Sol-Gel Processing of Thin Films with Metal Salts

  • Keishi Nishio
  • Toshio Tsuchiya
Living reference work entry


Metal salts are a good alternative to metal alkoxides in the sol-gel process. Typically, metal salts are less expensive, and, in some case, metal alkoxides are not available for the desired cation. In forming multicomponent thin films starting with metal salt solutions, a popular approach is called the Pechini method or the modified-Pechini method. In this approach, there is typically a complexing agent or chelating agent. Ethylene glycol and citric acid are a good combination that leads to polymerized gels with stoichiometric amounts of the components. Another common complexing agent is ethylenediamine tetraacetic acid (EDTA). In this way, multicomponent gels with fixed ratios of cations are produced, which lead to multicomponent oxide thin films.


  1. Agarwal V, Liu M. Preparation of barium cerate-based thin films using a modified Pechini process. J Mater Sci. 1997;32:619–25.CrossRefGoogle Scholar
  2. Alam MJ, Cameron DC. Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process. Thin Solid Films. 2000;00:455–9.CrossRefGoogle Scholar
  3. Alam MJ, Cameron DC. Investigation of annealing effects on sol–gel deposited indium thin oxide thin films in different atmospheres. Thin Solid Films. 2002;420–421:76–82.CrossRefGoogle Scholar
  4. Anderson HU, Pennell MJ, Guha JP. Polymeric synthesis of lead magnesium niobate powders. Adv Ceram. 1987;21:91–8.Google Scholar
  5. Bao D, Gu H, Kuang A. Sol–gel-derived c-axis oriented ZnO thin films. Thin Solid Films. 1998;312:37–9.CrossRefGoogle Scholar
  6. Baythoun MSG, Sale FR. Production of strontium-substituted lanthanum manganite perovskite powder by the amorphous citrate process. J Mater Sci. 1982;17:2757–69.CrossRefGoogle Scholar
  7. Bernardi MIB, Soledade LE, Santos LA, Leite ER, Longo E, Varela JA. Influence of the concentration of Sb2O3 and the viscosity of the precursor solution on the electrical and optical properties of SnO2 thin films produced by the Pechini method. Thin Solid Films. 2002;405:228–33.CrossRefGoogle Scholar
  8. Chai YL, Ray DT, Chen GJ, Chang YH. Synthesis of La0.8Sr0.2CoO0.5Ni0.5O3–δ thin films for high sensitivity CO sensing material using the Pechini process. J Alloys Compounds. 2002;333:147–53.CrossRefGoogle Scholar
  9. Fransaer J, Roos JR, Delaey L, Vander Biest O, Arkens O, Celis JP. Sol–gel preparation of high­Tc bismuth calcium strontium copper oxide and yttrium barium copper oxide superconductors. J Appl Phys. 1989;65:3277–9.CrossRefGoogle Scholar
  10. Funk H, Baumann W. Reaction of a few metallic chlorides with phenol and, β-naphthol. Z Anorg Allg Chem. 1937;231:264.CrossRefGoogle Scholar
  11. Gash AE, Tillotson TM, Satcher Jr JH, Hrubesh LW, Simpson RL. New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids. 2001;285:22–8.CrossRefGoogle Scholar
  12. Höcker H, Jones FR. Some aspects of the metathesis catalyst. Makromol Chern. 1972;161:251–66.CrossRefGoogle Scholar
  13. Hu MZ-C, Payzant EA, Byers CH. Sol–gel and ultrafine particle formation via dielectric tuning of inorganic salt–alcohol–water solutions. J Colloid Interface Sci. 2000;222:20–36.CrossRefGoogle Scholar
  14. Huang YQ, Meidong L, Yike Z, Churong L, Donglin X, Shaobo L. Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol–gel process. Mater Sci Eng. 2001;86B:232–6.CrossRefGoogle Scholar
  15. Jimenez J, Martin E, Martin P, Torres A, Belouet C, Chambonnet D. Raman microprobe analysis of patterned high Tc superconductor (YBCO) thin films. Mater Res Bull. 1995;30:771–8.CrossRefGoogle Scholar
  16. Kamalasanan MN, Chandra S. Sol–gel synthesis of ZnO thin films. Thin Solid Films. 1996;288:112–5.CrossRefGoogle Scholar
  17. Kikkawa S, Kijima A, Hirota K, Yamaguchi O. Soft solution preparation methods in a ZrO2–Al2O3 binary system. Solid State lorries. 2002;151:359–64.Google Scholar
  18. Kim SS, Choi SY, Park CG, Jin HW. Transparent conductive ITO thin films through the sol–gel process using metal salts. Thin Solid Films. 1999;347:155–60.CrossRefGoogle Scholar
  19. Klejnot OJ. Chloride alkoxides of pentavalent tungsten. Inorg Chern. 1965;4:1668–70.CrossRefGoogle Scholar
  20. Kodaira T, Nishio K, Yamaguchi I, Suzuki S, Tsukada K, Tsuchiya T. Synthesis and properties of highly conductive thin films as buffer layer from sol–gel process. J Sol–Gel Sci Tech. 2003;26:1049–53.CrossRefGoogle Scholar
  21. Kubo R, Nagakura S, Iguchi H, Ezawa H “Rikagakujiten”: Iwanamishyoten, Tokyo (in Japanese) 1987.Google Scholar
  22. Lima SAM, Sigoli FA, Davalos MR, Jafelicci Jr M. Europium(III)-containing zinc oxide from Pehini method. J Alloys Compounds. 2002;344:280–4.CrossRefGoogle Scholar
  23. Lima SAM, Sigoli FA, Davalos MR. Pechini’s solution as precursor for Eu(III)-containing ZnO films. J Solid State Chern. 2003;171:287–90.CrossRefGoogle Scholar
  24. Lio WT, Lee JF, Vau JM. X-ray absorption spectroscopic study of barium ferrite thin films synthesized by sol–gel method. Mater Chern Phys. 2001;69:89–94.CrossRefGoogle Scholar
  25. Liu M, Wang D. Preparation of La1–zSrzCo1–yFeyO3–x thin films, membranes, and coating on dense and porous substrates. J Mater Res. 1995;10:3210–21.CrossRefGoogle Scholar
  26. Michalak F, Rault L, Aldebert P Electrochromism with colloidal tungsten oxide (WO3) and iridia. Proceedings of SPIE – The International Society for Optical Engineering (Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Chromo Genies for Smart Windows). 1992;17–28:278–88.Google Scholar
  27. Nakanishi K., Kajiwara M., Tsutsumi K. “Yuukikagoubutu supectra data shyu”: Koudansya (in Japanese) 1982.Google Scholar
  28. Nishio K, Sei T, Tsuchiya T. Preparation and electrical properties of ITO thin films by dip-coating process. J Mater Sci Technol. 1996a;31:1761–6.Google Scholar
  29. Nishio K, Miyake S, Sei T, Watanabe Y, Tsuchiya T. Preparation of highly oriented thin film exhibiting transparent conduction by the sol–gel process. J Mater Sci. 1996b;31:3651–6.CrossRefGoogle Scholar
  30. Nishio K, Seki N, Thongrueng J, Watanabe Y, Tsuchiya T. Preparation and properties of highly oriented Sr0.3Ba0.7Nb2O6 thin films by a sol–gel process. J Sol–Gel Sci Tech. 1999a;16:37–45.CrossRefGoogle Scholar
  31. Nishio K, Watanabe Y, Tsuchiya T. Preparation and properties of electrochromic iridium oxide thin film by sol–gel process. Thin Solid Films. 1999b;350:96–100.CrossRefGoogle Scholar
  32. Nishio K, Sei T, Tsuchiya T. Preparation of electrochromic tungsten oxide thin film by sol–gel process. J Ceram Soc Jpn. 1999c;107:199–203.CrossRefGoogle Scholar
  33. Nishio K, Thongrueng J, Watanabe Y, Tsuchiya T. Epitaxial growth of Sr0.3Ba0.7Nb2O6 thin films prepared by sol–gel process. Mater Res Soc. 2000a;606:181–6.CrossRefGoogle Scholar
  34. Nishio K, Kudo C, Nagahama T, Manabe T, Yamaguchi I, Watanabe Y, Tsuchiya T. Preparation and characterzation of epitaxial Bi2WO6 thin films prepared by sol–gel process. Mater Res Soc. 2000b;623:377–82.CrossRefGoogle Scholar
  35. Nishio K, Watanabe Y, Tsuchiya T. Epitaxial growth of SrxBa1–xNb2O6 thin films prepared from sol–gel process. J Sol–Gel Sci Tech. 2003;26:245–50.CrossRefGoogle Scholar
  36. Norman AK, Morris MA. The preparation of the single-phase perovskite LaNiO3. J Mater Process Technol. 1999;92–93:91–6.CrossRefGoogle Scholar
  37. Pechini MP. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3330697 1967.Google Scholar
  38. Petrenko SV, Lyashchenko KA, Karataeva IM, Mozhaev AP. Solubility diagram of the yttrium nitrate–barium nitrate–copper(2+) nitrate–water system at 25°C, constructed on the basis of calculation–experimental method. Zhurnal Neorganicheskoi Khimii. 1990a;35:1857–9.Google Scholar
  39. Petrenko SV, Lyashchenko AK, Karataeva IM, Mozhaev AP. Solubility diagram in ternary aqueous salt systems with nitrates of yttrium, barium and copper at 25°C. USSR Zhurnal Neorganicheskoi Khimii. 1990b;35:1575–80.Google Scholar
  40. Rajendran M, Kirshna MG, Bhattacharya AK. Low temperature preparation of orthoferrite thinfilms by an inorganic sol–gel process. Thin Solid Films. 2001;385:230–3.CrossRefGoogle Scholar
  41. Ramanan SR. Dip coated ITO thin-films through sol–gel process using metal salts. Thin Solid Films. 2001;389:207–12.CrossRefGoogle Scholar
  42. Reagan WJ, Brubaker Jr CH. Preparation and far-infrared and proton magnetic resonance spectra of some tungsten(IV) and tungsten(V) chloride alkoxide dimmers. Inorg Chern. 1970;9:827–30.CrossRefGoogle Scholar
  43. Rho YH, Kanamura K, Fujisaki M, Hamagami J, Suda S, Umegaki T. Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol–gel method. Solid State Ionics. 2002;151:151–7.CrossRefGoogle Scholar
  44. Ringbon A. Complexation in analytical chemistry. New York: Wiley; 1963.Google Scholar
  45. Robert CL, Ansart F, Deloget C, Gaudon M, Rousset A. Powder synthesis of nanocrystalline ZrO2–8%Y2O3 via a polymerization route. Mater Res Bull. 2001;36:2083–101.CrossRefGoogle Scholar
  46. Rosario AV, Pereira EC. Comparison of the electrochemical behavior of CeO2–SnO2 and CeO2–TiO2 electrodes produced by the Pechini method. Thin Solid Films. 2002;410:1–7.CrossRefGoogle Scholar
  47. Roy S, Sigmund W, Aldinger F. Nanostructured yttria powders via gel combustion. J Mater Res. 1999;14:1524–31.CrossRefGoogle Scholar
  48. Sato M, Hara H, Kuritani H, Nishide T. Novel route to Co3O4 thin films on glass substrates via N-alkyl substituted amine salt of Co(III)–EDTA complex. Solar Energy Mater Solar Cell. 1997;45:43–9.CrossRefGoogle Scholar
  49. Schuler T, Aegerter MA. Optical, electrical and structural properties of sol gel ZnO:Al coatings. Thin Solid Films. 1999;351:125–31.CrossRefGoogle Scholar
  50. Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3–δ oxygen membrane. J Membr Sci. 2000;172:177–88.CrossRefGoogle Scholar
  51. Sheen SR, Chen DH, Huang Y, Wu MK. Effect of solution pH on the synthesis of the YBa2Cu4O8 superconductor via an EDTA solution process. J Mater Sci. 1997;32:6681–5.CrossRefGoogle Scholar
  52. Silva RF, Zaniquelli MED. Morphology of nanometric size particulate aluminium-doped zinc oxide films. Colloids Surfaces A: Physicochem Eng Aspects. 2002;198–200:551–8.CrossRefGoogle Scholar
  53. Spagnol PD, Varela JA, Bertochi MAZ, Stojanovic BD, Tebcherani SM. Effect of precursor solution on the formation of perovskite phase of Pb(Mg1/3Nb2/3)O3 thin films. Thin Solid Films. 2002;410:177–82.CrossRefGoogle Scholar
  54. Tai LW, Lessing PA. Modified resin-intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors. J Mater Res. 1992;7:502–10.CrossRefGoogle Scholar
  55. Takahashi Y, Kanamori M, Kondoh A, Minoura H, Ohya Y. Photoconductivity of ultrathin zinc oxide films. Jpn J Appl Phys. 1994;33:6611–5.CrossRefGoogle Scholar
  56. Viart N, Plouet MR, Muller D, Pourtoy G. Synthesis and characterization of Co/ZnO nanocomposites: towards new perspectives offered by metal/piezoelectric composite materials. Thin Solid Films. 2002;437:1–9.CrossRefGoogle Scholar
  57. Wang W, Jia DC, Zhou Y, Rao JC, Ye F. Synthesis and properties of sol–gel SBT powder and film. Ceram Int. 2002;28:609–15.CrossRefGoogle Scholar
  58. Xu AW, Gao Y, Liu HQ. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal. 2002;207:151–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Nagasaki UniversityNagasakiJapan
  2. 2.Tokyo University of Science, Materials Science and TechnologyNoda-shiJapan

Personalised recommendations