Skip to main content

Ferrites Obtained by Sol–Gel Method

Abstract

Ferrites make a large class of magnetic oxides with its remarkable structural, electrical, and magnetic properties. These properties strongly depend upon the method of preparation. Sol–gel method is having many advantages over other methods to obtain the nanoparticles of ferrite. In this chapter, the effect of varying synthesis conditions such as chelating agent/fuel to nitrate ratio, effect of pH, sintering time/temperature, etc. on the final product of ferrite in the form of nanocrystalline powder is discussed. This chapter focuses to synthesize the ferrite in the form of nanocrystalline powder, nanowires, nanotubes, nanoribbon, and thin film of spinel, hexaferrite, and bismuth ferrite. Possible mechanisms that affect the structure formation and properties of ferrite along with their application in various technological fields are also discussed.

This is a preview of subscription content, log in via an institution.

References

  • Albuquerque AS, Tolentinoa MVC, Ardisson JD, Moura FCC, de Mendonc R, Macedo WAA. Nanostructured ferrites: structural analysis and catalytic activity. Ceram Int. 2012;38:2225–31.

    Article  Google Scholar 

  • An SY, Lee SW, Shim IB, Kim CS. Growth of nanocrystalline barium ferrite thin films by sol–gel method. Phys Status Solidi (a). 2002;189:893–6.

    Article  Google Scholar 

  • Banerjee S, Kumar A, Sujatha DP. Preparation of nanoparticles of oxides by the citrate-nitrate process. J Therm Anal Calorim. 2011;104:859–67.

    Article  Google Scholar 

  • Bhattacharjee K, Ghosh CK, Mitra MK, Das GC, Mukherjee S, Chattopadhyay KK. Novel synthesis of NixZn1−xFe2O4 (0 ≤ x ≤ 1) nanoparticles and their dielectric properties. J Nanopart Res. 2011;13:739–50.

    Article  Google Scholar 

  • Cai W, Fu C, Gao R, Jiang W, Deng X, Chen G. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films. J Alloys Compd. 2014;617:240–6.

    Article  Google Scholar 

  • Catalan G, Scott JF. Physics and applications of bismuth ferrite. Adv Mater. 2009;21:2463–85.

    Article  Google Scholar 

  • Chow CL, Ang WC, Tse MS, Tan OK. Oxygen-sensing property of sol-gel-derived SrTi1−xFexO3−δ thin films with different iron concentrations (x = 0.2–0.8). Thin Solid Films. 2013;542:393–8.

    Article  Google Scholar 

  • Costa ACFM, Morelli MR, Kiminami RHGA. Combustion synthesis: effect of urea on the reaction and characteristics of Ni-Zn ferrite powders. J Mater Synth Process. 2001;9:347–52.

    Article  Google Scholar 

  • Darshane S, Mulla IS. Influence of palladium on gas sensing performance of magnesium ferrite nanoparticles. Mater Chem Phys. 2010;119:319–23.

    Article  Google Scholar 

  • Das S, Basu S, Mitra S, Chakravorty D, Mondal BN. Wet chemical route to transparent BiFeO3 films on SiO2 substrates. Thin Solid Films. 2010;518:4071–5.

    Article  Google Scholar 

  • Deraz NM. Fabrication, characterization and magnetic behaviour of alumina-doped zinc ferrite nano-particles. J Anal Appl Pyrolysis. 2011;91:48–54.

    Article  Google Scholar 

  • Díaz-Castañón S, García-Zaldívar O, Faloh-Gandarilla J, Watts BE, Calderón-Piñar F, Hernández-Landaverde MA, Espinoza-Beltran FJ. Synthesis of powders and thin films of bismuth ferrite from solution: a magneto-electric study. Appl Phys A. 2014;117:1283.

    Article  Google Scholar 

  • Dumitrescu AM, Samoila PM, Nica V, Doroftei F, Iordan AR, Palamaru MN. Study of the chelating/fuel agents influence on NiFe2O4 samples with potential catalytic properties. Powder Technol. 2013;243:9–17.

    Article  Google Scholar 

  • Eason R. Pulsed laser deposition of thin films: applications-led growth of functional materials. New York: Wiley; 2007.

    Google Scholar 

  • Ederer C, Spaldin NA. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B. 2005;71:060401(R).

    Article  Google Scholar 

  • Florea M, Alifanti M, Parvulescu VI, Mihaila-Tarabasanu D, Diamandescu L, Feder M, Negrila C, Frunza L. Total oxidation of toluene on ferrite-type catalysts. Catal Today. 2009;141:361–6.

    Article  Google Scholar 

  • Gass J, Srikantha H, Kislov N, Srinivasan SS, Emirov Y. Magnetization and magnetocaloric effect in ball-milled zinc ferrite powder. J Appl Phys. 2008;103:07B309–3.

    Article  Google Scholar 

  • Gharagozlou M. Influence of calcination temperature on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate as precursor. Chem Cent J. 2011;5:1–7.

    Article  Google Scholar 

  • Ghasemi A. Development of uniaxial magnetocrystalline anisotropy in SrFe12−x(DyGd)xO19 thin film synthesized by incorporation of high coercivity nanoparticles in sol–gel method. J Magn Magn Mater. 2014;361:112–7.

    Article  Google Scholar 

  • Gopalan EV, Al-Omari IA, Sakthi Kumar D, Yoshida Y, Joy PA, Anantharaman MR. Inverse magnetocaloric effect in sol–gel derived nanosized cobalt ferrite. Appl Phys A. 2010;99:497–503.

    Article  Google Scholar 

  • Gore SK, Mane RS, Naushad M, Jadhav SS, Zate MK, Alothmanc ZA, Hui BKN. Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 2015;44:6384–90.

    Article  Google Scholar 

  • Gul IH, Pervaiz E. Comparative study of NiFe2−xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion. Mater Res Bull. 2012;47:1353–61.

    Article  Google Scholar 

  • Haun JB, Yoon TJ, Lee H, Weissleder R. Magnetic nanoparticles biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:291–304.

    Article  Google Scholar 

  • Hou X, Feng J, Liu X, Ren Y, Fan Z, Zhang M. Magnetic and high rate adsorption properties of porous Mn1−xZnxFe2O4 (0 ≤ x ≤ 0.8) adsorbents. J Colloid Interface Sci. 2011;353:524–9.

    Article  Google Scholar 

  • Hu P, Pan D, Wang X, Tian J, Wang J, Zhang S, Volinsky AA. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition. J Magn Magn Mater. 2011;323:569–73.

    Article  Google Scholar 

  • Ishikawa A, Tanahashi K, Futamoto M. Magnetic and structural properties of Ba–ferrite films prepared by sol-gel processing. J Appl Phys. 1996;79:7080.

    Article  Google Scholar 

  • Jadhav SS, Shirsath SE, Patange SM, Jadhav KM. Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. J Appl Phys. 2010;108:093920.

    Article  Google Scholar 

  • Javed K, Li WJ, Ali SS, Shi DW, Khan U, Riaz S, Han XF. Enhanced exchange bias and improved ferromagnetic properties in Permalloy-BiFe0.95Co0.05O3 core-shell nanostructures. Sci Rep. 2015;5:18203. doi:10.1038/srep18203.

    Article  Google Scholar 

  • Jing P, Du J, Wang J, Wei J, Pan L, Li J, Liu Q. Width-controlled M-type hexagonal strontium ferrite (SrFe12O19) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning. Sci Rep. 2015;5:15089. doi:10.1038/srep15089.

    Article  Google Scholar 

  • Kiran VS, Sumathi S. Comparison of catalytic activity of bismuth substituted cobalt ferrite nanoparticles synthesized by combustion and co-precipitation method. J Magn Magn Mater. 2017;421:113–9.

    Article  Google Scholar 

  • Kumar A, Yadav KL. Magnetic, magnetocapacitance and dielectric properties of Cr doped bismuth ferrite nanoceramics. Mater Sci Eng B. 2011;176:227–30.

    Article  Google Scholar 

  • Laokul P, Amornkitbamrung V, Seraphin S, Maensiri S. Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr Appl Phys. 2011;11:101–8.

    Article  Google Scholar 

  • Leu C, Lin T, Chen S, Hu C. Effects of bismuth oxide buffer layer on BiFeO3 thin film. J Am Ceram Soc. 2015;98:724–31.

    Article  Google Scholar 

  • Li L. Glycol-assisted autocombustion synthesis of spinel ferrite CoFe2O4 nanoparticles: magnetic and electrochemical performances. J Sol-Gel Sci Technol. 2011;58:677–81.

    Article  Google Scholar 

  • Li YQ, Huang Y, Qi SH, Niu FF, Niu L. Preparation, and magnetic and electromagnetic properties of La-doped strontium ferrite films. J Magn Magn Mater. 2011;323:2224–32.

    Article  Google Scholar 

  • Li Y, Cooper JK, Liu W, Sutter-Fella CM, Amani M, Beeman JW, Javey A, Ager JW, Liu Y, Toma FM, Sharp ID. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat Commun. 2016;7:12446. doi:10.1038/ncomms12446.

    Article  Google Scholar 

  • Liang C, Yang D, Yang Z, Hou F, Xu M. The preparation and oxygen sensitivity of strontium ferrite thin films. Surf Coat Technol. 2005;200:2515–7.

    Article  Google Scholar 

  • Lin Z, Cai W, Jiang W, Fu C, Li C, Song Y. Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol–gel method. Ceram Int. 2013;39:8729–36.

    Article  Google Scholar 

  • Liu WT, Wu JM. The effect of the vacuum extraction and the Fe/Ba ratio on the phase formation of barium ferrite thin film synthesized by sol–gel method. Mater Chem Phys. 2001;69:148–53.

    Article  Google Scholar 

  • Liu F, Yang C, Ren T, Wang AZ, Yu J, Liu L. NiCuZn ferrite thin films grown by a sol–gel method and rapid thermal annealing. J Magn Magn Mater. 2007;309:75–9.

    Article  Google Scholar 

  • Liu W, Tan G, Xue X, Dong G, Ren H, Xia A. Structure and multiferroic properties of Sr substituted Bi0.89−xSm0.11SrxFe0.94(Mn0.04Cr0.02)O3 thin films. Ceram Int. 2014;40:13249–56.

    Article  Google Scholar 

  • Liu W, Tan G, Xue X, Dong G, Ren H, Xia A. Conduction mechanisms and enhanced multiferroic properties of 2-2 type Bi0.89Sm0.11FeO3–NiFe2O4 composite thin films. Ceram Int. 2015;41:1687–93.

    Article  Google Scholar 

  • Mathew DS, Juaug RS. An overview of structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J. 2007;129:51–65.

    Article  Google Scholar 

  • Morisako A, Liu X, Matsumoto M, Naoe M. The effect of underlayer for Ba-ferrite sputtered films on c-axis orientation. J Appl Phys. 1997;81:4374–6.

    Article  Google Scholar 

  • Mukherjee K, Majumder SB. Hydrogen sensing characteristics of nanocrystalline Mg0.5Zn0.5Fe2O4 thin film: effect of film thickness and operating temperature. Int J Hydrogen Energy. 2014;39:1185–91.

    Article  Google Scholar 

  • Nadeem K, Krenn H. Exchange bias, memory and freezing effects in NiFe2O4 nanoparticles. J Supercond Nov Magn. 2011;24:717–20.

    Article  Google Scholar 

  • Nasir S, Asghar G, Malik MA, Anis-ur-Rehman M. Structural, dielectric and electrical properties of zinc doped nickel nanoferrites prepared by simplified sol–gel method. J Sol-Gel Sci Technol. 2011;59:111.

    Article  Google Scholar 

  • Neel L. Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys. 1948;3:137–98.

    Google Scholar 

  • Patange SM, Shirsath SE, Jangam GS, Lohar KS, Jadhav SS. Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J Appl Phys. 2011;109:053909-9.

    Article  Google Scholar 

  • Patil KC, Hegde MS, Rattan T, Aruna ST. Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications. Singapore: World Scientific Publishing; 2008.

    Google Scholar 

  • Pechini MP. Patent US 3 330 697, 1967.

    Google Scholar 

  • Pramanik NC, Fujii T, Nakanishi M, Takada J. Development of nanograined hexagonal barium ferrite thin films by sol–gel technique. Mater Lett. 2005;59:468–72.

    Article  Google Scholar 

  • Quickel TE, Schelhas LT, Farrell RA, Petkov N, Le VH, Tolbert SH. Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism. Nat Commun. 2015;6:6562. doi:10.1038/ncomms7562.

    Article  Google Scholar 

  • Raja G, Gopinath S, Raj RA, Shukla AK, Alhoshan MS, Sivakumar K. Comparative investigation of CuFe2O4 nano and microstructures for structural, morphological, optical and magnetic properties. Physica E. 2016;83:69–73.

    Article  Google Scholar 

  • Rao CNR. Chemical approaches to the synthesis of inorganic materials. New Delhi: Wiley Easter/New Age Internationals; 1993.

    Google Scholar 

  • Rashad MM, Zaki ZI, El-Shall H. A novel approach for synthesis of nanocrystalline MgAl2O4 powders by coprecipitation method. J Mater Sci. 2009;44:2992–8.

    Article  Google Scholar 

  • Reitz C, Suchomski C, Haetge J, Leichtweiss T, Jaglicic Z, Djerdj I, Brezesinski T. Soft-templating synthesis of mesoporous magnetic CuFe2O4 thin films with ordered 3D honeycomb structure and partially inverted nanocrystalline spinel domains. Chem Commun. 2012;48:4471–3.

    Article  Google Scholar 

  • Salemizadeh S, Seyyed Ebrahimi SA. Influence of Fe/Ba ratio, basic agent and calcination temperature on the physical properties of nanocrystalline barium hexaferrite thin films prepared by a sol–gel method. J Non-Cryst Solids. 2009;355:982–5.

    Article  Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials from laboratory to market. Chem Soc Rev. 2011;40:696–753.

    Article  Google Scholar 

  • Seifikar S, Rawdanowicz T, Straka W, Quintero C, Bassiri-Gharb N, Schwartz J. Structural and magnetic properties of sol–gel derived NiFe2O4 thin films on silicon substrates. J Magn Magn Mater. 2014;361:255–61.

    Article  Google Scholar 

  • Sharifi I, Shokrollahi H, Doroodmand MM, Safi R. Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J Magn Magn Mater. 2012;324:1854–186.

    Article  Google Scholar 

  • Shirsath SE, Mane ML, Yasukawa Y, Liu X, Morisako A. Chemical tuning of structure formation and combustion process in CoDy0.1Fe1.9O4 nanoparticles: influence@pH. J Nanopart Res. 2013;15:1976.

    Article  Google Scholar 

  • Shirsath SE, Mane ML, Yasukawa Y, Liu X, Morisako A. Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+-Mn2+-Fe3+-O2− ferromagnetic nanoparticles. Phys Chem Chem Phys. 2014;16:2347–57.

    Article  Google Scholar 

  • Shirsath SE, Liu X, Yasukawa Y, Li S, Morisako A. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci Rep. 2016;6:30074. doi:10.1038/srep3007.

    Article  Google Scholar 

  • Slatineanu T, Diana E, Nica V, Oancea V, Caltun OF, Iordan AR, Palamaru MN. The influence of the chelating/combustion agents on the structure and magnetic properties of zinc ferrite. Cent Eur J Chem. 2012;10:1799.

    Google Scholar 

  • Snelling EC. Soft ferrites/properties and application. 2nd ed. London: Butterworths; 1988.

    Google Scholar 

  • Solovyova ED, Calzada ML, Belous AG. The effect of sol–gel preparation conditions on structural characteristics and magnetic properties of M-type barium hexaferrite thin films. J Sol-Gel Sci Technol. 2015;75:215–23.

    Article  Google Scholar 

  • Stoia M, Caizer C, Stefanescu M, Barvinschi P, Barbu-Tudoran L. Characterisation of nickel–zinc ferrite/silica nanocomposites with low ferrite concentration obtained by an improved modified sol–gel method. J Sol-Gel Sci Technol. 2011;58:126–34.

    Article  Google Scholar 

  • Sun HL, Shi H, Zhao F, Qi L, Gao S. Shape-dependent magnetic properties of low-dimensional nanoscale Prussian blue (PB) analogue SmFe(CN)6·4H2O. Chem Commun. 2005;4339–41. doi: 10.1039/b507240a.

    Google Scholar 

  • Sun J, Wang Z, Wang Y, Zhu Y, Shen T, Pang L, Wei K, Li F. Synthesis of the nanocrystalline CoFe2O4 ferrite thin films by a novel sol–gel method using glucose as an additional agent. Mater Sci Eng B. 2012;177:269–73.

    Article  Google Scholar 

  • Szczygiel I, Winiarska K. Low-temperature synthesis and characterization of the Mn–Zn ferrite. J Therm Anal Calorim. 2011;104:577–83.

    Article  Google Scholar 

  • Tang H, Zhang W, Peng B, Zhang W. Magnetically anisotropic barium ferrite thin films on sapphire by sol–gel process. Thin Solid Films. 2010;518:3342–4.

    Article  Google Scholar 

  • Thakur S, Katyal SC, Gupta A, Reddy VR, Sharma SK, Knobel M, Singh M. Nickel-zinc ferrite from reverse micelle process-structural and magnetic properties, Mössbauer spectroscopy characterization. J Phys Chem C. 2009;113:20785–94.

    Article  Google Scholar 

  • Toksha BG, Shirsath SE, Mane ML, Patange SM, Jadhav SS, Jadhav KM. Autocombustion high-temperature synthesis, structural and magnetic properties of CoCrxFe2−xO4 (0 ≤ x ≤ 1.0). J Phys Chem C. 2011;115:20905–12.

    Article  Google Scholar 

  • Vestal CR, Zhang ZJ. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett. 2003;3:1739–43.

    Article  Google Scholar 

  • Waqas H, Qureshi AH. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process. J Therm Anal Calorim. 2010;100:529–35.

    Article  Google Scholar 

  • Yue Z, Guo W, Zhou J, Gui Z, Li L. Synthesis of nanocrystalline ferrites by sol gel combustion process: the influence of pH variation. J Magn Magn Mater. 2004;270:216–23.

    Article  Google Scholar 

  • Zhang W, Li F, Tang H, Peng B, Zhang W. Morphology control of barium ferrite thin films. Vacuum. 2012a;86:946–8.

    Article  Google Scholar 

  • Zhang W, Zhang W, Lu Z, Li F, Peng B. Growth of highly textured barium ferrite thin films on sapphire and their magnetic properties. Thin Solid Films. 2012b;526:237–40.

    Article  Google Scholar 

  • Zhou B, Zhang YW, Liao CS, Cheng FX, Yan CH, Chen LY, Wang SY. Enhanced magneto-optical Kerr effects and decreased Curie temperature in Co-Mn ferrite thin films. Appl Phys Lett. 2001;79:1849.

    Article  Google Scholar 

  • Zhou B, Zhang YW, Liao CS, Yan CH. Magnetism and phase transition for CoFe2−xMnxO4 nanocrystalline thin films and powders. J Magn Magn Mater. 2002;247:70–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar E. Shirsath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Shirsath, S.E., Jadhav, S.S., Mane, M.L., Li, S. (2016). Ferrites Obtained by Sol–Gel Method. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Ferrites Obtained by Sol–Gel Method
    Published:
    26 October 2017

    DOI: https://doi.org/10.1007/978-3-319-19454-7_125-3

  2. Ferrites Obtained by Sol–Gel Method
    Published:
    11 September 2017

    DOI: https://doi.org/10.1007/978-3-319-19454-7_125-2

  3. Original

    Ferrites Obtained by Sol–Gel Method
    Published:
    11 January 2017

    DOI: https://doi.org/10.1007/978-3-319-19454-7_125-1