kameyama T. Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials. 1999;20:879–84.

    Article  Google Scholar 

  • Venkatachalam N, Yamano T, Hemmer E, Hyodo H, Kishimoto H, Soga K. Er3+−doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications. J Am Ceram Soc. 2013;96:2759–65.

    Article  Google Scholar 

  • Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules. 2010;11:820–6.

    Article  Google Scholar 

  • Vogel W, Höland W. The development of bioglass ceramics for medical applications. Angew Chem Int Ed Engl. 1987;26:527–44.

    Article  Google Scholar 

  • Vogt JC, Brandes G, Krüger I, Behrens P, Nolte I, Lenarz T, Stieve M. A comparison of different nanostructured biomaterials in subcutaneous tissue. J Mater Sci Mater Med. 2008;19:2629–36.

    Article  Google Scholar 

  • Wan Y, Liu P, Zhang C, Yang Z, Xiong G, Zheng X, Luo H. Synthesis of a three-dimensional network-structured scaffold built of silica nanotubes for potential bone tissue engineering applications. J Alloys Compd. 2015;647:711–9.

    Article  Google Scholar 

  • Wang C, Wang M. Electrospun multifunctional tissue engineering scaffolds. Front Mater Sci. 2014;8:3–19.

    Article  Google Scholar 

  • Wang X-X, Hayakawa S, Tsuru K, Osaka A. Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments. J Biomed Mater Res. 2000;52:171–6.

    Article  Google Scholar 

  • Wang Y, Bella E, Lee CSD, Migliaresi C, Pelcastre L, Schwartz Z, Boyan BD, Motta A. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials. 2010;31:4672–81.

    Article  Google Scholar 

  • Wang Y, Dong A, Yuan Z, Chen D. Fabrication and characterization of temperature-, pH- and magnetic-field-sensitive organic/inorganic hybrid poly (ethylene glycol)-based hydrogels. Colloids Surf A Physicochem Eng Asp. 2012;415:68–76.

    Article  Google Scholar 

  • Wen J-Y, Wilkes GL. Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater. 1996;8:1667–81.

    Article  Google Scholar 

  • Werner C, Maitz MF, Sperling C. Current strategies towards hemocompatible coatings. J Mater Chem. 2007;17:3376–325.4.

    Article  Google Scholar 

  • Werner M, Heil A, Rothermel N, Breitzke H, Groszewicz PB, Thankamony AS, Gutmann T, Buntkowsky G. Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials. Solid State Nucl Magn Reson. 2015;72:73–8.

    Article  Google Scholar 

  • Wilkes GL, Orler B, Hyang H-H. CERAMERS: hybrid materials incorporating polymeric/oligomeric species into inorganic glasses utilizing a sol-gel approach. Polym Prepr. 1985;26:300–2. Ceramer: the registered trade mark of the Fraunhofer Gesellschaft, Germany.

    Google Scholar 

  • Williams DF. The role of short synthetic adhesion peptides in regenerative medicine; the debate. Biomaterials. 2011;32:4195–7.

    Article  Google Scholar 

  • Willis SL, Court JL, Redman RP, Wang J-H, Leppard SW, O’Bryne VJ, Small SA, Lewis AL, Jones SA. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials. 2001;22:3261–72.

    Article  Google Scholar 

  • Wilson J, Yli-Urpo A, Happonen RP. Bioactive glasses: clinical applications. In: Hench LL, editor. An introduction to bioceramics (Chap. 4). Singapore: World Scientific; 1993. p. 625.7.

    Google Scholar 

  • Wolter H, Storch W, Ott J. New inorganic/organic copolymers (Ormocer®s) for dental applications. In: Cheetham AK, Brinker CJ, Mecartney ML, Sanchez C, editors. Better ceramics through chemistry VI, Materials research society symposium proceedings, Vol. 346Pittsburgh: Materials Research Society; 1994. p. 143–9.

    Google Scholar 

  • Wu J-M, Hayakawa S, Tsuru K, Osaka A. Crystallization of anatase from amorphous titania in hot water and in vitro biomineralization. J Ceram Soc Jpn. 2002;110:78–80.

    Article  Google Scholar 

  • Wüst S, Godla ME, Müller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10:630–40.

    Article  Google Scholar 

  • Wüstneck R, Buder E, Wetzel R, Hermel H. The modification of the triple helical structure of gelatin in aqueous solution, 3: the influence of cationic surfactants. Colloid Polym Sci. 1989;267:429–35.

    Article  Google Scholar 

  • Xia S, Li P, Chen Q, Armah M, Ying X, Wu J, Lai J. In situ precipitation: a novel approach for preparation of iron-oxide magnetoliposomes. Int J Nanomedicine. 2014;9:2607–17.

    Article  Google Scholar 

  • Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chena X. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31:3016–22.

    Article  Google Scholar 

  • Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem. 2009;81:8684–94.

    Article  Google Scholar 

  • Xynos ID, Jukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass® 45S stimulates osteoblast turnover and enhances bone formation in vitro; Implications and applications for bone tissue engineering. Calcif Tissue Int. 2000;67:321–9.

    Article  Google Scholar 

  • Xynos JD, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res. 2001;55:151–7.

    Article  Google Scholar 

  • Yabuta T, Tsuru K, Hayakawa S, Osaka A. Synthesis of bioactive organic-inorganic hybrids with γ-methacryloxypropyltrimethoxysilane. J Solgel Sci Technol. 2000;19:745–8.

    Article  Google Scholar 

  • Yabuta T, Bescher EP, Mackenzie JD, Tsuru K, Hayakawa S, Osaka A. Synthesis of PDMS-based porous materials for biomedical applications. J Solgel Sci Technol. 2003;26:1219–22.

    Article  Google Scholar 

  • Yabuta T, Tsuru K, Hayakawa S, Osaka A. Synthesis of blood compatible PDMS-based organic-inorganic hybrid coatings. J Solgel Sci Technnol. 2004;31:273–6.

    Article  Google Scholar 

  • Yamada N, Yoshinaga I, Katayama S. Synthesis and dynamic mechanical behavior of inorganic-organic hybrids containing various inorganic components. J Mater Chem. 1997;7:1491–5.

    Article  Google Scholar 

  • Yamada N, Yoshinaga I, Katayama S. Effects of inorganic components on the mechanical properties of inorganic-organic hybrids synthesized from metal alkoxide and polydimethylsiloxane. J Mater Res. 1999;14:1720–6.

    Article  Google Scholar 

  • Yamada N, Yoshinaga I, Katayama S. Formation behavior and optical properties of transparent inorganic-organic hybrids prepared from metal alkoxides and polydimethylsiloxane. J Solgel Sci Technol. 2000;17:123–30.

    Article  Google Scholar 

  • Yamamuro T. A/W glass-ceramic: clinical applications. In: Hench LL, editor. An introduction to bioceramics 2nd ed. (Chap. 14). London; Imperial College Press; 2013. p. 189–208.

    Google Scholar 

  • Yan J, Chen F, Amsden BG. Cell sheets prepared via gel-sol transition of calcium RGD-alginate. Acta Biomater. 2016;30:277–84.

    Article  Google Scholar 

  • Yang Y, Yu C. Potential clinical significance advances in silica based nanoparticles for targeted cancer therapy nanomedicine: nanotechnology. Biol Med. 2016;12:317–32.

    Google Scholar 

  • Yang J-M, Chen H-S, Hsu Y-G, Wang W. Organic-inorganic hybrid sol-gel materials, 1 – preparation and characterization. Angew Makromol Chem. 1997a;251:49–60.

    Article  Google Scholar 

  • Yang J-M, Chen H-S, Hsu Y-G, Lin F-H, Chang Y-H. Organic-inorganic hybrid sol-gel materials, 2 – application for dental composites. Angew Makromol Chem. 1997b;251:61–72.

    Article  Google Scholar 

  • Yang D, Lu B, Zhao Y, Jiang X. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater. 2007;19:3702–6.

    Article  Google Scholar 

  • Yokogawa Y, Nishizawa K, Nagata F, Kameyama T. Bioactive properties of chitin/chitosan-calcium phosphate composite materials. J Solgel Sci Technol. 2001;21:105–13.

    Article  Google Scholar 

  • Yoshida Y, Nagakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H, Inoue S, Tagawa Y, Suzuki K, de Munck J, van Meerbeek B. Comparative study on adhesive performance of functional monomers. J Dent Res. 2004;83:454–8.

    Article  Google Scholar 

  • Yoshihara K, Yoshida Y, Nagaoka N, Fukegawa D, Hayakawa S, Mine A, Nakamura M, Minagi S, Osaka A, Suzuki K, Van Meerbeek B. Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction. Acta Biomater. 2010;6:3573–82.

    Article  Google Scholar 

  • Yoshihara H., Shirosaki Y., Hayakawa S., Stamboulis A., Osaka A. Preparation of poly(vinyl alcohol)/hydroxyapatite composite nano-fiber mat for tissue-engineering application. An oral paper presented at the 2nd international symposium inorganic and environmental mater, Rennes, 27–31 Oct 2013

    Google Scholar 

  • Yoshinaga I, Yamada N, Katayama S. Synthesis of inorganic-organic hybrids from metal alkoxides and ethyl cellulose. In: Coltrain B, Sanchez C, Schaefer DW, Wilkes GL, editors. Better ceramics through chemistry VII: organic/inorganic hybrid materials, Materials research society symposium proceedings, Vol. 4351996 Warrendale: Materials Research Society; 1996. p. 481–6.

    Google Scholar 

  • Yoshioka T, Tsuru K, Hayakawa S, Osaka A. Preparation of alginic acid layers on stainless-steel substrates for biomedical applications. Biomaterials. 2003;24:2889–94.

    Article  Google Scholar 

  • Yoshioka T, Tsuru K, Hayakawa S, Osaka A. Preparation of organotitanium molecular layers for biomedical applications. Mater Sci Eng C. 2004;24:901–5.

    Article  Google Scholar 

  • Yuan J-J, Kimitsuka N, Jin R-H. Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control. ACS Appl Mater Interfaces. 2013;5:3126–33.

    Article  Google Scholar 

  • Yue X, Dai Z. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers. Adv Colloid Interface Sci. 2014;207:32–42.

    Article  Google Scholar 

  • Zhang Q-Q, Liu LR, Ren L, Wang FJ. Preparation and characterization of collagen-chitosan composites. J Appl Polym Sci. 1997;64:2127–30.

    Article  Google Scholar 

  • Zhang H, Hayashi T, Tsuru K, Deguchi K, Nagahara M, Hayakawa S, Nagai M, Kamiya T, Osaka A, Abe K. Vascular endothelial growth factor promotes brain tissue regeneration with a novel biomaterial polydimethylsiloxane-tetraethoxysilane. Brain Res. 2007;1132:29–35.

    Article  Google Scholar 

  • Zhang H-P, Lu X, Leng Yang, Watari F, Weng J, Feng B, Qu S. Effects of aqueous environment and surface defects on Arg-Gly-Asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation. J Biomed Mat Res Part A. 2011;96A:466–76. doi:10.1002/jbm.a.33003.

    Google Scholar 

  • Zhang F, Huang H, Zhu L, Guo N, Niu G, Swierczewsk M, Lee S, Xu H, Wang AY, Mohamedali KA, Rosenblum MG, Lu G, Chen X. Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials. 2012;33:5414–22.

    Article  Google Scholar 

  • Zhang Y-X, Chen Y-F, Shen X-Y, Hu J-J, Jan J-S. Reduction- and pH-sensitive lipoic acid-modified poly(l-lysine) and polypeptide/silica hybrid hydrogels/nanogels. Polymer. 2016;86:32–41.

    Article  Google Scholar 

  • Zhao J, Zhang Z, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Jiang X. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone. 2009;45:517–27.

    Article  Google Scholar 

  • Zhao B, van der Mei HC, Subbiahdoss G, de Vries J, Rustema-Abbing M, Kuijer R, Busscher HJ, Ren Y. Soft tissue integration versus early biofilm formation on different dental implant materials. Dent Mater. 2014;30:716–27.

    Article  Google Scholar 

  • Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion luminescent materials: advances and applications. Chem Rev. 2015;115:395–465.

    Article  Google Scholar 

  • Zhu PX, Ishikawa M, Seo WS, Hozumi A, Yokogawa Y, Koumoto K. Nucleation and growth of hydroxyapatite on an amino organosilane overlayer. J Biomed Mater Res. 2002;59:294–304.

    Article  Google Scholar 

  • Zhu P, Masuda Y, Koumoto K. The effect of surface charge on hydroxyapatite nucleation. Biomaterials. 2004;25:3915–21.

    Article  Google Scholar 

  • Zhu Y, Meng W, Hanagata N. Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica particles for enzyme-triggered drug delivery. Dalton Trans. 2011;40:10203–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Osaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Shirosaki, Y., Nakamura, Y., Yoshioka, T., Osaka, A. (2016). Inorganic-Organic Hybrids for Biomedical Applications. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_76-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_76-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics