Skip to main content

Aerogels from Preceramic Polymers

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

This chapter deals with a new class of ceramic aerogels derived from polymers. Polymer-derived ceramics (PDCs) represent a new class of ceramic materials obtained through the pyrolysis of preceramic polymers. The PDC route allows forming nanophases of the SiC, SiOC, and SiCN systems with tailored functional properties.

In its essential features, the process leading to the PDC aerogel described in this chapter consists in cross-linking a preceramic polymer in a highly diluted solution, in removing the solvent using supercritical conditions to get the preceramic aerogel, and finally in converting the polymeric aerogel into the ceramic one through a pyrolysis process in controlled atmosphere. The most important synthesis parameters, which control the final aerogel microstructure, will be discussed. Several examples of aerogels belonging to the SiC, SiOC, and SiCN systems will be presented along with potential applications in the field of materials for energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aegerter MA, Leventis N, Koebel MM, editors. Aerogels handbook. New York: Springer; 2011.

    Google Scholar 

  • Ahn D, Raj R. Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium. J Power Source. 2011;196:2179–86.

    Article  Google Scholar 

  • Aravind PR, Soraru GD. Porous silicon oxycarbide glasses from hybrid ambigels. Micropaleontol Mesoporous Mater. 2011;142:511–7.

    Article  Google Scholar 

  • Aravind PR, Shajesh P, Soraru GD, Warrier KGK. Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels. J Sol Gel Sci Technol. 2010;54:105–17.

    Article  Google Scholar 

  • Arshady R. Suspension, emulsion, and dispersion polymerization: a methodological survey. Colloid Polym Sci. 1992;270:717–32.

    Article  Google Scholar 

  • Assefa D, Zera E, Campostrini R, Soraru GD, Vakifahmetoglu C. Polymer-derived SiOC aerogel with hierarchical porosity through HF etching. Ceram Intern. 2016. doi:10.1016/j.ceramint.2016.04.101.

    Google Scholar 

  • Barton FM. CRC handbook of solubility parameters and other cohesion parameters. 2nd ed. CRC Press: Boca Raton, Florida, 1991.

    Google Scholar 

  • Blum YD, MacQueen DB, Kleebe H-J. Synthesis and characterization of carbon-enriched silicon oxycarbides. J Eur Ceram Soc. 2005;25:143–9.

    Article  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L. Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem. 2008;1:149–54.

    Article  Google Scholar 

  • Colombo P. Engineering porosity in polymer-derived ceramics. J Eur Ceram Soc. 2008;28:1389–95.

    Article  Google Scholar 

  • Colombo P, Paulson TE, Pantano CG. Synthesis of Silicon Carbide thin films with polycarbosilane (PCS). J Am Ceram Soc. 1997;80:2333–40.

    Article  Google Scholar 

  • Colombo P, Mera G, Riedel R, Soraru GD. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc. 2010a;93:1805–37.

    Google Scholar 

  • Colombo P, Riedel R, Soraru GD, Kleebe H-J, editors. Polymer derived ceramics. From nano-structure to applications. Lancaster: DEStech Publications; 2010b.

    Google Scholar 

  • Cordelair J, Greil P. Electrical characterization of polymethylsiloxane/MoSi2-derived composite ceramics. J Am Ceram Soc. 2001;84:2256–9.

    Article  Google Scholar 

  • Dalcanale F, Grossenbacher J, Blugan G, Gullo MR, Lauria A, Brugger J, Tevaearai H, Graule T, Niederberger M, Kuebler J. Influence of carbon enrichment on electrical conductivity and processing of polycarbosilane derived ceramic for MEMS applications. J Eur Ceram Soc. 2014;34:3559–70.

    Article  Google Scholar 

  • Dibandjo P, Diré S, Babonneau F, Soraru GD. Influence of the polymer architecture on the high temperature behaviour of SiCO glasses: a comparison between linear- and cyclic-derived precursors. J Non-Cryst Solids. 2010;356:132–40.

    Article  Google Scholar 

  • Dirè S, Borovin E, Narisawa M, Sorarù GD. Synthesis and characterization of the first transparent silicon oxycarbide aerogel obtained through H2 decarbonization. J Mater Chem A. 2015;3:24405–13.

    Article  Google Scholar 

  • Downey JS, Frank R: S, Li W-H, Stöver HDH. Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization. Macromolecules. 1999;32:2838–44.

    Article  Google Scholar 

  • Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA. Additive manufacturing of polymer-derived ceramics. Science. 2016;351:58–62.

    Article  Google Scholar 

  • Filsinger DH, Bourrie DB. Silica to silicon: key carbothermic reactions and kinetics. J Am Ceram Soc. 1990;73:1726–32.

    Article  Google Scholar 

  • Fukui H, Ohsuka H, Hino T, Kanamura K. A Si-O-C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics. ACS Appl Mater Interface. 2010;2:998–1008.

    Article  Google Scholar 

  • Fukui H, Harimoto Y, Akasaka M, Eguchi K. Lithium species in electrochemically lithiated and delithiated silicon oxycarbides. ACS Appl Mater Interface. 2014;6:12827–36.

    Article  Google Scholar 

  • Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW. Nanoporous carbide derived carbon with tunable pore size. Nat Mater. 2003;2:591–4.

    Article  Google Scholar 

  • Hrubesh LW, Keene LE, Latorre VR. Dielectric properties of aerogels. J Mater Res. 1993;8:1736–41.

    Article  Google Scholar 

  • Karakuscu A, Ponzoni A, Aravind PR, Sberveglieri G, Soraru GD. Gas sensing behavior of mesoporous SiOC glasses. J Am Ceram Soc. 2013;96:2366–9.

    Article  Google Scholar 

  • Kistler SS. Coherent expanded aerogels and jellies. Nature. 1931;127:741.

    Article  Google Scholar 

  • Li K, Stöver HDH. Synthesis of monodisperse poly(divinylbenzene) microspheres. J Polym Sci A Polym Chem. 1993;31:3257–63.

    Article  Google Scholar 

  • Liew L-A, Saravanan RA, Bright VM, Dunn ML, Daily JW, Raj R. Processing and characterization of silicon carbon-nitride ceramics: application of electrical properties towards MEMS thermal actuators. Sensors Actuators. 2003;103:171–81.

    Article  Google Scholar 

  • Liu C, Chen HZ, Komarneni S, Pantano CG. High surface area SiC/silicon oxycarbide glasses prepared from phenyltrimethoxysilane-tetramethoxysilane gels. J Porous Mater. 1996;2:245–52.

    Article  Google Scholar 

  • Marciniec B, editor. Hydrosilylation: a comprehensive review on recent advances. New York: Springer, 2009.

    Google Scholar 

  • Meador MAB, Malow EJ, Silva R, Wright S, Quade D, Vivod SL, Cakmak M. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces. 2012;4:536–44.

    Article  Google Scholar 

  • Melcher R, Cromme P, Scheffler M, Greil P. Centrifugal casting of thin-walled ceramic tubes from preceramic polymers. J Am Ceram Soc. 2003;86:1211–3.

    Article  Google Scholar 

  • Nguyen VL, Proust V, Quievryn C, Bernard S, Miele P, Soraru GD. Processing, mechanical characterization and alkali resistance of SiliconBoronOxycarbide (SiBOC) glass fibers. J Am Ceram Soc. 2014;97:3143–9.

    Article  Google Scholar 

  • Nguyen VL, Zera E, Perolo A, Campostrini R, Li W, Sorarù GD. Synthesis and characterization of polymer-derived SiCN aerogel. J Eur Ceram Soc. 2015;35:3295–302.

    Article  Google Scholar 

  • Oschatz M, Nickel W, Thommes M, Cychosz KA, Leistner M, Adam M, Mondin G, Strubel P, Borchardt L, Kaskel S. Evolution of porosity in carbide-derived carbon aerogels. J Mater Chem A. 2014;2:18472–9.

    Article  Google Scholar 

  • Pajonk GM. Transparent silica aerogels. J Non-Cryst Solids. 1998;225:307–14.

    Article  Google Scholar 

  • Pekala RW. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci. 1989;24:3221–7.

    Article  Google Scholar 

  • Pekala RW, Alviso CT, Kong FM, Hulsey SS. Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids. 1992;145:90–8.

    Article  Google Scholar 

  • Peña-Alonso R, Raj R, Soraru GD. Preparation of ultrathin walled carbon based structures by etching pseudo-amorphous silicon-oxycarbide ceramics. J Am Ceram Soc. 2006;89:2473–80.

    Article  Google Scholar 

  • Pradeep VS, Graczyk-Zajac M, Riedel R, Soraru GD. New insights in to the lithium storage mechanism in polymer derived SiOC anode materials. Electrochim Acta. 2014;119:78–85.

    Article  Google Scholar 

  • Pradeep VS, Ayana DG, Graczyk-Zajac M, Soraru GD, Riedel R. High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochim Acta. 2015;157:41–5.

    Article  Google Scholar 

  • Riedel R, Passing G, Schönfelder H, Brook RJ. Synthesis of dense silicon-based ceramics at low temperatures. Nature. 1992;355:714–7.

    Article  Google Scholar 

  • Rouxel T, Massouras G, Sorarù GD. High temperature behavior of an SiOC oxycarbide glass: elasticity and viscosity. J Sol Gel Sci Technol. 1999;14:83–94.

    Article  Google Scholar 

  • Saha A, Raj R, Williamson DL. A model for the nanodomains in polymer-derived SiCO. J Am Ceram Soc. 2006;89:2188–95.

    Google Scholar 

  • Sorarù GD, Dalcanale F, Campostrini R, Gaston A, Blum Y, Carturan S, Aravind PR. Novel polysiloxane and polycarbosilane aerogels via hydrosilylation of preceramic polymers. J Mater Chem. 2012a;22:7676–80.

    Article  Google Scholar 

  • Soraru GD, Pena-Alonso R, Kleebe H-J. The effect of annealing at 1400°C on the structural evolution of porous C-rich silicon (boron)oxycarbide glass. J Eur Ceram Soc. 2012b;32:1751–7.

    Article  Google Scholar 

  • Weinberger M, Puchegger S, Froschl T, Babonneau F, Peterlik H, Husing N. Sol-gel processing of a glycolated cyclic organosilane and its pyrolysis to silicon oxycarbide monoliths with multiscale porosity and large surface areas. Chem Mater. 2005;22:1509–20.

    Article  Google Scholar 

  • Widgeon SJ, Sen S, Mera G, Ionescu E, Riedel R, Navrotsky A.29Si and13C solid-state NMR spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem Mater. 2010;22:6221–8.

    Article  Google Scholar 

  • Wilamowska M, Pradeep VS, Graczyk-Zajac M, Riedel R, Sorarù GD. Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries. Sol State Ionics. 2014;260:94–100.

    Article  Google Scholar 

  • Wilson AM, Zank G, Eguchi K, Xing W, Yates B, Dahn JR. Pore creation in silicon oxycarbides by rinsing in dilute hydrofluoric acid. Chem Mater. 1997;9:2139–44.

    Article  Google Scholar 

  • Worsley MA, Kuntz JD, Satcher Jr JH, Baumann TF. Synthesis and characterization of monolithic, high surface area SiO2/C and SiC/C composites. J Mater Chem. 2010;20:4840–4.

    Article  Google Scholar 

  • Yajima S, Hasegawa Y, Okamura K, Matsuzawa I. Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature (London). 1978;261:525–7.

    Article  Google Scholar 

  • Ye L, Ji Z-H, Han W-J, Hu J-D, Zhao T. Synthesis and characterization of silica/carbon composite aerogels. J Am Ceram Soc. 2010;93:1156–93.

    Article  Google Scholar 

  • Zera Z, Campostrini R, Aravind PR, Blum Y, Sorarù GD. Novel SiC/C aerogels through pyrolysis of polycarbosilane precursors. Adv Eng Mater. 2014;16:814–9.

    Article  Google Scholar 

  • Zera E, Nickel W, Kaskel S, Sorarù GD. Out-of-furnace oxidation of SiCN polymer-derived ceramic aerogel pyrolyzed at intermediate temperature (600–800°C). J Eur Ceram Soc. 2016a;36:423–8.

    Article  Google Scholar 

  • Zera E, Nickel W, Hao GP, Vanzetti L, Kaskel S, Sorarù GD. Nitrogen doped carbide derived carbon aerogels by chlorine etching of SiCN aerogel. J Mater Chem A. 2016b;3:4525–33.

    Article  Google Scholar 

  • Zhang LG, Wang YS, Wei Y, Xu WX, Fang DJ, Zhai L, Lin KC, An L. A silicon carbonitride ceramic with anomalously high piezoresistivity. J Am Ceram Soc. 2008;91:1346–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. P. R. Aravind that drew our attention in the field of aerogel during his stay in our lab as a postdoc, Dr. Yigal Blum (SRI, Menlo Park, CA, USA) for the fruitful discussions in particular for the hydrosilylation reaction, Dr. Sara Carturan (INFN, Legnaro, Padova, Italy) for the BET measurements, and many undergraduate and graduate students: Federico Dalcanale, Amelie Gaston, Andrea Perolo, Dawit Ayana, Michele Perenzin, Aylin Karakuscu, Van Lam Nguyen, V. S. Pradeep, Dawit Gebregiorges, and Susana Aguirre-Medel.

“Fondazione Cassa di Risparmio di Trento e Rovereto” is gratefully acknowledged for the partial financial support of this research under the contract: polymer-derived ceramics with hierarchical porosity for water filtration/purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Domenico Sorarù .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sorarù, G.D., Zera, E., Campostrini, R. (2016). Aerogels from Preceramic Polymers. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_121-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics