Skip to main content

Mechanical Properties of Organic–Inorganic Hybrids

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

With the sol–gel technique, mixing organic and inorganic components has progressed beyond the simple mixing of two separate phases with different properties, as in the “polymer-filler” approach of traditional composite synthesis. Rather, “molecular” composites with unique characteristics can now be fabricated. This novel approach not only offers exciting prospects for the fabrication of novel materials, it also presents many challenges for the modelization for such complex materials. Among the many new and unique characteristics that organic–inorganic hybrids exhibit, mechanical properties are particularly important. These novel materials clearly establish a bridge between the properties of inorganic brittle oxides and those of flexible polymers. In this chapter, we review some aspects of the mechanical properties of bulk organic–inorganic hybrids, such as the relationship between structure and properties, as well as various synthesis routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aburatani Y, Tsuru K, Hayakawa S, Osaka A. Mechanical properties and microstructure of bioactive ORMOSILs containing silica particles. Mater Sci Eng C: Biomim Supramol Syst. 2002;20:195–8.

    Article  Google Scholar 

  • Ahmad Z, Wang S, Mark JE. Preparation and properties of poly(phenyleneterephthalamide)-silica ceramers with interphase bonding from aminophenyltrimethoxysilane, Materials Research Society Symposium Proceedings, Volume 346, Issue Better Ceramics through Chemistry VI, 1994, Pages 127–34.

    Google Scholar 

  • Ahmad Z, Sarwar MI, Mark JE. Thermal and mechanical properties of aramid-based titania hybrid composites. J Appl Polym Res. 1998;70:297–302.

    Article  Google Scholar 

  • Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

    Article  Google Scholar 

  • Bescher E, Mackenzie JD. Hybrid organic–inorganic sensors. Mater Sci Eng. 1998;C6:145–54.

    Article  Google Scholar 

  • Bescher E, Hoshino Y, Nishizawa Y, Cooley K, Mackenzie JD. The role of Fe in the thermal stabilization of ormosils. J Sol-Gel Sci Technol. 2003;26:297–301.

    Article  Google Scholar 

  • Blanco E, et al. Microstructural and mechanical properties of sono-Ormosils. J Sol-Gel Sci Technol. 1998;13:451–5.

    Article  Google Scholar 

  • Brennan A, Wilkes G.L. Structure–property behaviour of sol–gel derived hybrid materials: effect of a polymeric acid catalyst. Polymer 1991; 32(N.4): 733–739.; Ceram. Trans. 1995; 55: 291–298

    Google Scholar 

  • Choi J, Harcup J, Yee AF, Zhu Q, Laine R. Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc. 2001;123:11420–30.

    Article  Google Scholar 

  • Coltrain BK, Sanchez C, Schaefer DW, Wilkes GL (Eds). Better ceramics through chemistry VII: organic/inorganic hybrid materials. Pittsburgh: Materials Research Society; 1996.

    Google Scholar 

  • Ellsworth MW, Novak BM. Mutually interpenetrating inorganic–organic networks. New routes into nonshrinking sol–gel composite materials. J Am Chem Soc. 1991;113:2756–8.

    Article  Google Scholar 

  • Garcia-Hernandez M, Jimenez-Rioboo RJ, Prieto C, Fuentes-Gallego JJ, Blanco E, Ramirez-del-Solar M. Study of the microstructure of sono-ormosils. Bol SECV. 1997;36(2/3):325–7.

    Google Scholar 

  • Glaser RH, Wilkes GL. Polymer-modified mixed metal alkoxide–metal acetyl acetonate sol–gel materials. Polym Bull. 1989;22:527–32.

    Article  Google Scholar 

  • Guo L, Hyeon-Lee J, Beaucage GJ. Structural analysis of poly(dimethylsiloxane) modified silica xerogels. Non-Cryst Solids. 1999;243:61–9.

    Article  Google Scholar 

  • Habsuda J, Simon GP, Cheng YB, Hewitt DG, Lewis DA, Toh H. Organic–inorganic hybrids derived from 2-hydroxyethylmethacrylate and (3 methacryloyloxypropyl)trimethoxysilane. Polymer. 2002;43(15):4123–36.

    Article  Google Scholar 

  • Huang Y, Gu Y. New polyimide–silica organic–inorganic hybrids. J Appl Polym Sci. 2003;88:2210–4.

    Article  Google Scholar 

  • Huang Q, Mackenzie JD. A study on reinforcement of rubber-like ormosils. Ceram Trans. 1995;55:291–8.

    Google Scholar 

  • Huang HH, Wilkes GL. Structure–property behavior of new hybrid materials incorporating oligomeric poly(tetramethylene oxide) with inorganic silicates by a sol–gel process. Polym Bull. 1987; 18(5):455–462, doi:10.1007/BF00275602.

    Google Scholar 

  • Huang HH, Orler B, Wilkes GL. Structure–property behavior of new hybrid materials incorporating oligomeric species into sol–gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules. 1987;20:1322.

    Article  Google Scholar 

  • Huang HH, Glaser RH, Wilkes GL. New hybrid materials incorporating poly(tetramethylene oxide) into tetraethoxysilane-based sol–gel glasses. Structure–property behavior. ACS Symp Ser. 1988;360:354–76.

    Article  Google Scholar 

  • Huang HH, Wilkes GL, Carlson JG. Structure–property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly(tetramethylene oxide). Polymer. 1989;30:2001–12.

    Article  Google Scholar 

  • Innocenzi P, Esposto M, Maddalena A. Mechanical properties of 3-glycidoxypropyltrimethoxysilane based hybrid organic–inorganic materials. J Sol-Gel Sci Technol. 2001;20:293–301.

    Article  Google Scholar 

  • Iwamoto T, Mackenzie JD. Hard ormosils prepared with ultrasonic irradiation. J Sol-Gel Sci Technol. 1995;4(2):141–50.

    Article  Google Scholar 

  • Kramer SJ, Rubio-Alonso F, Mackenzie JD. Organically modified silicate aerogels. In Aeromosils, better ceramics through chemistry VII: organic/inorganic hybrid materials research society symposium proceedings, vol. 435. Pittsburgh, PA, USA: Materials Research Society; 1996. 295–300.

    Google Scholar 

  • Laine R, Sanchez C, Brinker CJ, Gianellis E (Eds). Hybrid materials. Pittsburgh: Materials Research Society; 1998.

    Google Scholar 

  • Mackenzie JD. editor. SPIE Vol. 1758: Sol–Gel Optics II. Washington, SPIE, 1992.

    Google Scholar 

  • Mackenzie JD. editor. SPIE Vol. 2288: Sol–Gel Optics III. Washington, SPIE, 1994.

    Google Scholar 

  • Mackenzie JD, Bescher E. Structures, properties and potential applications of ormosils. J Sol-Gel Sci Technol. 1998;13(1–3):371–377.

    Google Scholar 

  • Mackenzie JD, Bescher E. Physical properties of sol–gel coatings. J Sol-Gel Sci Technol. 2000;19:23–9.

    Article  Google Scholar 

  • Mackenzie JD, Ulrich DR. Sol-gel optics, present status and future trends, SPIE Proceeding, Vol. 1328; 1990 doi:10.1117/12.22540

    Google Scholar 

  • Mackenzie JD, Huang Q, Rubio-Alonso F, Kramer SJ. Effects of temperature on properties of Ormosils. In: Better ceramics through chemistry VII: organic/inorganic hybrid materials, Materials research society symposium proceedings435 Pittsburgh: Materials Research Society; 1996. p. 229–36.

    Google Scholar 

  • Makishima A, Mackenzie JD. Direct calculation of Young’s modulus of glass. J Non-Cryst Solids. 1973;12:35–45.

    Article  Google Scholar 

  • Makishima A, Mackenzie JD. Hardness equation for ormosils. J Sol-Gel Sci Technol. 2000;19:627–30.

    Article  Google Scholar 

  • Minervini G. Tensile properties of rubbery organically modified silicates. Master’s thesis. Los Angeles: University of California; 1994.

    Google Scholar 

  • Morita K, Hu Y, Mackenzie JD. The effect of ultrasonic radiation on gelation and properties of Ormosils. In: Mark J. Hampden-Smith, Walter G. Klemperer and C. Jeffrey Brinker, editors. Better ceramics through chemistry V, Materials research society symposium proceedings. 1992;271:693–698.

    Google Scholar 

  • Morita K, Hu Y, Mackenzie JD. The effects of ultrasonic irradiation on the preparation and properties of ormosils. J Sol-Gel Sci Technol. 1994;3:109–16.

    Article  Google Scholar 

  • Nielsen JM. Oxidative stabilization of dimethyl silicone fluids with iron between 70 and 370°C. J Polym Sci Polym Symp. 1973;40:189–97.

    Article  Google Scholar 

  • Novak BM. Hybrid nanocomposite materials – between inorganic glasses and organic polymers. Adv Mater. 1993;5(6):422–33.

    Article  Google Scholar 

  • Novak BM, Davies C. “Inverse” organic–inorganic composite materials. 2. Free-radical routes into nonshrinking sol–gel composites. Macromolecules. 1991;24:5481–3.

    Article  Google Scholar 

  • Oh E, Chakrabarti K, Jung H, Whang C. Microstructures and mechanical properties of organically modified silicate prepared under various process conditions. Mater Sci Eng. 2002;B90:60–6.

    Article  Google Scholar 

  • Pope EJA, Asami M, Mackenzie JD. Transparent silica gel–PMMA composites. J Mater Res. 1989;4(4):1018–26.

    Article  Google Scholar 

  • Rao M, Janardhan SG, Chakraborty KB. Antioxidant activity of polymer-bound hindered amines. Polym Prepr. 1991;32(2):64–5.

    Google Scholar 

  • Sanchez C, Ribot F. Design of hybrid organic–inorganic materials synthesized via sol–gel chemistry. New J Chem. 1994;18(10):1007–47.

    Google Scholar 

  • Sellinger A, Laine R. Silsesquioxanes as synthetic platforms, thermally curable and photocurable inorganic/organic hybrids. Macromolecules. 1996;29:2327–30.

    Article  Google Scholar 

  • Sorek Y, Zevin M, Reisfeld R, Hurvits T, Rushin S. Zirconia, zirconia–ormosil planar waveguides prepared at room temperature. Chem Mater. 1997;9:670–6.

    Article  Google Scholar 

  • Teowee G, McCarthy KC, Baertlein CD, Boulton JM, Motakef S, Bukowski TJ, Alexander TP, Uhlmann DR. Dielectric properties of organic–inorganic hybrids: PDMS-based systems. Mater Res Soc Symp Proc. 1996;435:559–64.

    Article  Google Scholar 

  • Wilkes G, Orler B, Huang H. “Ceramers”: hybrid materials incorporating polymeric/oligomeric species into inorganic glasses utilizing a sol–gel approach. Polym Prepr. 1985;262:300–2.

    Google Scholar 

  • Yamada N, Yoshinaga I, Katayama S. Effects of inorganic components on the mechanical properties of inorganic–organic hybrids synthesized from metal alkoxides and polydimethylsiloxane. J Mater Res. 1999;V14(5):1720–6.

    Article  Google Scholar 

  • Yamane M, Mackenzie JD. Vicker’s hardness of glass. J Non-Cryst Solids. 1974;15:153–64.

    Article  Google Scholar 

  • Zarzycki J. Critical stress intensity factors of wet gels. J Non-Cryst Solids. 1988;100:359–63.

    Article  Google Scholar 

  • Zhang CR, Laine R. Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic–organic hybrid species. J Organomet Chem. 1996;521:199–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon D. Mackenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Mackenzie, J.D., Bescher, E.P. (2017). Mechanical Properties of Organic–Inorganic Hybrids. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics