Skip to main content

Evolution of the Mechanical Properties During the Gel–Glass Process

  • Living reference work entry
  • First Online:
Book cover Handbook of Sol-Gel Science and Technology

Abstract

Different kinds of structure in alcogels and aerogels (fractal or not fractal) can be synthesized by a control of the chemical parameters and also by different steps in the preparation such as sintering and plastic compaction. The porosity of the gels is affected either by the adjustment of the gelifying concentration, by a precise control of the viscous flow sintering process, or by an isostatic pressure deformation. The different kinds of gels cover the whole range of porosity between 99 % and 0 %, and their mechanical properties (elastic modulus, strength, toughness) are strongly dependent on the porosity but also on their structure. We follow the mechanical properties of the over the whole process alcogel – aerogel – glass. They vary by five orders of magnitude as a function of the density, and for the same relative density, the elastic modulus and strength can increase by one order of magnitude due to a change in connectivity. The influence of the sintering process compared to isostatic pressure on the mechanical properties is explained by the associated structural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adam M, Delsanti M, Durand D. Mechanical measurements in the reaction bath during polycondensation reaction near the gelation threshold. Macromolecules. 1985;18(11):2285–90.

    Article  Google Scholar 

  • Anez L, Primera J, Hasmy A, Fransceni P, Sanchez N, Woignier T. A method for elasticity modulus calculation in porous media using the Monte Carlo technique. Key Eng Mater. 2010;423:75–82.

    Article  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel science. New York: Academic; 1990.

    Google Scholar 

  • Calemczuck R, de Goer AM, Salce B, Maynard R, Zarembowitch A. Low temperature properties of silica aerogels. Europhys Lett. 1987;3(11):1205–11.

    Article  Google Scholar 

  • Chermant JL, Osterstock F, Vadam G. Etude critique de la mesure de Kic dans le cas de quelques matériaux verriers. Verres Refract. 1980;34(5):624–36.

    Google Scholar 

  • Crichton SN, Tomozawa M, Hayden JS, Suratwala TI, Campbell JH. Subcritical crack growth in a phosphate laser glass. J Am Ceram Soc. 1999;82:3097–104.

    Article  Google Scholar 

  • Despetis F, Calas S, Etienne P, Phalippou J. Effect of oxidation treatment on the crack propagation rate of aerogels. J Non-Cryst Solids. 2001;285:251–5.

    Article  Google Scholar 

  • Despetis F, Etienne P, Etienne-Calas S. Subcritical crack growth in silica aerogel. J Non-Cryst Solids. 2004;344:22–5.

    Article  Google Scholar 

  • Duffours L, Woignier T, Phalippou J. Plasticity of aerogels under isostatic pressure. J Non-Cryst Solids. 1995;186:321–7.

    Article  Google Scholar 

  • Dumas J, Quinson JF, Serughetti J. Hierarchy of pores and mechanical behavior of wet silica gels. J Non-Cryst Solids. 1990;125:244–9.

    Article  Google Scholar 

  • Emmerling A, Fricke J. Scaling properties and structure of aerogels. J Sol-Gel Sci Technol. 1997;8:781–8.

    Google Scholar 

  • Evans AG, Tappin G. Effects of microstructure on the stress propagate inherent flaws. Proc Br Ceram Soc. 1972;23:275–96.

    Google Scholar 

  • Evans AG. Slow crack in brittle materials under dynamic loading conditions. Int J Fract. 1974;10:251–61.

    Article  Google Scholar 

  • Feng S, Sen P. Percolation on elastic networks: New exponent and threshold. Phys Rev Lett. 1984;52(3):216–9.

    Article  Google Scholar 

  • Gibson LJ, Ashby MF. Cellular solids structure and properties. Oxford, UK: Pergamon; 1988.

    Google Scholar 

  • Griffith AA. The phenomenon of rupture and flow in solids. Philos Trans R Soc London, Ser A. 1920;221:168–98.

    Google Scholar 

  • Gross J, Fricke J. Ultrasonic velocity measurements in silica, carbon and organic aerogels. J Non-Cryst Solids. 1992;145:217–22.

    Article  Google Scholar 

  • Hafidi-Alaoui A, Woignier T, Pernot F, Phalippou J. Stress intensity factor in silica alcogels and aerogels. J Non-Cryst Solids. 2000;265:29–35.

    Article  Google Scholar 

  • Iler RK. The chemistry of silica. NewYork: Wiley; 1979.

    Google Scholar 

  • Kantor Y, Webman I. Elastic properties of random percolating systems. Phys Rev Lett. 1984;52(21):1891–4.

    Article  Google Scholar 

  • Kistler SS. Coherent expanded aerogels. J Phys Chem. 1932;34:52–64.

    Google Scholar 

  • Ma HS, Prevost JH, Jullien R, Scherer GW. Computer simulation of mechanical structure–property relationship of aerogels. J Non-Cryst Solids. 2001;285:216–21.

    Article  Google Scholar 

  • Michalske TA, Freiman SW. A molecular mechanism for stress corrosion in vitreous silica. J Am Ceram Soc. 1983;66(4):284–8.

    Article  Google Scholar 

  • Perrin L, Faivre AL, Calas S, Woignier T. Nano structural damage associated with isostatic compression of silica aerogels. J Non-Cryst Solids. 2004;333:68–72.

    Article  Google Scholar 

  • Phalippou J, Despetis F, Calas S, Faivre AL, Dieudonné P, Woignier T. Comparison between sintered and compressed aerogels. Opt Mater. 2004;26:167–74.

    Article  Google Scholar 

  • Pauthe M, Quinson JF, Hdach H, Woignier T, Phalippou J, Scherer GW. Autoclave treatment effect on silica alcogel texture. J Non-Cryst Solids. 1991;130:1–7.

    Article  Google Scholar 

  • Pirard R, Blacher S, Brouers F, Pirard JP. Interpretation of mercury porosimetry applied to aerogels. J Mater Res. 1995;10(8):2114–9.

    Article  Google Scholar 

  • Reynes J, Woignier T, Phalippou J. Permeability measurement in composite aerogels: application to nuclear waste storage. J Non-Cryst Solids. 2001;285:323–7.

    Article  Google Scholar 

  • Scherer GW, Pardenec SA, Swiateck RM. Viscoelasticity in silica. J Non-Cryst Solids. 1988;107:14–22.

    Article  Google Scholar 

  • Scherer GW, Smith DM, Qiu X, Anderson JM. Compression of aerogels. J Non-Cryst Solids. 1995;186:316–20.

    Article  Google Scholar 

  • Scherer GW. Crack tip stress in gels. J Non-Cryst Solids. 1992;144:210–4.

    Article  Google Scholar 

  • Stauffer D. Gelation in concentrated branched polymer solution. J Chem Soc Faraday Trans. 1976;2:1354–64.

    Article  Google Scholar 

  • Suratwala TI, Steele RA. Anomalous temperature dependence of sub-critical crack growth in silica glass. J Non-Cryst Solids. 2003;16:174–82.

    Article  Google Scholar 

  • Sullivan JD, Lauzon PH. Experimental probability estimators for Weibull plots. J Mater Sci Lett. 1986;5:1245–7.

    Article  Google Scholar 

  • Tokita M, Niki R, Hikichi K. Percolation theory and elastic modulus of gel. J Phys Soc Jpn. 1984;53(2):480–2.

    Article  Google Scholar 

  • West JK, Nicles R, Latorre G. Correlations between processing parameters. Ultrastructure and strength in gel-silica. In: Brinker CJ, Clark DE, Ulrich DR, editors. Materials research society symposia processing, vol. 121. Pittsburgh: Materials Research Society; 1988. p. 219–24.

    Google Scholar 

  • Woignier T, Phalippou J. Mechanical strength of silica aerogels. J Non-Cryst Solids. 1988;100:404–8.

    Article  Google Scholar 

  • Woignier T, Phalippou J, Sempere R, Pelous J. Analysis of the elastic behavior of silica aerogels taken as a percolative system. J Phys Fr. 1988;49:289–93.

    Article  Google Scholar 

  • Woignier T, Phalippou J, Prassas M. Glasses from aerogels. J Mater Sci. 1990;25:3118–26.

    Article  Google Scholar 

  • Woignier T, Phalippou J, Hdach H, Larnac G, Pernot F, Scherer GW. Evolution of mechanical properties during the alcogel-aerogel–glass process. J Non-Cryst Solids. 1992;147–148:672–80.

    Article  Google Scholar 

  • Woignier T, Scherer GW, Alaoui A. Stress in aerogel during depressurization of autoclave: II silica gels. J Sol-Gel Sci Technol. 1994;3:141–50.

    Article  Google Scholar 

  • Woignier T, Alaoui A, Primera J, Phalippou J, Scherer GW. Mechanical properties of aerogels: elastic or plastic materials? Key Eng Mater. 2009;391:27–44.

    Article  Google Scholar 

  • Woignier T, Alaoui A, Primera J, Scherer GW. Structural effect on the plastic behavior in highly porous glasses. Key Eng Mater. 2010;423:15–24.

    Article  Google Scholar 

  • Woignier T, Calas S, Reynes J. From nano composites aerogels to glass ceramics. Solid State Phenom. 2011;172–173:791–6.

    Article  Google Scholar 

  • Woignier T, Primera J, Alaoui A, Etienne P, Despestis F, Calas-Etienne S. Mechanical properties and brittle behavior of silica aerogels. Gels. 2015;1(2):256–75.

    Article  Google Scholar 

  • Zarzycki J. Critical stress intensity factors of wet gels. J Non-Cryst Solids. 1988;100:359–63.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors of Journal of Non-Crystalline Solids, Journal of Sol–Gel Science and Technology and the European Physical Journal for their permission to publish figures here reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Woignier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Woignier, T., Despetis, F., Etienne, P., Alaoui, A., Duffours, L., Phalippou, J. (2016). Evolution of the Mechanical Properties During the Gel–Glass Process. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics