Skip to main content

Characterization of the Mechanical Properties of Sol–Gel Coatings

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

This chapter is dedicated to the characterization of the mechanical properties of coatings obtained by the sol–gel process taken in a broad sense, including layers prepared by conventional processes, organic–inorganic or hybrid layers, Ormosil or Ormocer® coatings, and nanocomposite layers, Nanomer® coatings. In addition, a brief summary of the most often used techniques to gather data on stress, hardness, fracture toughness, adhesion, and abrasion (rubbing test and tuber test) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aegerter MA, Al-Dahoudi N. Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates. J Sol–Gel Sci Technol. 2003;27:81–9.

    Article  Google Scholar 

  • Akamatsu Y, Makita K, Inaka H, Minami T. Effect of the addition of TiO2 to SiO2 films with concave–convex surface derived by the sol–gel method on film hardness and application to water-repellent glasses for automotive windows. J Cerma Soc Jpn. 2000;108:365–9.

    Article  Google Scholar 

  • Al-Dahoudi N, Aegerter MA. Conducting, antistatic and antistatic–antiglare coatings made with hybrid sols. Mol Cryst Liquid Cryst. 2002;374:91–100.

    Google Scholar 

  • Bange K. Characterization techniques applied to sol–gel derived coatings and products. In: Aegerter MA, Mennig M, editors. Sol–Gel techniques for glass producers and users. Boston: Kluwer Academic Publishers; 2004.

    Google Scholar 

  • Becker-Willinger C. Private communication. 2004.

    Google Scholar 

  • Bhushan B. Handbook of micro/nano tribology. 2nd ed. Boca Raton: CRC Press; 1999.

    Google Scholar 

  • Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ. The effect of friction on cratch adhesion testing: application to a sol–gel coating on polypropylene. Thin Solid Films. 2000;359:1–13.

    Article  Google Scholar 

  • Brenier R. Stress and moisture – sorption in ozone – annealed filmes of zirconium oxide obtained from sol–gel. J Sol–Gel Sci Technol. 2002;25:57–63.

    Article  Google Scholar 

  • Brenier R, Ortéga L. Structural properties and stress in ZnO Films obtained from a nanocolloidal sol. J Sol–Gel Sci Technol. 2004;29:137–145.

    Google Scholar 

  • Chen ZC, Duncan S, Chawla KK, Koopman M, Janowski GM. Characterization of interfacial reaction products in alumina fiber/barium zirconate coating/alumina matrix composite. Mater Charact. 2002;48:305–14.

    Article  Google Scholar 

  • den Toonder J, Malzbender H, de With G, Balkenende AR. Fracture toughness and adhesion energy of sol–gel coatings on glass. J Mater Res. 2002;17:224–33.

    Article  Google Scholar 

  • Dumont B, Thiery R, Welter JM, Duterne JP. Hybrid sol–gel clear coatings for decoration brass profiles. Surf Eng. 2001;17:254–8.

    Article  Google Scholar 

  • Exarkos GJ, Hess NJ. Spectroscopic measurements of stress relaxation during thermally induced crystallization of amorphous titania films. Thin Solid Films. 1992;220:254.

    Article  Google Scholar 

  • Fischer-Cripps AC. A review of analyzing methods for sub-micron indentation testing. Vacuum. 2001;58:569–85.

    Article  Google Scholar 

  • Frings S, Meinema H, van Nostrum C, van der Linde R. Organic–inorganic hybrid coatings for coil coatings application based on polyesters and tetraethoxysilane. Progr Inorg Coat. 1998;33:126–30.

    Article  Google Scholar 

  • Garcia-Heras M, Rincon JM, Romero M, Villegas MA. Indentation properties of ZrO2–SiO2 coatings on glass substrates. Mater Res Bull. 2003;38:1635–44.

    Article  Google Scholar 

  • Gilberts J, Tinnemans AHA, Hoberheide MP, Koster TPM. UV curable hard transparent hybrid coating materials on polycarbonate prepared by the sol–gel method. J Sol–Gel Sci Technol. 1998;11:153–9.

    Article  Google Scholar 

  • Guglielmi M, Testa D, Innocenzi PC, Colombo P, Gobbin M. Borosilicate coatings on mild steel. J Non Cryst Solids. 1992;147:474–7.

    Article  Google Scholar 

  • Gunji T, Makabey Y, Takamara N, Abe Y. Preparation and characterization of organic–inorganic hybrids and coating films from 3-methacryloxypropylpolysilsesquioxane. Appl Organomet Chem. 2001;15:683–92.

    Article  Google Scholar 

  • Gupta N, Sinha TJM, Varma IK. Development of an abrasion resistant coating from organic–inorganic polymeric network by sol–gel process. Indian J Chem Technol. 1997;4:130–4.

    Google Scholar 

  • Hauk R, Frischat GH, Ruppert K. Sol–gel preparation of scratch-resistant A12O3 coatings on float glass. Glass Sci Technol. 1999;72:386–293.

    Google Scholar 

  • Hawthorne HM, Neville A, Troczynski T, Hu X, Thammachart M, Xie Y, Fu J, Yang Q. Characterization of chemically bonded composite sol–gel based alumina coatings on steel substrates. Surf Coat Technol. 2004;176:243–52.

    Article  Google Scholar 

  • Huang CZ, Wang J, Ai X. Development of new ceramic cutting tools with alumina coated carbide powders. Int J Machine Tools Manuf. 2000;40:826–32.

    Article  Google Scholar 

  • Kaciulis S, Mattogno G, Napoli A, Bemporad E, Ferrari F, Montenero A, Gnappi G. Surface analysis of biocompatible coatings on titanium. J Electron Spectrosc Relat Phenomena. 1998;95:61–9.

    Article  Google Scholar 

  • Katayama Y, Ando E, Kawaguchi T. Characterization of SiO2-films on glass substrate by sol–gel and vacuum deposition methods. J Non Cryst Solids. 1992;147:437–41.

    Article  Google Scholar 

  • Kato M, Goto Y. Mechanical properties of Si3N4 matrix composites reinforced with SiC whiskers with oxide coatings. Adv Compos Mater. 1997;6:227–37.

    Article  Google Scholar 

  • Kozuka H, Kajimara M, Hirano T, Katayama K. Crack-free thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent. J Sol–Gel Sci Technol. 2000;19:205–9.

    Article  Google Scholar 

  • Kozuka H, Takenaka S, Tokita H, Hirano T, Higashi Y, Hamatani T. Stress and cracks in gel-derived ceramic coatings and thick film formation. J Sol–Gel Sci Technol. 2003;26:681–6.

    Article  Google Scholar 

  • Langenfeld S, Jonschker G, Schmidt H. New sol–gel based coatings as corrosion and wear protection on non-ferrous metals. Mater Werkst. 1998;23–29 (in German).

    Google Scholar 

  • Li CH, Wilkes GL. The mechanism for 3-aminopropyltriethoxysilane to strengthen the interface of polycarbonate substrates with hybrid organic–inorganic sol–gel coatings. J Inorg Organomet Polym. 1998;8:33–45.

    Article  Google Scholar 

  • Mackenzie JD, Bescher EP. Physical properties of sol–gel coatings. J Sol–Gel Sci Technol. 2000;19:23–9.

    Article  Google Scholar 

  • Mackenzie JD, Bescher E. Some factors governing the coating of organic polymers by sol–gel derived hybrid materials. J Sol–Gel Sci Technol. 2003;27:7–14.

    Article  Google Scholar 

  • Makishima A, Mackenzie JM. Hardness equation for Ormosils. J Sol–Gel Sci Technol. 2000;19:627–30.

    Article  Google Scholar 

  • Malzbender J, de With G. Energy dissipation, fracture toughness and the indentation load–displacement curve of coated materials. Surf Coat Technol. 2000;135:60–88.

    Article  Google Scholar 

  • Malzbender J, de With G, den Toonder JMJ. Determination of the elastic modulus and hardness of sol–gel coatings on glass: influence of indenter geometry. Thin Solid Films. 2000;372:134–43.

    Article  Google Scholar 

  • Malzbender J, den Toonder JMJ, Balkenende AR, de With G. Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass. Mater Sci Eng. 2002;R36(2–3):47–103.

    Article  Google Scholar 

  • Mennig M, Oliveira PW, Frantzen A, Schmidt H. Multilayer NIR reflective coatings on transparent plastic substrates from photopolymerizable nanoparticulate sols. Thin Solid Films. 1999a;351:225–9.

    Article  Google Scholar 

  • Mennig M, Oliveira PW, Schmidt H. Interference coatings on glass based on photopolymerizable nanomer material. Thin Solid Films. 1999b;351:99–102.

    Article  Google Scholar 

  • Nakajima A, Abe K, Hashimoto K, Watanabe T. Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films. 2000;376:140–3.

    Article  Google Scholar 

  • Ohring M. The materials science of thin films. San Diego: Academic; 1992.

    Google Scholar 

  • Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.

    Article  Google Scholar 

  • Ottermann C, Bange K. Correlation between the density of TiO2 films and their properties. Thin Solid Films. 1996;296:32.

    Article  Google Scholar 

  • Ottermann G, Otto J, Jeschkowski U, Anderson O, Henning M, Bange K. Stress of TiO2 thin films produced by different deposition techniques. MRS Proc. 1993;308:69.

    Article  Google Scholar 

  • Peeters MPJ, Bohner MR. Optical Application of pigmented sol–gel coatings. J Sol–Gel Sci Technol. 2003;26:57–62.

    Article  Google Scholar 

  • Pharr GM, Oliver WC. Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull. 1992;17:28–33.

    Article  Google Scholar 

  • Prene P, Pritton JJ, Beaurain L, Belleville P. Preparation of a sol–gel broadband antireflective and scratch-resistant coating for amplifier blastshields of the French laser LJL. J Sol–Gel Sci Technol. 2000;19:533–7.

    Article  Google Scholar 

  • Pulker HK. Coatings on glass. 2nd revised ed. Amsterdam: Elsevier; 1999.

    Google Scholar 

  • Que WX, Huy X. Effects of titanium content on sol–gel hard optical films prepared in an organic–inorganic hybrid system. J Vacuum Sci Technol A. 2003;21:1809–13.

    Article  Google Scholar 

  • Sepeur S, Kunze N, Werner B, Schmidt H. UV curable hard coatings on plastics. Thin Solid Films. 1999;351:216–9.

    Article  Google Scholar 

  • Strauss GN. Mechanical stress in optical coatings. In: Kaiser N, Pulker HK, editors. Optical interference coatings. Berlin: Springer; 2003.

    Google Scholar 

  • Tadanaga K, Azuta K, Minami T. Preparation of inorganic–inorganic hybrid coating films from vinyltriethoxysilane–tetraethoxysilane by the sol–gel method. J Cerma Soc Jpn. 1997;105:555–8.

    Article  Google Scholar 

  • Tsuge H, Nishi Y, Kume M, Ono S. Improvement of hardness and corrosion resistance of aluminum alloy by ceramic coating using sol–gel method. Nippon Kagaku Kaishi. 2001;12:715–720 (in Japanese).

    Google Scholar 

  • Wilson S, Hawthorne HM, Yang R, Troczynski T. Sliding and abrasive wear of composite sol–gel alumina coated Al alloy. Surf Coat Technol. 2000;133:389–96.

    Article  Google Scholar 

  • Winkler RP, Arpac E, Schirra H, Sepeur S, Wegner I, Schmidt H. Aqueous wet coatings for transparent plastic glazing. Thin Solid Films. 1999;351:209–11.

    Article  Google Scholar 

  • Wu GM, Shen J, Yang TH, Zhon B, Wang J. Reparation of scratch-resistant nano-porous silica films derived by sol–gel process and their antireflective properties. J Mater Sci Technol. 2003;19:299–302.

    Article  Google Scholar 

  • Xie Y, Hawthorne HM. Measuring the adhesion of sol–gel derived coatings to a ductile substrateby an indentation-based method. Surf Coat Technol. 2003;172:42–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel A. Aegerter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Aegerter, M.A. (2017). Characterization of the Mechanical Properties of Sol–Gel Coatings. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics