Skip to main content

Characterization of Sol–Gel Materials by Raman and Brillouin Spectroscopies

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology
  • 354 Accesses

Abstract

The use of Raman and Brillouin spectroscopies in sol–gel-derived materials is reviewed. It covers a quite vast domain of investigation, from the basic glass science to the characterization of materials produced for many different applications. The theory of inelastic light scattering is briefly presented and the basic physical mechanisms involved in Raman and Brillouin spectroscopies are discussed. The instrumentation for measurements by visible, ultraviolet, and X-ray excitation is described. The vibrational dynamics in low-density aerogel is discussed in terms of a random fractal model, where the low-frequency acoustic vibrations are distorted phonon-like extended propagating modes, whereas high-frequency modes can be spatially localized. As a function of the vibrational frequency, the phonon wavelength and mean free path depend on the size of the porosity. The dependence of the sound velocity and attenuation on the densities is measured by Brillouin spectroscopy. Attenuation in low-density sol–gel-derived solids is nearly temperature independent and is due to structural disorder instead than to anharmonicity, as it is in crystals and compact glasses. It is shown that Raman and Brillouin spectroscopy can be used to follow the different steps of densifications from the wet-gel to the compact glass during thermal annealing. Waveguided spectroscopies for dip- and spin-coated films are described. Low-frequency Raman spectra from the localized acoustic vibration in nanocrystals are presented in sol–gel-derived glass ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adar F. Evolution and revolution of Raman instrumentation-application of available technologies to spectroscopy and microscopy. In: Lewis IR, Edwards HGM, editors. Handbook of raman spectroscopy: from the research laboratory to the process line. New York: Marcel Dekker Inc; 2001.

    Google Scholar 

  • Aharony A, Alexander S, Enti-Wohlman O, Orbach R. Scattering of fractons, the Ioffe–Regel criterion, and the (4/3) conjecture. Phys Rev Lett. 1987;58:132–5.

    Article  Google Scholar 

  • Alexander S. Vibrations of fractals and scattering of light from aerogels. Phys Rev B. 1989;40:7953–65.

    Article  Google Scholar 

  • Alexander S, Orbach R. Density of states on fractals: “fractons”. J Phys (Paris) Lett. 1982;43:L625–32.

    Article  Google Scholar 

  • Alexander S, Courtens E, Vacher R. Vibrations of fractals: dynamic scaling, correlation functions and inelastic light scattering. Physica A. 1993;195:286–318.

    Article  Google Scholar 

  • Almeida RM. Spectroscopy and structure of sol–gel systems. J Sol–Gel Sci Technol. 1998;13:51–9.

    Article  Google Scholar 

  • Almeida RM, Christensen EE. Crystallization behavior of SiO2–TiO2 sol–gel thin films. J Sol–Gel Sci Technol. 1997;8:409–13.

    Google Scholar 

  • Anglaret E, Hasmy A, Courtens E, Pelous J, Vacher R. Fracton dimension of mutually self-similar series of base-catalyzed aerogels. J Non Cryst Solids. 1995;186:131–6.

    Article  Google Scholar 

  • Anglaret E, Beurroies I, Duffours L, Levelut C, Foret M, Delord P, Woignier T, Phalippou J, Pelous J. A low frequency Raman study of fractons in partially densified silica aerogels. J Non Cryst Solids. 1998;225:248–53.

    Article  Google Scholar 

  • Armellini C, Del Longo L, Ferrari M, Montagna M, Pucker G, Sagoo P. Effect of Pr3+ doping on the OH content of silica xerogels. J Sol–Gel Sci Technol. 1998;13:599–603.

    Article  Google Scholar 

  • Baldwin KJ, Batchelder DN, Webster S. Raman microscopy: confocal and scanning near-field. In: Lewis IR, Edwards HGM, editors. Handbook of Raman spectroscopy: from the research laboratory to the process line. New York/Basel: Marcel Dekker Inc; 2001.

    Google Scholar 

  • Bartolotta A, Carini G, D’Angelo G, Ferrari M, Fontana A, Montagna M, Rossi F, Tripodo G. A study of Raman spectroscopy and low temperature specific heat in gel-synthesized amorphous silica. J Non-Cryst Solids. 2001;280:249–54.

    Article  Google Scholar 

  • Benassi P, Pilla O, Mazzacurati V, Montagna M, Ruocco G, Signorelli G. Disorder-induced light scattering in solids: microscopic theory and applications to some model systems. Phys Rev B. 1991;44:11734–42.

    Article  Google Scholar 

  • Benassi P, Mazzacurati V, Ruocco G, Signorelli G. Elasto-optic constants in silicate-glasses: experiment and theory. Phys Rev B. 1993;48:5987–96.

    Article  Google Scholar 

  • Benassi P, Frizzera W, Montagna M, Viliani G, Mazzacurati V, Ruocco G, Signorelli G. Origin of light scattering from disordered systems. Physica A. 1995;216:32–44.

    Article  Google Scholar 

  • Benassi P, Krisch M, Masciovecchio C, Mazzacurati V, Monaco G, Ruocco G, Sette F, Verbeni R. Evidence of high frequency propagating modes in vitreous silica. Phys Rev Lett. 1996;77:3835–8.

    Article  Google Scholar 

  • Bernasconi A, Sleator T, Posselt D, Kjems JK, Ott HR. Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements. Phys Rev B. 1992;45:10363–76.

    Article  Google Scholar 

  • Bersani D, Lottici PP, Lopez T, Ding X-Z. A Raman scattering study of PbTiO3 and TiO2 obtained by Sol–Gel. J Sol–Gel Sci Technol. 1988;13:849–53.

    Article  Google Scholar 

  • Bersani D, Antonioli G, Lottici PP, Lopez T. Raman study of nanosized titania prepared by sol–gel route. J Non-Cryst Solids. 1998a;234:175–81.

    Article  Google Scholar 

  • Bersani D, Lottici PP, Ding XZ. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl Phys Lett. 1998b;72:73–5.

    Article  Google Scholar 

  • Bertoluzza A, Fagnano C, Morelli MA, Gottardi V, Guglielmi M. Raman and infrared spectra of silica gel evolving toward glass. J Non-Cryst Solids. 1982;48:117–28.

    Article  Google Scholar 

  • Best MF, Condrate RA. A Raman study of TiO2–SiO2 glasses prepared by sol–gel processes. J Mater Sci Lett. 1985;4:994–8.

    Article  Google Scholar 

  • Bouajaj A, Ferrari M, Montagna M. Crystallization of silica xerogels: a study by Raman and fluorescence spectroscopy. J Sol–Gel Sci Technol. 1997;8:391–5.

    Google Scholar 

  • Boukenter A, Champagnon B, Duval E, Dumas J, Quinson JF, Serughetti J. Low-frequency Raman scattering from fractal vibrational modes in a silica gel. Phys Rev Lett. 1986;57:2391–4.

    Article  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–Gel science – the physics and chemistry of the Sol–Gel processing. New York: Academic; 1990.

    Google Scholar 

  • Brinker CJ, Brow RK, Tallant DR, Kirkpatrick RJ. Surface structure and chemistry of high surface area silica gels. J Non-Cryst Solids. 1990;120:26–33.

    Article  Google Scholar 

  • Calas S, Levelut C, Woignier T, Pelous J. Brillouin scattering study of sintered and compressed aerogels. J Non-Cryst Solids. 1998;225:244–7.

    Article  Google Scholar 

  • Campbell IH, Fauchet PM. The effects of microcrystal size and shape on the one phonon Raman-spectra of crystalline semiconductors. Solid-State Commun. 1986;58:739–41.

    Article  Google Scholar 

  • Capoen B, Gacoin T, Nédélec JM, Turrell S, Bouazaoui M. Spectroscopic investigation of CdS nanoparticles in sol–gel derived polymeric thin films and bulk silica matrices. J Mater Sci. 2001;36:2565–70.

    Article  Google Scholar 

  • Caponi S, Ferrari M, Fontana A, Masciovecchio C, Mermet A, Montagna M, Rossi F, Ruocco G, Sette F. X-ray diffraction and Raman scattering measurements on silica xerogels. J Non-Cryst Solids. 2002;307–310:135–41.

    Article  Google Scholar 

  • Caponi S, Fontana A, Montagna M, Pilla O, Rossi F, Terki F, Woignier T. Acoustic attenuation in silica porous systems. J Non-Cryst Solids. 2003;322:29–34.

    Article  Google Scholar 

  • Caponi S, Benassi P, Eramo R, Giugni A, Nardone M, Fontana A, Sampoli M, Terki F, Woignier T. Phonon attenuation in vitreous silica and silica porous systems. Philos Mag B. 2004;84:1423 (in press).

    Article  Google Scholar 

  • Ceccato R, Dal Maschio R, Gialanella S, Mariotto G, Montagna M, Rossi F, Ferrari M, Lipinska-Kalita KE, Ohki Y. Nucleation of Ga2O3 nanocrystals in the K2O–Ga2O3–SiO2 glass system. J Appl Phys. 2001;90:2522–7.

    Article  Google Scholar 

  • Chiasera A, Montagna M, Rossi F, Ferrari M. Brillouin scattering in planar waveguides. I. Numerical model. J Appl Phys. 2003a;94:4876–81.

    Article  Google Scholar 

  • Chiasera A, Montagna M, Moser E, Rossi F, Tosello C, Ferrari M, Zampedri L, Caponi S, Gonçalves RR, Chaussedent S, Monteil A, Fioretto D, Battaglin G, Gonella F, Mazzoldi P, Righini GC. Brillouin scattering in planar waveguides. II. Experiments. J Appl Phys. 2003b;94:4882–9.

    Article  Google Scholar 

  • Cicognani G, Dianoux AJ, Fontana A, Rossi F, Montagna M, Scopigno T, Pelous J, Terki F, Pilliez JN, Woignier T. Low frequency dynamics of silica xerogel porous system. Philos Mag B. 1999;79:2091–102.

    Article  Google Scholar 

  • Conrad H, Buchenau U, Schätzler R, Reichenauer G, Fricke J. Crossover in the vibrational density of states of silica aerogels studied by high-resolution neutron spectroscopy. Phys Rev B. 1990;41:2573–6.

    Article  Google Scholar 

  • Courtens E, Vacher R. Structure and dynamics of silica aerogels. Philos Mag B. 1992;65:347–55.

    Article  Google Scholar 

  • Courtens E, Pelous J, Phalippou J, Vacher R, Woignier T. Brillouin-scattering measurements of phonon–fracton crossover in silica aerogels. Phys Rev Lett. 1987;58:128–31.

    Article  Google Scholar 

  • Courtens E, Vacher R, Pelous J, Woignier T. Observation of fractons in silica aerogels. Europhys Lett. 1988;6:245–50.

    Article  Google Scholar 

  • Courtens E, Lartigue C, Mezei F, Vacher R, Coddens G, Foret M, Pelous J, Woignier T. Measurement of the phonon–fracton crossover in the density of states of silica aerogels. Z Phys B. 1990;79:1–2.

    Article  Google Scholar 

  • Duval E. Far-infrared and Raman vibrational transitions of a solid sphere: selection rules. Phys Rev B. 1992;46:5795–7.

    Article  Google Scholar 

  • Duval E, Garcia N, Boukenter A, Serughetti J. Correlation-effect on Raman-scattering from low-energy vibrational modes in fractal and disordered systems. 1. Theory. J Chem Phys. 1993;99:2040–5.

    Article  Google Scholar 

  • Feng S. Crossover in spectral dimensionality of elastic percolation systems. Phys Rev B. 1985;32:5793–7.

    Article  Google Scholar 

  • Ferrari M, Gratton LM, Maddalena A, Montagna M, Tosello C. Preparation of silver nanoparticles in silica films by combined thermal and electron-beam deposition. J Non-Cryst Solids. 1995;191:101–6.

    Article  Google Scholar 

  • Ferrari M, Gonella F, Montagna M, Tosello C. Detection and size determination of Ag nanoclusters in ion-exchanged soda-lime glasses by waveguided Raman spectroscopy. J Appl Phys. 1996;79:2055–9.

    Article  Google Scholar 

  • Ferrari M, Montagna M, Ronchin S, Rossi F, Righini GC. Waveguide luminescence and Raman spectroscopy: characterization of an inhomogeneous film at different depths. Appl Phys Lett. 1999;75:1529–31.

    Article  Google Scholar 

  • Fontana A, Viliani G, editors. Proceedings of the 6th international workshops on disorder systems, 1997, Andalo. Philos Mag B. 1998;77(2 special issue):901.

    Google Scholar 

  • Fontana A, Montagna M, Rossi F, Ferrari M, Pelous J, Terki F, Woigner T. Low frequency light scattering in silica xerogels. J Phys: Condens Mater. 1999;11:A207–11.

    Google Scholar 

  • Foret M, Courtens E, Vacher R, Suck JB. Scattering investigation of acoustic localization in fused silica. Phys Rev Lett. 1996;77:3831–4.

    Article  Google Scholar 

  • Fujii M, Nagareda T, Hayashi S, Yamamoto K. Low-frequency Raman scattering from small silver particles embedded in SiO2 thin films. Phys Rev B. 1991;44:6243–8.

    Article  Google Scholar 

  • Fujii M, Kanzawa Y, Hayashi S, Yamamoto K. Raman scattering from acoustic phonons confined in Si nanocrystals. Phys Rev B. 1996;54:R8373–6.

    Article  Google Scholar 

  • Galeener FL. Raman and ESR studies of the thermal history of amorphous SiO2. J Non-Cryst Solids. 1985;71:373–86.

    Article  Google Scholar 

  • Gottardi V, Guglielmi M, Bertoluzza A, Fagnano C, Morelli MA. Further investigations on Raman spectra of silica gel evolving towards glass. J Non-Cryst Solids. 1984;63:71–80.

    Article  Google Scholar 

  • Haro-Poniatowski E, Rodriguez-Talavera R, de la Cruz Heredia M, Cano-Corona O, Arroyo-Murillo R. Crystallization of nanosized titania particles prepared by sol–gel process. J Mater Res. 1994;9:2102–8.

    Article  Google Scholar 

  • Ivanda M, Babosci K, Dem C, Schmitt M, Montagna M, Kiefer W. Low-wavenumber Raman scattering from CdS x Se1–x quantum dots embedded in a glass matrix. Phys Rev B. 2003;67(235329):1–8.

    Google Scholar 

  • Karthikeyan A, Almeida RM. Crystallization of SiO2–TiO2 glassy films studied by atomic force microscopy. J Non-Cryst Solids. 2000;274:169–74.

    Article  Google Scholar 

  • Lamb H. Proc Lon Math Soc. 1882;13:187.

    Google Scholar 

  • Levelut C, Anglaret E, Pelous J. Brillouin scattering of aerogels densified under uniaxial pressure. J Non-Cryst Solids. 1998;225:272–6.

    Article  Google Scholar 

  • Lewis IR. Process Raman spectroscopy. In: Lewis IR, Edwards HGM, editors. Handbook of Raman spectroscopy: from the research laboratory to the process line. New York: Marcel Dekker Inc; 2001.

    Google Scholar 

  • Lewis IR, Edwards Howell GM, editors. Handbook of Raman spectroscopy: from the research laboratory to the process line. New York: Marcel Dekker Inc; 2001.

    Google Scholar 

  • Long DA. Raman spectroscopy. New York: McGraw-Hill; 1977.

    Google Scholar 

  • Mandelbrot B. The fractal geometry of nature. San Francisco: Freeman; 1982.

    Google Scholar 

  • Mariotto G, Montagna M, Viliani G, Campostrini R, Carturan G. Low-frequency Raman scattering in thermally treated silica gels: observation of phonon-fracton crossover. J Phys C. 1988a;21:L797–801.

    Article  Google Scholar 

  • Mariotto G, Montagna M, Viliani G, Duval E, Lefrant S, Rzepka E, Mai C. Low energy Raman scattering from silver particles in alkali halides. Europhys Lett. 1988b;6:239–44.

    Article  Google Scholar 

  • Martin AJ, Brenig W. Model for Brillouin scattering in amorphous solids. Phys Stat Sol (b). 1974;64:163–72.

    Article  Google Scholar 

  • Mazzacurati V, Benassi P, Ruocco G. A new class of multiple dispersion grating spectrometers. J Phys E: Sci Instrum. 1988;21:798–804.

    Article  Google Scholar 

  • Mazzacurati V, Montagna M, Pilla O, Viliani G, Ruocco G, Signorelli G. Vibrational dynamics and Raman scattering in fractals: a numerical study. Phys Rev B. 1992;45:2126–37.

    Article  Google Scholar 

  • Montagna M, Dusi R. Raman scattering from small spherical particles. Phys Rev B. 1995;52:10080–9.

    Article  Google Scholar 

  • Montagna M, Pilla O, Viliani G, Mazzacurati V, Ruocco G, Signorelli G. Numerical study of Raman scattering from fractals. Phys Rev Lett. 1990;65:1136–9.

    Article  Google Scholar 

  • Montagna M, Ferrari M, Rossi F, Tonelli F, Tosello C. Brillouin scattering in planar waveguides. Phys Rev B. 1998;58:R547–50.

    Article  Google Scholar 

  • Montagna M, Moser E, Visintainer F, Ferrari M, Zampedri L, Martucci A, Guglielmi M, Ivanda M. Nucleation of titania nanocrystals in silica titania waveguides. J Sol–Gel Sci Technol. 2003;26:241–4.

    Article  Google Scholar 

  • Moret MP, Zallen R, Vijay DP, Desu SB. Brookite-rich titania films made by pulsed laser deposition. Thin Solid Films. 2000;366:8–10.

    Article  Google Scholar 

  • Mulder CAM, Damen AAJM. The origin of the “defect” 490 cm−1 Raman peak in silica gel. J Non-Cryst Solids. 1987;93:387–94.

    Article  Google Scholar 

  • Nemanich RJ, Solin SA, Martin RM. Light scattering study of boron nitride microcrystals. Phys Rev B. 1981;23:6348–56.

    Article  Google Scholar 

  • Othmani A, Bovier C, Dumas J, Champagnon B. Raman scattering in high concentration CdS-doped sol–gel silica glass. J Phys IV. 1992;2:C2-275–8.

    Google Scholar 

  • Palpant B, Portales H, Saviot L, Lerme J, Prevel B, Pellarin M, Duval E, Perez A, Broyer M. Quadrupolar vibrational mode of silver clusters from plasmon-assisted Raman scattering. Phys Rev B. 1999;60:17107–11.

    Article  Google Scholar 

  • Petri A, Pietronero L. Multifractal nature of fractons on the percolating cluster. Phys Rev B. 1992;45:12864–72.

    Article  Google Scholar 

  • Pilla O, Cunsolo A, Fontana A, Masciovecchio C, Monaco G, Montagna M, Ruocco G, Scopigno T, Sette F. Nature of the short wavelength excitations in vitreous silica: an X-ray Brillouin scattering study. Phys Rev Lett. 2000;85:2136–9.

    Article  Google Scholar 

  • Pilla O, Caponi S, Fontana A, Montagna M, Righetti L, Rossi F, Viliani G, Ruocco G, Monaco G, Sette F, Verbeni R, Cicognani G, Dianoux AJ. X-ray and neutron scattering studies in vitreous silica: acoustic nature of vibrational dynamics in the mesoscopic range. Philos Mag B. 2002;82:223–32.

    Article  Google Scholar 

  • Pucker G, Parolin S, Moser E, Montagna M, Ferrari M, Del Longo L. Raman and luminescence studies of Tb3+ doped monolithic silica xerogels. Spectrochim Acta A. 1998;54:2133–42.

    Article  Google Scholar 

  • Raman CV. A change of wavelength in light scattering. Nature. 1928;121:619.

    Article  Google Scholar 

  • Rammal R, Toulouse GJ. Random walks on fractal structures and percolation clusters. J Phys Lett. 1983;44:L13–22.

    Article  Google Scholar 

  • Richter H, Wang ZP, Ley L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 1981;39:625–9.

    Article  Google Scholar 

  • Rousset JL, Boukenter A, Champagnon B, Dumas J, Duval E, Quinson JF, Serughetti J. Antigranulocytes structure and fractal domains of silica aerogels. J Phys Condens Matter. 1990;2:8445–55.

    Article  Google Scholar 

  • Ruocco G, Sette F. High-frequency vibrational dynamics in glasses. J Phys Condens Matter. 2001;13:9141–64.

    Article  Google Scholar 

  • Sandercock JR. Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer. Opt Commun. 1970;2:73–6.

    Article  Google Scholar 

  • Sandercock JR. Simple stabilization scheme for maintenance of mirror alignment in a scanning Fabry–Perot interferometer. J Phys E. 1976;9:566–9.

    Article  Google Scholar 

  • Sandercock JR. Light scattering from surface acoustic phonons in metal and semiconductors. Solid State Commun. 1978;26:547–51.

    Article  Google Scholar 

  • Saviot L, Champagnon B, Duval E, Ekimov AI. Size-selective resonant Raman scattering in CdS doped glasses. Phys Rev B. 1998;57:341–6.

    Article  Google Scholar 

  • Schaefer DW, Keefer KD. Structure of random porous materials: silica aerogel. Phys Rev Lett. 1986;56:2199–202.

    Article  Google Scholar 

  • Schaefer DW, Brinker CJ, Richter D, Farago B, Frick B. Dynamics of weakly connected solids: silica aerogels. Phys Rev Lett. 1990;64:2316–9.

    Article  Google Scholar 

  • Scopigno T, Balucani U, Ruocco G, Sette F. Inelastic X-ray scattering and the high-frequency dynamics of disordered systems. Phys B. 2002;318:341–9.

    Article  Google Scholar 

  • Shiang JJ, Risbud SH, Alivisatos AP. Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals. J Chem Phys. 1993;98:8432–42.

    Article  Google Scholar 

  • Shuker R, Gammon RW. Raman-scattering selection-rule breaking and the density of states in amorphous materials. Phys Rev Lett. 1970;25:222–5.

    Article  Google Scholar 

  • Slater Joseph B, Tedesco Jams M, Fairchild Ronald C, Lewis Ian R. Raman spectrometry and its adaptation to the industrial environment. In: Lewis IR, Edwards HGM, editors. Handbook of Raman spectroscopy: from the research laboratory to the process line. New York: Marcel Dekker Inc; 2001.

    Google Scholar 

  • Stoll E, Kolb M, Courtens E. Numerical verification of scaling for scattering from fractons. Phys Rev Lett. 1992;16:2472–5.

    Article  Google Scholar 

  • Strohhöfer C, Fick J, Vasconcelos HC, Almeida RM. Active optical properties of Er-containing crystallites in sol–gel derived glass films. J Non-Cryst Solids. 1988;226:182–91.

    Article  Google Scholar 

  • Sussner H, Vacher R. High precision measurements of Brillouin scattering frequencies. Appl Opt. 1979;18:3815–8.

    Article  Google Scholar 

  • Terki F, Pilliez JN, Woignier T, Pelous J, Fontana A, Rossi F, Montagna M, Ferrari M, Cicognani C, Dianoux AJ. Low-frequency light scattering in silica xerogels: influence of the heat treatment. Philos Mag B. 1999;79:2081–9.

    Article  Google Scholar 

  • Tikhomirov VK, Furniss D, Seddon AB, Reaney IM, Beggiora M, Ferrari M, Montagna M, Rolli R. Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics. Appl Phys Lett. 2002;8:1937–9.

    Article  Google Scholar 

  • Tiong KK, Amirtharaj PM, Pollak FH, Aspnes DE. Effects of As+ ion implantation on the Raman spectra of GaAs: “spatial correlation” interpretation. Appl Phys Lett. 1984;44:122–4.

    Article  Google Scholar 

  • Treado Patrick J, Nelson Matthew P. Raman imaging. In: Lewis IR, Edwards HGM, editors. Handbook of Raman spectroscopy: from the research laboratory to the process line. New York: Marcel Dekker Inc; 2001.

    Google Scholar 

  • Tsujimi Y, Courtens E, Pelous J, Vacher R. Raman-scattering measurements of acoustic super-localization in silica aerogels. Phys Rev Lett. 1988;60:2757–60.

    Article  Google Scholar 

  • Vacher R, Pelous J. Behavior of thermal phonons in amorphous media from 4 to 300 K. Phys Rev B. 1976;14:823–8.

    Article  Google Scholar 

  • Vacher R, Sussner H, Schichfus MV. A fully stabilized Brillouin spectrometer with high contrast and high resolution. Rev Sci Instrum. 1980;51:288–91.

    Article  Google Scholar 

  • Vacher R, Woignier T, Pelous J, Courtens E. Structure and self-similarity of silica aerogels. Phys Rev B. 1988;37:6500–3.

    Article  Google Scholar 

  • Vacher R, Courtens E, Coddens G, Pelous J, Woignier T. Neutron-spectroscopy measurement of a fracton density of states. Phys Rev B. 1989;39:7384–7.

    Article  Google Scholar 

  • Vacher R, Courtens E, Coddens G, Heidemann A, Tsujimi Y, Pelous J, Foret M. Crossovers in the density of states of fractal silica aerogels. Phys Rev Lett. 1990;65:1008–11.

    Article  Google Scholar 

  • Vacher R, Pelous J, Courtens E. Mean free path of high-frequency acoustic excitations in glasses with application to vitreous silica. Phys Rev B. 1997;56:R481–4.

    Article  Google Scholar 

  • Wachs IE. Raman spectroscopy of catalysts. In: Lewis IR, Edwards HGM, editors. Handbook of Raman spectroscopy: from the research laboratory to the process line. New York: Marcel Dekker Inc; 2001.

    Google Scholar 

  • Walrafen GE, Hokmabadi MS, Holmes NC, Nellis WJ, Henning S. Raman spectrum and structure of silica aerogel. J Chem Phys. 1985;82:2472–6.

    Article  Google Scholar 

  • Walrafen GE, Hokmabadi MS, Holmes NC. Raman spectrum and structure of thermally treated silica aerogel. J Chem Phys. 1986;85:771–6.

    Article  Google Scholar 

  • Zampedri L, Ferrari M, Armellini C, Visintainer F, Tosello C, Ronchin S, Rolli R, Montagna M, Chiasera A, Pelli S, Righini GC, Monteil A, Duverger C, Gonçalves RR. Erbium-activated silica–titania planar waveguides. J Sol–Gel Sci Technol. 2003;26:1033–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Montagna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Montagna, M. (2016). Characterization of Sol–Gel Materials by Raman and Brillouin Spectroscopies. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics