Skip to main content

Microparticles Preparation Using Water-in-Oil Emulsion

  • Living reference work entry
  • First Online:
  • 368 Accesses

Abstract

Various microparticles of ceramics and organic-inorganic composites can be fabricated through solgel reactions or aggregation of hydrogels in water-in-oil emulsions. Their particle size can be widely controlled from a submicron level to several dozens of micrometers. The particle size is predominantly governed by several preparation factors such as agitation speed, temperature of the emulsion, and hydrophilic-lipophilic balance and concentration of the surfactant. Not only single microparticles but also assembled cluster-like particles can be designed through encapsulation of colloidal silica in the emulsion. These microparticles are useful for biomedical applications such as drug carriers in drug delivery systems and intra-arterial treatment of deep-seated cancer by radiotherapy and hyperthermia. Furthermore, these microparticles can be imparted with a variety of functions, making them applicable in electrical applications and in the energy and environmental fields.

This is a preview of subscription content, log in via an institution.

References

  • Akartuna I, Studart AR, Tervoort E, Gonzenbach UT, Gauckler LJ. Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles. Langmuir. 2008;24:7161–8.

    Article  Google Scholar 

  • Aono H, Moritani K, Naohara T, Maehara T, Hirazawa H, Watanabe Y. New heat generation material in AC magnetic field for Y3Fe5O12-based powder material synthesized by reverse coprecipitation method. Mater Lett. 2011;65:1454–6.

    Article  Google Scholar 

  • Aono H, Senba R, Nishimori T, Naohara T. Preparation of Y3Fe5O12 microsphere using bead-milled nanosize powder for embolization therapy application. J Am Ceram Soc. 2013;96:3483–8.

    Article  Google Scholar 

  • Bush AJ, Beyer R, Trautman R, Barbé CJ, Bartlett JR. Ceramic micro-particles synthesised using emulsion and sol–gel technology: an investigation into the controlled release of encapsulants and the tailoring of micro-particle size. J Sol-Gel Sci Technol. 2004;32:85–90.

    Article  Google Scholar 

  • Cao SW, Zhu YJ, Ma MY, Li L, Zhang L. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and gamma-Fe2O3: preparation and potential application in drug delivery. J Phys Chem C. 2008;112:1851–6.

    Article  Google Scholar 

  • Chatterjee M, Naskar MK. Synthesis of yttrium–aluminum–garnet hollow microspheres by reverse-emulsion technique. J Am Ceram Soc. 2006;89:1443–6.

    Article  Google Scholar 

  • Cho YS, Yi GR, Kim SH, Pine DJ, Yang SM. Colloidal clusters of microspheres from water-in-oil emulsions. Chem Mater. 2005;17:5006–13.

    Article  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104:3893–946.

    Article  Google Scholar 

  • Davis HT. Factors determining emulsion type: hydrophile–lipophile balance and beyond. Colloids Surf A. 1994;91:9–24.

    Article  Google Scholar 

  • Deng YH, Wang CC, Hu JH, Yang WL, Fu SK. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloids Surf A. 2005;262:87–93.

    Article  Google Scholar 

  • Erbe EM, Day DE. Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res. 1993;27:1301–8.

    Article  Google Scholar 

  • Esquena J, Pons R, Azemar N, Caelles J, Solans C. Preparation of monodisperse silica particles in emulsion media. Colloids Surf A. 1997;123–124:575–86.

    Article  Google Scholar 

  • Freymann G, Kitaev V, Lotsch BV, Ozin GA. Bottom-up assembly of photonic crystals. Chem Soc Rev. 2013;42:2528–54.

    Article  Google Scholar 

  • Griffin WC. Classification of surface-active agents by “HLB”. J Soc Cosmet Chem. 1949;1:311–26.

    Google Scholar 

  • Griffin WC. Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem. 1954;5:249–56.

    Google Scholar 

  • Guo X, Hao G, Xie Y, Cai W, Yang H. Preparation of porous zirconia microspheres via emulsion method combined with phase separation. J Sol-Gel Sci Technol. 2015;76:651–7.

    Article  Google Scholar 

  • Hyatt MJ, Day DE. Glass properties of yttria-alumina-silica system. J Am Ceram Soc. 1987;70:283–7.

    Article  Google Scholar 

  • Jones SK, Winter JG. Experimental examination of a targeted hyperthermia system using inductively heated ferromagnetic microspheres in rabbit kidney. Phys Med Biol. 2001;46:385–98.

    Article  Google Scholar 

  • Kawashita M. Ceramic microspheres for biomedical applications. Int J Appl Ceram Technol. 2005;2:173–83.

    Article  Google Scholar 

  • Kawashita M, Toda S, Kim HM, Kokubo T, Masuda N. Preparation of antibacterial silver-doped silica glass microparticles. J Biomed Mater Res. 2003a;66A:266–74.

    Article  Google Scholar 

  • Kawashita M, Shineha R, Kim HM, Kokubo T, Inoue Y, Araki N, Nagata Y, Hiraoka M, Sawada Y. Preparation of ceramic microparticles for in situ radiotherapy of deep-seated cancer. Biomaterials. 2003b;24:2955–63.

    Article  Google Scholar 

  • Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T. Preparation of ferrimagnetic magnetite microparticles for in situ hyperthermic treatment of cancer. Biomaterials. 2005;26:2231–8.

    Article  Google Scholar 

  • Kawashita M, Tanaka Y, Ueno S, Liu G, Li Z, Miyazaki T. In vitro apatite formation and drug loading/release of porous TiO2 microparticles prepared by sol-gel processing with different SiO2 nanoparticle contents. Mater Sci Eng C. 2015;50:317–23.

    Article  Google Scholar 

  • Kim DH, Lee YK, Kim KM, Kim KN, Choi SY, Shim IB. Synthesis of Ba-ferrite microspheres doped with Sr for thermoseeds in hyperthermia. J Mater Sci. 2004;39:6847–50.

    Article  Google Scholar 

  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  • Kong L, Zhang C, Wang J, Qiao W, Ling L, Long D. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@ carbon core-shell microspheres for ultrahigh-rate intercalation pseudocapacitors. Sci Rep. 2016;6:21177.

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108:2064–110.

    Article  Google Scholar 

  • Lavy D, Zayat M. The sol-gel handbook, volume 1: synthesis and processing. Weinheim: Wiley-VCH; 2015.

    Book  Google Scholar 

  • Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45:89–121.

    Article  Google Scholar 

  • Lee MH, Tai CY, Lu CH. Synthesis of spherical zirconia by precipitation between two water/oil emulsions. J Eur Ceram Soc. 1999;19:2593–603.

    Article  Google Scholar 

  • Li W, Sha X, Dong W, Wang Z. Synthesis of stable hollow silica microparticles with mesoporous shell in nonionic W/O emulsion. Chem Commun. 2002;20:2434–5.

    Article  Google Scholar 

  • Li DY, Guan ZC, Zhang WH, Zhou X, Zhang WY, Zhuang ZX, Wang XR, Yang CJ. Synthesis of uniform-size hollow silica microspheres through interfacial polymerization in monodisperse water-in-oil droplets. ACS Appl Mater Interfaces. 2010a;2:2711–4.

    Article  Google Scholar 

  • Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M. Magnetite nanoparticles with high heating efficiency for application in hyperthermia of cancer. Mater Sci Eng C. 2010b;30:990–6.

    Article  Google Scholar 

  • Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M. Magnetic SiO2 gel microparticles for arterial embolization hyperthermia. Biomed Mater. 2010c;5:065010.

    Article  Google Scholar 

  • Li Z, Kawashita M, Doi M. Sol-gel synthesis and characterization of magnetic TiO2 microparticles. J Ceram Soc Jpn. 2010d;118:467–73.

    Article  Google Scholar 

  • Li Z, Kawashita M, Kudo T, Kanetaka H. Sol-gel synthesis, characterization and in vitro compatibility evaluation of iron nanoparticle encapsulating-silica microparticles for hyperthermia of cancer. J Mater Sci Mater Med. 2012;23:2461–9.

    Article  Google Scholar 

  • Li Z, Miyazaki T, Kawashita M. Preparation and in vitro apatite-forming ability of porous and non-porous titania microparticles. J Ceram Soc Jpn. 2013;121:782–7.

    Article  Google Scholar 

  • Lin S, Shi L, Yoshida H, Li M, Zou X. Synthesis of hollow spherical tantalum oxide nanoparticles and their photocatalytic activity for hydrogen production. J Solid State Chem. 2013;199:15–20.

    Article  Google Scholar 

  • Liu JG, Wilcox DL. Factors influencing the formation of hollow ceramic microspheres by water extraction of colloidal droplet. J Mater Res. 1995;10:84–94.

    Article  Google Scholar 

  • Liu G, Kawashita M, Li Z, Miyazaki T, Kanetaka H. Sol-gel synthesis of magnetic TiO2 microparticles and characterization of their in vitro heating ability for hyperthermia treatment of cancer. J Sol-Gel Sci Technol. 2015;5:90–7.

    Article  Google Scholar 

  • Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides. Prog Solid State Chem. 1988;18:250–341.

    Article  Google Scholar 

  • Masuda N, Kawashita M, Kokubo T. Antibacterial activity of silver-doped silica glass microparticles prepared by a sol-gel method. J Biomed Mater Res B Appl Biomater. 2007;83B:114–20.

    Article  Google Scholar 

  • Minamimura T, Sato H, Kasaoka S, Saito T, Ishizawa S, Takemori S, Tazawa K, Tsukada K. Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite-incorporated microspheres in rats. Int J Oncol. 2000;16:1153–8.

    Google Scholar 

  • Miyazaki T, Kai T, Ishida E, Kawashita M, Hiraoka M. Fabrication of yttria microcapsules for radiotherapy from water/oil emulsion. J Ceram Soc Jpn. 2010;118:479–82.

    Article  Google Scholar 

  • Miyazaki T, Miyaoka A, Ishida E, Li Z, Kawashita M, Hiraoka M. Preparation of ferromagnetic microcapsules for hyperthermia using water/oil emulsion as a reaction field. Mater Sci Eng C. 2012;32:692–6.

    Article  Google Scholar 

  • Miyazaki T, Anan S, Ishida E, Kawashita M. Carboxymethyldextran/magnetite hybrid microparticles designed for hyperthermia. J Mater Sci Mater Med. 2013;24:1125–9.

    Article  Google Scholar 

  • Miyazaki T, Inoue T, Shirosaki Y, Kawashita M, Matsubara T, Matsumine A. Bisphosphonate release profiles from magnetite microspheres. J Biomater Appl. 2014a;29:543–7.

    Article  Google Scholar 

  • Miyazaki T, Suda T, Shirosaki Y, Kawashita M. Fabrication of yttrium phosphate microcapsules by an emulsion route for in situ cancer radiotherapy. J Med Biol Eng. 2014b;34:14–7.

    Article  Google Scholar 

  • Miyazaki T, Tanaka T, Shirosaki Y, Kawashita M. Yttrium phosphate microparticles with enriched phosphorus content prepared for radiotherapy of deep-seated cancer. Ceram Int. 2014c;40:15259–63.

    Article  Google Scholar 

  • Morel AL, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M. Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano. 2008;5:847–56.

    Article  Google Scholar 

  • Ogihara T, Ikemoto T, Mizutani N, Kato M, Mitarai Y. Formation of monodispersed Ta2O5 powders. J Mater Sci. 1986;21:2771–4.

    Article  Google Scholar 

  • Richardson K, Aknic M. Preparation of spherical yttrium oxide powders using emulsion evaporation. Ceram Int. 1987;13:253–61.

    Article  Google Scholar 

  • Richardson K, Aknic M. Sintering of yttrium oxide powders prepared by emulsion evaporation. Ceram Int. 1988;14:101–8.

    Article  Google Scholar 

  • Salem R, Lewandowski R, Roberts C, Goin J, Thurston K, Abouljoud M, Courtney A. Use of yttrium-90 glass microspheres (TheraSphere) for the treatment of unresectable hepatocellular carcinoma in patients with portal vein thrombosis. J Vasc Interv Radiol. 2004;15:335–45.

    Article  Google Scholar 

  • Siladitya B, Chatterjee M, Ganguli D. Role of a surface active agent in the sol-emulsion-gel synthesis of spherical alumina powders. J Sol-Gel Sci Technol. 1999;15:271–7.

    Article  Google Scholar 

  • Singh RK, Garg A, Bandyopadhyaya R, Mishra BK. Density fractionated hollow silica microspheres with high-yield by non-polymeric sol–gel/emulsion route. Colloids Surf A. 2007;310:39–45.

    Article  Google Scholar 

  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–79.

    Article  Google Scholar 

  • Tago T, Hatsuta T, Miyajima K, Kishida M, Tashiro S, Wakabayashi K. Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion. J Am Ceram Soc. 2002;85:2188–94.

    Article  Google Scholar 

  • Tani T, Watanabe N, Takatori K, Pratsinis SE. Morphology of oxide particles made by the emulsion combustion method. J Am Ceram Soc. 2003;86:898–904.

    Article  Google Scholar 

  • Viroonchatapan E, Ueno M, Sato H, Adachi I, Nagae H, Tazawa K, Horikoshi I. Preparation and characterization of dextran magnetite-incorporated thermosensitive liposomes: an on-line flow system for quantifying magnetic responsiveness. Pharm Res. 1995;12:1176–83.

    Article  Google Scholar 

  • Wei W, Ma GH, Hu G, Yu D, Mcleish T, Su ZG, Shen ZY. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J Am Chem Soc. 2008;130:15808–10.

    Article  Google Scholar 

  • Xu J, Yang HB, Fu WY, Du K, Sui YM, Chen JJ, Zeng Y, Li MH, Zou G. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater. 2007;309:307–11.

    Article  Google Scholar 

  • Yamashita H, Demiya M, Mori H, Maekawa T. Synthesis of microporous silica-gel particles in W/O emulsion and an application to high-performance liquid chromatography. J Ceram Soc Jpn. 1992;100:1444–7. (in Japanese).

    Article  Google Scholar 

  • Yamashita H, Nozaki K, Toshinari K, Mima T, Maekawa T. Synthesis of spherical porous zirconia and titania particles in W/O emulsion. J Ceram Soc Jpn. 1998;106:1184–9. (in Japanese).

    Article  Google Scholar 

  • Yamashita H, Ogawa Y, Maekawa T. Preparation of porous titania spheres by sol-gel method in water-in-oil emulsion. Bunseki Kagaku. 2007;56:511–4. (in Japanese).

    Article  Google Scholar 

  • Yang H, Xie Y, Hao G, Cai W, Guo X. Preparation of porous alumina microspheres via an oil-in-water emulsion method accompanied by a sol–gel process. New J Chem. 2016;40:589–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Kawashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Kawashita, M., Miyazaki, T. (2016). Microparticles Preparation Using Water-in-Oil Emulsion. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_128-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_128-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics