Skip to main content

Sol–Gel Materials for Art Conservation

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

The preservation of the world’s cultural heritage requires a thorough knowledge of its constitutive material (wood, stone, glass, etc.), the degradation processes, and an understanding of the properties of the materials used in its conservation. In this chapter, we explore inorganic and organic–inorganic sol–gel formulations of interest to conservators, for potential uses on stained glass, stone, or metal substrates exposed to corrosive outdoor environment. Regarding inorganic sol–gel materials, the use of tetraethoxysilane (TEOS) in conservation is not new, and the use of silicon precursors in the treatment of stone can be traced back to 1926. Another application is the removal of toxic organics within the wood using a TiO2 precursor, based on its photocatalytic properties to decompose the organics. Regarding hybrid sol–gel materials, methyltrialkoxysilanes are probably the most studied alkoxysilanes in conservation. More complex alkoxysilanes such as (3-alkoxypropyl) triethoxy- and (3-alkoxypropyl) diethoxy-methylsilanes were studied as hydrophilic, elastic stone consolidants. In the treatment of organic surfaces such as wood, some alkoxysilanes can provide some antimicrobial properties, as for example 3-(trimethoxysilyl) Pr di-Me octadecyl ammonium chloride in combination with TEOS. A case study is also explored: the use of organic–inorganic hybrids applied in the treatment of a medieval glass in an outdoors mosaic in Prague.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amberg-Schwab S, Katschorek H, Weber U, Hoffman M, Burger A. Barrier properties of inorganic–organic polymers: influence of starting compounds, curing conditions and storage-scaling-up to industrial application. J Sol-Gel Sci Technol. 2000;19:125–9.

    Article  Google Scholar 

  • Amoroso G.G., Fassina V. Stone decay and conservation: atmospheric pollution, cleaning, consolidation and protection, Materials science monographs, 11. Amsterdam: Elsevier; 1983.

    Google Scholar 

  • Ashlock LT, et al. Transparent, abrasion resistant coating compositions. US Patent 4,500,669 (1980).

    Google Scholar 

  • Bescher E, Mackenzie JD. Sol–Gel coatings for the protection of brass and bronze. J Sol-Gel Sci Technol. 2003;26(1/2/3):1223–6.

    Article  Google Scholar 

  • Bescher E, Pique F, Stulik D, Mackenzie JD. Long-term protection of the last judgment mosaic in Prague. J Sol-Gel Sci Technol. 2000;19(1/2/3):215–8.

    Article  Google Scholar 

  • Bosch E. Use of silicones in conservation of monuments. In: First International Symposium on the Deterioration of Building Stones; 1972. p. 21–6.

    Google Scholar 

  • Botticelli G, Danti C, Giovannoni S. Twenty years of barium application on mural paintings. Methodology of application. In: de Froment D, editor. Preprints: ICOM Committee for Conservation, 7th Triennial Meeting, Copenhagen, 10–14 Sept 1984; 1984. p. 84.15.6–11.

    Google Scholar 

  • Bradley SM. Evaluation of organosilanes for use in consolidation of sculpture displayed indoors. In: Congress of the International Alteration Conservation, vol. 2, Pierre, 5th Presses Polytech. Romandes, Lausanne; 1985. p. 759–68.

    Google Scholar 

  • Bradley S, Shashoua Y, Walker W, Pilz M. A novel inorganic polymer for the conservation of ceramic objects. In: Bridgland J, editor. 12th Triennial Meeting, Lyon, 29 Aug–3 Sept 1999: preprints (ICOM Committee for Conservation). James & James (Science Publishers) Ltd.; 1999. p. 770–6.

    Google Scholar 

  • Brinker J, Sherrer G. Sol–gel science: the physics and chemistry of sol–gel processing. Boston: Academic; 1990.

    Google Scholar 

  • Brinker CJ, Ashley CS, Sellinger AS, Cygan RT, Nagy KL, Assink R, Alam T, Rao S, Prabakar S, Scotto CS. Sol–gel preservation of mankind’s cultural heritage in objects constructed of stone. Geochem. Dep., Sandia National Laboratories, Technical Report; 1998. p. 1–36.

    Google Scholar 

  • Brus J, Kotlik P. Consolidation of stone by mixtures of alkoxysilane and acrylic polymer. Stud Conserv. 1996;41(2):109–19.

    Google Scholar 

  • Butlin RN, Yates TJS, Martin W. Comparison of traditional and modern treatments for conserving stone. In: Methods of evaluating products for the conservation of porous building materials in monuments: preprints of the international colloquium, Rome, 19–21 June, 1995/ICCROM. Rome; 1995. p. 111–9.

    Google Scholar 

  • Cervantes J, Alvarez DE, Aguilera A, Mendoza-Diaz G, Luna FJ, Zavala JG, Ramirez E, Hernandez E. The alkoxysilane approach in the preservation of silicon based historical buildings materials. In: Silicon for the chemical industry, vol. IV (Conference), Geiranger, 3–5 June 1998. p. 357–64.

    Google Scholar 

  • Colby MW, Yuen TJ, Mackenzie JD Protective coatings for stained glass. In: Materials Research Society Symposium Proceedings; 1988. p. 123. (Mater. Issues Art Archaeol.), 305–10.

    Google Scholar 

  • Danehey C, Wheeler GS, Su S-CH The influence of quartz and calcite on the polymerization of methyltrimethoxysilane. In: Rodrigues JD, Henriques F, Jeremias FT, editors. Proceedings of the 7th International Congress on Deterioration and Conservation of Stone, Lisbon, 15–18 June 1992; 1992. p. 1043–52.

    Google Scholar 

  • Fabis R, Zeine C, Joseph G. Ether-substituted triethoxy- and diethoxymethylsilanes: precursors for hydrophilic, elastic consolidants for natural stones. In: Auner N, Weis J, editors. Organosilicon chemistry III: from molecules to materials, (Muenchner Silicontage), 3rd, Munich, April 1996, 1998. p. 526–30.

    Google Scholar 

  • Grattan DW. A practical comparative study of several treatments for waterlogged wood. Stud Conserv. 1982;27:124–36.

    Google Scholar 

  • Hempel K. An improved method for the vacuum impregnation of stone. Stud Conserv. 1976;21:40–3.

    Google Scholar 

  • Izumi K, Tanaka H, Uchida Y, Tohge N, Minami T. Hydrolysis of trifunctional alkoxysilanes and corrosion resistance of steel sheets coated with alkoxysilane-derived films. J Mater Sci Lett. 1993;12(10):724–7.

    Article  Google Scholar 

  • Jansen B, Puterman M, Kober H. A novel method for historical building protection. Polysiloxane-containing isocyane prepolymers. Bautenschutz + Bausanierung. 1993;16(1):1–4.

    Google Scholar 

  • Koestler RJ, Santoro ED, Preusser F, Rodarte A. Note on the reaction of methyl tri-methoxy silane to mixed cultures of microorganisms. In: Llewellyn GC, O’Rear CE, Llewellyn GC, Pan American Biodeterioration Society. Meeting editors. Biodeterioration research, vol. 1. (1st: 1986: Washington, DC). 1987. p. 317–21.

    Google Scholar 

  • Koga K. A new sol–gel synthesis of porous composite material and its application to chemical carriers. Kogyo Gijutsu Senta. 2001;11:16–21.

    Google Scholar 

  • Kotlik P. Chemical problems in the consolidation of stone with organosilicon consolidants. Chem List. 1987;81(5):511–5.

    Google Scholar 

  • Kozlowski R, Tokarz M, Persson M. “GYPSTOP”. A novel protective treatment. In: Delgado RJ, Henriques F, Jeremias FT, editors. Proceedings of the 7th International Congress on Deterioration and Conservation of Stone, Lisbon, 15–18 June 1992; 1992. p. 1187–96.

    Google Scholar 

  • Laurie P. Preservation of Stone. US Patent 1,607,762 (1926).

    Google Scholar 

  • Leclaire Y. Coatings with high refractive index containing siloxanes and titanates. Eur Pat Appl. 1991;429:325.

    Google Scholar 

  • Lewin S. The conservation of limestone objects and structures. In Eport of the Conferences on the Weathering of Stones, Brussels, International Council of Monuments and Sites, Paris; 1968. p. 41–64.

    Google Scholar 

  • Lewin SZ, Baer NS. Rationale of the barium hydroxide-urea treatment of decayed stone. Stud Conserv. 1979;19:24–35.

    Google Scholar 

  • Lewin SZ, Wheeler GE. Alkoxysilane chemistry and stone conservation, In: Felix G, editor. Vth International Congress on Deterioration and Conservation of Stone: Proceedings, Lausanne, 25–27 Sept 1985; 1985. p. 831–44.

    Google Scholar 

  • Mackenzie JD, Bescher EP. Structures, properties and potential applications of ormosils. J Sol-Gel Sci Technol. 1998;13(1/2/3):371–7.

    Article  Google Scholar 

  • Mackenzie JD, Bescher EP. Some factors governing the coating of organic polymers by sol–gel derived hybrid materials. J Sol-Gel Sci Technol. 2003;27(1):7–14.

    Article  Google Scholar 

  • Maliavski M, Tchekounova E, Innocenzi P, Festa D, Guglielmi M, Macinelli L. Borosilicate coatings on mild steel prepared from aqueous amine solutions: a comparison with the alkoxide routes. J Eur Ceram Soc. 1995;15:337–42.

    Article  Google Scholar 

  • Marschner H. Application of salt crystallisation test to impregnated stones. In Alteration et protection des monuments en pierre: colloque international: Paris, du 5 au 9 juin 1978, Deterioration and Protection of Stone Monuments: International Symposium, Paris, 5–9 June 1978, vol. 1, paper 3.4.

    Google Scholar 

  • Matteini M. An assessment of Florentine methods of wall painting conservation based on the use of mineral treatments. In: Gather, editor. The conservation of wall paintings: proceedings of a symposium organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, 13–16 July 1987, Marina del Key, Getty Conservation Institute; 1991. p. 137–48.

    Google Scholar 

  • Mennig M, Schelle C, Duran A, Damborenea JJ, Guglielmi M, Brusatin G. Investigation of glass-like sol–gel coatings for corrosion protection of stainless steel against liquid and gaseous attack. J Sol-Gel Sci Technol. 1998;13(1):717–22.

    Article  Google Scholar 

  • Miyafuji H, Saka S. Na2O–SiO2 wood–inorganic composites prepared by the sol–gel process and their fire-resistant properties. J Wood Sci. 2001;47(6):483–9.

    Article  Google Scholar 

  • Molteni C. Rhodorsil. Pitture e Vernic. 1987;63(8):13–33.

    Google Scholar 

  • Moncrieff A. The treatment of deteriorating stone with silicone resins: interim report. Stud Conserv. 1976;21(4):179–91.

    Google Scholar 

  • Moncrieff A, Hempel KF. Conservation of sculptural stonework: virgin and child on S. Maria dei Miracoli and the Loggetta of the Campanile, Venice. Stud Conserv. 1977;22(1):1–11.

    Google Scholar 

  • Mosquera MJ, Pozo J, Esquivias L. Stress during drying of two stone consolidants applied in monumental conservation. J Sol-Gel Sci Technol. 2003;26:1227–31.

    Article  Google Scholar 

  • Ohta Y, Toyoda M, Ohi K, Tanaka Y. The evaluation of conservation method of ruins using alkoxide solution. Denki Kagakkai Gijutsu, Kyoiku Kenkyu Ronbunshi. 1998;7(1):43–6.

    Google Scholar 

  • Okawa S, Sugi S, Oishi H, Watanabe Y, Mori T, Shigematsu M, Tanahashi M. Improvement of wood surface by inorganic modification. Trans Mater Res Soc Jpn. 2002;27(3):637–40.

    Google Scholar 

  • Paleos CM, Mavroyannakis EE, Cypriotaki I. Preservation of aged paper by alkoxysilanes. ICOM Committee for Conservation. 6th Triennial Meeting, Ottawa, 21–25 Sept 1981. p. 5.

    Google Scholar 

  • Pilz M, Roemich H. Sol–gel derived coatings for outdoor bronze conservation. J Sol-Gel Sci Technol. 1997;8(1/2/3):1071–5.

    Article  Google Scholar 

  • Pilz M, Troll C. Conservation and preservation concept for endangered historic enamels. In: Proceedings of International Congress on Glass, 18th, San Francisco, July 5–10 1998. p. 638–43.

    Google Scholar 

  • Price CA. Stone-decay and preservation. Chem Br. 1975;11(10):350–3.

    Google Scholar 

  • Price CA. Stone conservation, an overview of current research. Los Angeles: Getty Conservation Institute Publisher; 1996.

    Google Scholar 

  • Puterman M, Jansen B, Kober H. Development of organosilicone-polyurethanes as stone preservation and consolidation materials. J Appl Polym Sci. 1996;59(8):1237–42.

    Article  Google Scholar 

  • Roth M. Conservation of natural stone monuments. Prax Naturwissenschaften Chem. 1988;37(8):6–11.

    Google Scholar 

  • Saka S. Wood–inorganic composites as prepared by the sol–gel process, Chapter 20. In: Hon D, Shiraishi AS, editors. Wood and cellulosic chemistry. 2nd ed. New York: Marcel Dekker; 2001. p. 781–94.

    Google Scholar 

  • de Sanctis O, Gomez L, Pellegri N, Parodi P, Marajofsky A, Duran A. Protective glass coatings on metallic substrates. J Non-Cryst Solids. 1990;121(1–3):338–43.

    Article  Google Scholar 

  • Sattler L, Schuh H. Chronological development of stone consolidation on silicic acid ester base. Bautenschutz + Bausanierung. 1995;18(1):77–81.

    Google Scholar 

  • Sayre EV. Direct deposition of barium from homogeneous solution within porous stone. In: Conservation of new stone and wooden objects, New York Conference, June, The International Institute for Conservation of Historic and Artistic Works, London; 1970. p. 115–8.

    Google Scholar 

  • Scherer GW, Wheeler GE. In Moropoulou A, Zezza F, Kollias E, Papachristodoulou I, editors. Rhodes. Proceedings of the 4th International Symposium on the Conservation of Monuments in the Mediterranean, vol. 3; 1997. p. 335.

    Google Scholar 

  • Scherrer GW, Flatt R, Wheeler G. Materials science research for the conservation of sculpture and monuments. MRS Bull. 2001;26(1):44–50.

    Article  Google Scholar 

  • Simões M, Assis OBG, Avaca LA. Some properties of protective sol–gel glass coatings on sintered stainless steels. J Non-Cryst Solids. 2000;273:159–63.

    Article  Google Scholar 

  • Smy E. Sol–gel: potential creative applications for the artist, focusing on the colloidal alkali silicate route. J Sol-Gel Sci Technol. 1998;13:233–6.

    Article  Google Scholar 

  • Stoch A, Dlugon E, Paluszkiewicz C, Szklorz M, Litwic I, Pysz S. Application of modified silicates for waterproofing and consolidation of stone. Akademia Gorniczo-Hutnicza, Wydzial Inzynierii Materialowej Ceramiki, Krakow, Pol. Prace Komisji Nauk Ceramicznych, Ceramika (Polska Akademia Nauk). 1994;46:201–10.

    Google Scholar 

  • Tanno F, Saka S, Takabe K. Antimicrobial TMSAC-added wood–inorganic composites prepared by the sol–gel process. Mater Sci Res Int. 1997;3(3):137–42.

    Google Scholar 

  • Toniolo L, Colombo C, Realini M, Peraio A, Positano M. Evaluation of barium hydroxide treatment efficacy on a dolomitic marble. Ann Chim Rome Italy. 2001;91(11–12):813–21.

    Google Scholar 

  • Tshabalala M, Kingshott P, VanLandingham MR, Plackett D. Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol–gel process. J Appl Polym Sci. 2003;88:2828–41.

    Article  Google Scholar 

  • Wheeler GS, Shearer GL, Fleming S, Kelts LW, Vega A, Koestier RJ. Toward a better understanding of B72 acrylic resin/methyltrimethoxysilane stone consolidants. Materials Research Society Symposium Proceedings, vol. 185; 1991. p. 209–26 (Mater. Issues Art Archaeol. 2).

    Google Scholar 

  • Wheeler GS, Fleming SA, Ebersole S. Comparative strengthening effect of several consolidants on Wallace sandstone and Indiana limestone. In: Rodrigues JD, Henriques F, Jeremias FT, editors. Proceedings of the 7th International Congress on Deterioration and Conservation of Stone, he Lisbon, 15–18 June 1992; 1992a. p. 1033–41.

    Google Scholar 

  • Wheeler GS, Schein A, Shearer G, Su SH, Blackwell CS. Preserving our heritage in stone. Anal Chem. 1992b;64(5):347A–56A.

    Google Scholar 

  • Wheeler GS, Wolkow E, Gafney H. Microstructures of B72 acrylic resin/MTMOS composites. Materials Research Society Symposium Proceedings, vol. 267; 1992c. p. 963–7 (Materials Issues in Art and Archaeology III).

    Google Scholar 

  • Wheeler G, Mendez-Vivar J, Goins ES, Fleming SA, Brinker CJ. In Fassina V, editor. Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, Venice; 2000. p. 541.

    Google Scholar 

  • Wheeler G, Mendez-Vivar J, Fleming S. The use of modified Zr-n-propoxide in the consolidation of calcite: a preliminary study focused into the conservation of cultural heritage. J Sol-Gel Sci Technol. 2003;26(1/2/3):1233–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Bescher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Bescher, E.P., Mackenzie, J.D. (2017). Sol–Gel Materials for Art Conservation. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_153-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_153-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics