Skip to main content

Solar Cells Based on Sol–Gel Films

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology
  • 135 Accesses

Abstract

Mesoporous films of large bandgap semiconductor oxides made by sol–gel synthesis have recently gained prominence as an essential ingredient of a new type of solar cell based on dye sensitization. The dye-sensitized solar cell (DSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the conventional silicon systems where the semiconductor assumes both the task of light absorption and charge carrier transport, the two functions are separated here. Light is absorbed by a sensitizer, which is anchored to the surface of a wideband semiconductor. Charge separation takes place at the interface via photoinduced electron injection from the dye into the conduction band of the solid. Carriers are transported in the conduction band of the semiconductor to the charge collector. The use of sensitizers having a broad absorption band in conjunction with oxide films of nanocrystalline morphology permits to harvest a large fraction of sunlight. Nearly quantitative conversion of incident photon into electric current is achieved over a large spectral range extending from the UV to the near IR region. Overall solar (standard air mass (AM) 1.5) to current conversion efficiencies over 10% have been reached. There are good prospects to produce these cells at lower cost than conventional devices. Here we present the current state of the field, discuss the importance of mastering the large interface of the mesoporous films by careful control of the sol–gel synthesis conditions, and analyze the perspectives for the future development of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi M, Murata Y, Okada I, Yoshikawa S. Formation of titania nanotubes and applications for dye-sensitized solar cells. J Electrochem Soc. 2003;15:G488–93.

    Article  Google Scholar 

  • Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzert H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature. 1998;395:583–5.

    Article  Google Scholar 

  • Benko G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundstrom V. Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc. 2002;124(3):489–93.

    Article  Google Scholar 

  • Brabec CJ, Sariciftci NS, Hummelen JC. Plastic solar cells. Adv Funct Mater. 2001;11(1):15–26.

    Article  Google Scholar 

  • Burnside SD, Shklover V, Barbé C, Comte P, Arendse F, Brooks K, Grätzel M. Self-organization of TiO2 nanoparticles in thin films. Chem Mater. 1998;10(9):2419–25.

    Article  Google Scholar 

  • Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I. Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B. 1997;101:10281–9.

    Article  Google Scholar 

  • Fang J, Su L, Wu J, Shen Y, Lu Z. Fabrication, characterization, and photovoltaic study of dye-co-modified TiO2 electrodes. New J Chem. 1997;21:1303–7.

    Google Scholar 

  • Grätzel M. Photoelectrochemical cells. Nature. 2001;414:338–44.

    Article  Google Scholar 

  • Grünwald R, Tributsch H. Mechanisms of instability in Ru-based dye sensitization solar cells. J Phys Chem B. 1997;101:2564–75.

    Article  Google Scholar 

  • Hagfeldt A, Grätzel M. Molecular photovoltaics. Acc Chem Res. 2000;33:269–77.

    Article  Google Scholar 

  • Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Morati SC, Holmes AB. Efficient photodiodes from interpenetrating polymer networks. Nature. 1995;376:498.

    Article  Google Scholar 

  • Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem Commun. 2001;7:569–70.

    Google Scholar 

  • Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem. 2003;27(5):783–5.

    Article  Google Scholar 

  • Hinsch A, Kroon JM, Späth M, Roosmalen JAM, Bakker NJ, Sommeling P, van der Burg N, Kinderman P, Kern R, Ferber J, Schill C, Schubert M, Meyer A, Meyer T, Uhlendorf I, Holzbock J, Niepmann R. Long term stability of dye sensitized solar cells for large area power applications (LOTS-DSC). In: Proceedings of 16th European PV Solar Energy Conference, Glasgow; 2000, p. 32.

    Google Scholar 

  • Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid nanorod-polymer solar cells. Science. 2002;295:2425–7.

    Article  Google Scholar 

  • Krüger J, Plass R, Grätzel M. Improvement of the photovoltaïque performance of solide-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy-2,2′-bipyridine)-bis(isothiocyanato) ruthenium(II). Appl Phys Lett. 2002;81(2):367–9.

    Article  Google Scholar 

  • Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S. Chem Commun. 2002;4:374–5.

    Google Scholar 

  • Meng QB, Takahashi K, Zhang X-T, Sutanto I, Rao TN, Sato O, Fujishima A, Watanabe H, Nakamori T, Uragami M. Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir. 2003;19(9):3572–4.

    Article  Google Scholar 

  • Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl, Br,I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc. 1993;115:6382–90.

    Article  Google Scholar 

  • Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc. 2001;123:1613–24.

    Article  Google Scholar 

  • Nelson J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys Rev B. 1999;59:15374–80.

    Article  Google Scholar 

  • O’Regan B, Grätzel M. A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737.

    Article  Google Scholar 

  • O’Regan B, Schwarz DT. Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL′NCS/CuSCN: initiation and potential mechanisms. Chem Mater. 1989;10(6):1501–9.

    Article  Google Scholar 

  • Plass R, Pelet S, Krüger J, Grätzel M, Bach U. Quantum dot sensitization of organic–inorganic hybrid solar cells. J Phys Chem B. 2002;106:7578–80.

    Article  Google Scholar 

  • Renouard T, Fallahpour R-A, Nazeeruddin Md K, Humphry-Baker R, Gorelsky SI, Lever ABP, Grätzel M. Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis. Inorg Chem. 2002;41:367–78.

    Article  Google Scholar 

  • Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem Mater. 1998;10(12):3825–32.

    Article  Google Scholar 

  • Shklover V, Ovchinnikov YE, Braginsky LS, Zakeeruddin SM, Grätzel M. Structure of organic/inorganic interface in assembled materials comprising molecular components. Crystal structure of the sensitizer. Chem Mater. 1998;10:2533–41.

    Article  Google Scholar 

  • Tennakone K, Kumara GRRA, Kumarasinghe AR, Wijayantha KGU, Sirimanne PM. A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond Sci Technol. 1995;10(12):1689–93.

    Article  Google Scholar 

  • Tennakone K, Kumara GRRA, Kottegoda IRM, Perera VPS. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem Commun. 1999;1:15–6.

    Article  Google Scholar 

  • Tian ZR, Voigt JA, Liu J, Mckenzie B, Xu H. Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc. 2003;125(41):12384–5.

    Article  Google Scholar 

  • Van de Lagemaat J, Park N-G, Frank AJ. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J Phys Chem B. 2000;104(109):2044–52.

    Article  Google Scholar 

  • Vittadini A, Seloni A, Rotzinger F, Grätzel M. Structure and energetics of water adsorbed at TiO2 anatase (1 9 1) and (0 0 1) surfaces. Phys Rev Lett. 1998;14:2954–7.

    Article  Google Scholar 

  • Wang P, Zakeeruddin SM, Exnar I, Grätzel M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun. 2002;24:2972–3.

    Article  Google Scholar 

  • Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater. 2003a;2:402–7.

    Article  Google Scholar 

  • Wang P, Zakeeruddin SM, Comte P, Exnar I, Grätzel M. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc. 2003b;125:1166–7.

    Article  Google Scholar 

Download references

Acknowledgment

Recognition is due to the members of the EPFL electrochemical photovoltaics development team, some of whose work is referenced below; to those industrial organizations whose interest in this PV system has induced them to license the concept and thereby support our research; to EPFL; to OFEN (Swiss Federal Office of Energy), and to the US Air Force European Research Office for past encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grätzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Grätzel, M. (2017). Solar Cells Based on Sol–Gel Films. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_65-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_65-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics