Skip to main content

Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors

  • Living reference work entry
  • First Online:

Abstract

This chapter is devoted to the presentation of hybrid nanocomposite materials obtained through the interaction of colloidal crystalline polysaccharides and precursors of oxide phases. It also includes a preliminary introduction to the chemistry and physical chemistry of the polysaccharide nanocrystals, mainly cellulose and chitin. The main approaches and processes employed for the synthesis of the nanocomposites are described for different oxide families: silica, transition metals and metal oxides, phosphate and carbonate phases, and graphene oxide. Additionally, the properties of the materials are mentioned, and described in more details when they result from a combination of polysaccharide and oxide phases (typically for mechanical and optical properties). Globally, this chapter aims at giving a comprehensive review of the innovating research undertaken in the field and providing starting knowledge for nonspecialist readers.

This is a preview of subscription content, log in via an institution.

Abbreviations

ACC:

Amorphous calcium carbonate

AFM:

Atomic force microscopy

CNC:

Cellulose nanocrystals

CNF:

Cellulose nanofibers

DMF:

Dimethylformamide

HA:

Hydroxyapatite

ITO:

Indium tin oxide

PAA:

Polyacrylic acid

PGA:

Polyglutamic acid

PLA:

Polylactic acid

POM:

Polarized optical microscopy

PVA:

Polyvinyl alcohol

QNM:

Quantitative nanomechanical mapping

SBF:

Stimulated body fluid

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl radical

TEOS:

Tetraethoxysilane (or Tetraethyl orthosilicate)

TMOS:

Tetramethoxysilane (or Tetramethyl orthosilicate)

References

  • Addadi L, Raz S, Weiner S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater. 2003;15:959–70.

    Article  Google Scholar 

  • Aime C, Mosser G, Pembouong G, Bouteiller L, Coradin T. Controlling the nano-bio interface to build collagen-silica self-assembled networks. Nanoscale. 2012;4:7127–34.

    Article  Google Scholar 

  • Alonso B, Belamie E. Chitin-silica nanocomposites by self-assembly. Angew Chem Int Ed. 2010;49:8201–4.

    Article  Google Scholar 

  • Araki J, Kuga S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir. 2001;17:4493–6.

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surf A. 1998;142:75–82.

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S, Okana T. Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci. 1999;45:258–61.

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T. Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir. 2000;16:2413–5.

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir. 2001;17:21–7.

    Article  Google Scholar 

  • Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA. Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles. Molecules. 2013;18:6269–80.

    Article  Google Scholar 

  • Azzam F, Heux L, Putaux JL, Jean B. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules. 2010;11:3652–9.

    Article  Google Scholar 

  • Azzam F, Heux L, Jean B. Adjustment of the chiral nematic phase properties of cellulose nanocrystals by polymer grafting. Langmuir. 2016;32:4305–12.

    Article  Google Scholar 

  • Bardet R, Belgacem MN, Bras J. Different strategies for obtaining high opacity films of MFC with TiO2 pigments. Cellulose. 2013;20:3025–37.

    Article  Google Scholar 

  • Beck S, Bouchard J, Berry R. Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules. 2011;12:167–72.

    Article  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. 2005;6:1048–54.

    Article  Google Scholar 

  • Belamie E, Davidson P, Giraud-Guille MM. Structure and chirality of the nematic phase in alpha-chitin suspensions. J Phys Chem B. 2004;108:14991–5000.

    Article  Google Scholar 

  • Belamie E, Mosser G, Gobeaux F, Giraud-Guille MM. Possible transient liquid crystal phase during the laying out of connective tissues: alpha-chitin and collagen as models. J Phys Condens Matter. 2006;18:115–29.

    Article  Google Scholar 

  • Belamie E, Boltoeva MY, Yang K, Cacciaguerra T, Alonso B. Tunable hierarchical porosity from self-assembled chitin-silica nanocomposites. J Mater Chem. 2011;21:16997–7006.

    Article  Google Scholar 

  • Blackwel J. Structure of beta-chitin or parallel chain systems of poly-beta-(1-]4)-N-acetyl-D-glucosamine. Biopolymers. 1969;7:281–98.

    Article  Google Scholar 

  • Boltoeva MY, Dozov I, Davidson P, Antonova K, Cardoso L, Alonso B, et al. Electric-field alignment of chitin nanorod-siloxane oligomer reactive suspensions. Langmuir. 2013;29:8208–12.

    Article  Google Scholar 

  • Bordel D, Putaux J-L, Heux L. Orientation of native cellulose in an electric field. Langmuir. 2006;22:4899–901.

    Article  Google Scholar 

  • Bouligand Y. Sur une architecture torsadée répandue dans de nombreuses cuticules d’Arthropodes. CR Hebd Acad Sci. 1965;261:3665–8.

    Google Scholar 

  • Bouligand Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell. 1972;4:189–217.

    Article  Google Scholar 

  • Bouligand Y. Liquid crystalline order in biological materials. In: Blumstein A, editor. Liquid crystalline order in polymers. New York: Academic; 1978. p. 261–97.

    Chapter  Google Scholar 

  • Bouligand Y. Liquid crystals and biological morphogenesis: ancient and new questions. CR Chimie. 2008;11:281–96.

    Article  Google Scholar 

  • Boury B, Plumejeau S. Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem. 2015;17:72–88.

    Article  Google Scholar 

  • Bromley KM, Patil AJ, Perriman AW, Stubbs G, Mann S. Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J Mater Chem. 2008;18:4796–801.

    Article  Google Scholar 

  • Buskens P, Mourad M, Meulendijks N, van Ee R, Burghoorn M, Verheijen M, et al. Highly porous, ultra-low refractive index coatings produced through random packing of silicated cellulose nanocrystals. Colloid Surf A. 2015;487:1–8.

    Article  Google Scholar 

  • Campbell MG, Liu Q, Sanders A, Evans JS, Smalyukh II. Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods. Materials. 2014;7:3021–33.

    Article  Google Scholar 

  • Caveney S. Cuticle reflectivity and optical activity in scarab beetles: role of uric acid. Proc Roy Soc Ser B. 1971;178:205–25.

    Article  Google Scholar 

  • Chaussard G, Domard A. New aspects of the extraction of chitin from squid pens. Biomacromolecules. 2004;5:559–64.

    Article  Google Scholar 

  • Chen PY, Lin AYM, McKittrick J, Meyers MA. Structure and mechanical properties of crab exoskeletons. Acta Biomater. 2008;4:587–96.

    Article  Google Scholar 

  • Chen L, Berry RM, Tam KC. Synthesis of beta-cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng. 2014a;2:951–8.

    Article  Google Scholar 

  • Chen Q, Liu P, Sheng CR, Zhou LJ, Duan YX, Zhang JM. Tunable self-assembly structure of graphene oxide/cellulose nanocrystal hybrid films fabricated by vacuum filtration technique. RSC Adv. 2014b;4:39301–4.

    Article  Google Scholar 

  • Chen TR, Wang Y, Wang Y, Xu Y. Biotemplated synthesis of hierarchically nanostructured TiO2 using cellulose and its applications in photocatalysis. RSC Adv. 2015;5:1673–9.

    Article  Google Scholar 

  • Chu G, Feng J, Wang Y, Zhang X, Xu Y, Zhang HJ. Chiral nematic mesoporous films of ZrO2:Eu3+: new luminescent materials. Dalton Trans. 2014a;43:15321–7.

    Article  Google Scholar 

  • Chu G, Xu W, Qu D, Wang Y, Song HW, Xu Y. Chiral nematic mesoporous films of Y2O3:Eu3+ with tunable optical properties and modulated photoluminescence. J Mater Chem C. 2014b;2:9189–95.

    Article  Google Scholar 

  • Chu G, Wang XS, Chen TR, Xu W, Wang Y, Song HW, et al. Chiral electronic transitions of YVO4:Eu3+ nanoparticles in cellulose based photonic materials with circularly polarized excitation. J Mater Chem C. 2015a;3:3384–90.

    Article  Google Scholar 

  • Chu G, Wang XS, Yin H, Shi Y, Jiang HJ, Chen TR, et al. Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles. ACS Appl Mater Interf. 2015b;7:21797–806.

    Article  Google Scholar 

  • Csoka L, Hoeger IC, Peralta P, Peszlen I, Rojas OJ. Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly. J Colloid Interf Sci. 2011;363:206–12.

    Article  Google Scholar 

  • Das P, Heuser T, Wolf A, Zhu BL, Demco DE, Ifuku S, et al. Tough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogels. Biomacromolecules. 2012;13:4205–12.

    Article  Google Scholar 

  • Dong XM, Gray DG. Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir. 1997;13:3029–34.

    Article  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG. Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir. 1996;12:2076–82.

    Article  Google Scholar 

  • Dong XM, Revol JF, Gray DG. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose. 1998;5:19–32.

    Article  Google Scholar 

  • Dos Santos FA, Tavares MIB. Development of biopolymer/cellulose/silica nanostructured hybrid materials and their characterization by NMR relaxometry. Polym Test. 2015;47:92–100.

    Article  Google Scholar 

  • Dujardin E, Blaseby M, Mann S. Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem. 2003;13:696–9.

    Article  Google Scholar 

  • Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaille JY, et al. Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir. 1999;15:6123–6.

    Article  Google Scholar 

  • Eglin D, Mosser G, Giraud-Guille MM, Livage J, Coradin T. Type I collagen, a versatile liquid crystal biological template for silica structuration from nano- to microscopic scales. Soft Matter. 2005;1:129–31.

    Article  Google Scholar 

  • Ehrlich H. Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev. 2010;52:661–99.

    Article  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules. 2008;9:57–65.

    Article  Google Scholar 

  • Elazzouzi-Hafraoui S, Putaux JL, Heux L. Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B. 2009;113:11069–75.

    Article  Google Scholar 

  • Fan Y, Saito T, Isogai A. Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin. Biomacromolecules. 2008;9:192–8.

    Article  Google Scholar 

  • Fan YM, Saito T, Isogai A. TEMPO-mediated oxidation of beta-chitin to prepare individual nanofibrils. Carbohyd Polym. 2009;77:832–8.

    Article  Google Scholar 

  • Fan YM, Fukuzumi H, Saito T, Isogai A. Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol. 2012;50:69–76.

    Article  Google Scholar 

  • Fowler CE, Shenton W, Stubbs G, Mann S. Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv Mater. 2001;13:1266–9.

    Article  Google Scholar 

  • Fu GS, He AJ, Jin YC, Cheng Q, Song JL. Fabrication of hollow silica nanorods using nanocrystalline cellulose as templates. Bioresources. 2012;7:2319–29.

    Google Scholar 

  • Galkina OL, Ivanov VK, Agafonov AV, Seisenbaeva GA, Kessler VG. Cellulose nanofiber-titania nanocomposites as potential drug delivery systems for dermal applications. J Mater Chem B. 2015;3:1688–98.

    Article  Google Scholar 

  • Galusha JW, Jorgensen MR, Bartl MH. Diamond-structured titania photonic-bandgap crystals from biological templates. Adv Mater. 2010;22:107–10.

    Article  Google Scholar 

  • Gebauer D, Oliynyk V, Salajkova M, Sort J, Zhou Q, Bergstrom L, et al. A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale. 2011;3:5187.

    Article  Google Scholar 

  • Giese M, De Witt JC, Shopsowitz KE, Manning AP, Dong RY, Michal CA, et al. Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. ACS Appl Mater Interf. 2013;5:6854–9.

    Article  Google Scholar 

  • Giese M, Blusch LK, Khan MK, MacLachlan MJ. Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed. 2015;54:2888–910.

    Article  Google Scholar 

  • Giraud-Guille MM. Calcification initiation sites in the crab cuticle – the interprismatic septa – an ultrastructural cytochemical study. Cell Tissue Res. 1984a;236:413–20.

    Article  Google Scholar 

  • Giraud-Guille MM. Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell. 1984b;16:75–92.

    Article  Google Scholar 

  • Giraud-Guille MM. Liquid crystalline phases of sonicated type I collagen. Biol Cell. 1989;67:97–101.

    Article  Google Scholar 

  • Giraud-Guille M-M. Plywood structures in nature. Curr Opin Solid State Mater Sci. 1998;3:221–7.

    Article  Google Scholar 

  • Giraud-Guille M-M, Chanzy H, Vuong R. Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J Struct Biol. 1990;103:232–40.

    Article  Google Scholar 

  • Giraud-Guille MM, Mosser G, Belamie E. Liquid crystallinity in collagen systems in vitro and in vivo. Curr Opin Colloid Interf Sci. 2008;13:303–13.

    Article  Google Scholar 

  • Gobeaux F, Belamie E, Mosser G, Davidson P, Panine P, Giraud-Guille MM. Cooperative ordering of collagen triple helices in the dense state. Langmuir. 2007;23:6411–7.

    Article  Google Scholar 

  • Grelet E, Fraden S. What is the origin of chirality in the cholesteric phase of virus suspensions? Phys Rev Lett. 2003;90:198302.

    Article  Google Scholar 

  • Grelet E, Moreno A, Backov R. Hybrid macroscopic fibers from the synergistic assembly between silica and filamentous viruses. Langmuir. 2011;27:4334–8.

    Article  Google Scholar 

  • Gruber S, Zollfrank C. Noble metal nanoparticles on biotemplated nanowires. Bioinspir Biomim Nanobiomater. 2012;1:95–100.

    Article  Google Scholar 

  • Gruber S, Taylor RNK, Scheel H, Greil P, Zollfrank C. Cellulose-biotemplated silica nanowires coated with a dense gold nanoparticle layer. Mater Chem Phys. 2011;129:19–22.

    Article  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose. 2006;13:679–87.

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–500.

    Article  Google Scholar 

  • Hamley IW. Liquid crystal phase formation by biopolymers. Soft Matter. 2010;6:1863–71.

    Article  Google Scholar 

  • Hanley SJ, Revol JF, Godbout L, Gray DG. Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose. 1997;4:209–20.

    Article  Google Scholar 

  • Hearle JWS. A fringed fibril theory of structure in crystalline polymers. J Polym Sci. 1958;28:432–5.

    Article  Google Scholar 

  • Hébant CW, Lee DW. Ultrastructural basis and developmental control of blue iridescence in salginella leaves. Am J Bot. 1984;71:216–9.

    Article  Google Scholar 

  • Helfer E, Panine P, Carlier M-F, Davidson P. The interplay between viscoelastic and thermodynamic properties determines the birefringence of F-actin gels. Biophys J. 2005;89:543–53.

    Article  Google Scholar 

  • Henry A, Plumejeau S, Heux L, Louvain N, Monconduit L, Stievano L, et al. Conversion of nanocellulose aerogel into TiO2 and TiO2@C nano-thorns by direct anhydrous mineralization with TiCl4. Evaluation of electrochemical properties in Li batteries. ACS Appl Mater Interf. 2015;7:14584–92.

    Article  Google Scholar 

  • Herdocia-Lluberes CS, Laboy-Lopez S, Morales S, Gonzalez-Robles TJ, Gonzalez-Feliciano JA, Nicolau E. Evaluation of synthesized nanohydroxyapatite-nanocellulose composites as biocompatible scaffolds for applications in bone tissue engineering. J Nanomater. 2015. Article ID 378786.

    Google Scholar 

  • Heux L, Chauve G, Bonini C. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir. 2000;16:8210–2.

    Article  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir. 2009;25:497–502.

    Article  Google Scholar 

  • Huang JY, Wang XD, Wang ZL. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 2006;6:2325–31.

    Article  Google Scholar 

  • Huang CC, Su CH, Li WM, Liu TY, Chen JH, Yeh CS. Bifunctional Gd2O3/C nanoshells for MR imaging and NIR therapeutic applications. Adv Funct Mater. 2009;19:249–58.

    Article  Google Scholar 

  • Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, et al. Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells. Biomacromolecules. 2009;10:1584–8.

    Article  Google Scholar 

  • Ishikawa M, Oaki Y, Tanaka Y, Kakisawa H, Salazar-Alvarez G, Imai H. Fabrication of nanocellulose-hydroxyapatite composites and their application as water-resistant transparent coatings. J Mater Chem B. 2015;3:5858–63.

    Article  Google Scholar 

  • Isogai A, Kato Y. Preparation of polyglucuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose. 1998;5:153–64.

    Article  Google Scholar 

  • Ivanova A, Fattakhova-Rohlfing D, Kayaalp BE, Rathousky J, Bein T. Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J Am Chem Soc. 2014;136:5930–7.

    Article  Google Scholar 

  • Ivanova A, Fominykh K, Fattakhova-Rohlfing D, Zeller P, Doblinger M, Bein T. Nanocellulose-assisted formation of porous hematite nanostructures. Inorg Chem. 2015a;54:1129–35.

    Article  Google Scholar 

  • Ivanova A, Fravventura MC, Fattakhova-Rohlfing D, Rathousky J, Movsesyan L, Ganter P, et al. Nanocellulose-templated porous titania scaffolds incorporating presynthesized titania nanocrystals. Chem Mater. 2015b;27:6205–12.

    Article  Google Scholar 

  • Javadi A, Zheng QF, Payen F, Javadi A, Altin Y, Cai ZY, et al. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl Mater Interf. 2013;5:5969–75.

    Article  Google Scholar 

  • Jin L, Zeng ZP, Kuddannaya S, Wu DC, Zhang YL, Wang ZL. Biocompatible, free-standing film composed of bacterial cellulose nanofibers-graphene composite. ACS Appl Mater Interf. 2016;8:1011–8.

    Article  Google Scholar 

  • Kabiri R, Namazi H. Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor. Cellulose. 2014a;21:3527–39.

    Article  Google Scholar 

  • Kabiri R, Namazi H. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction. J Nanopart Res. 2014b;16:2474.

    Article  Google Scholar 

  • Kelly JA, Shopsowitz KE, Ahn JM, Hamad WY, MacLachlan MJ. Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir. 2012;28:17256–62.

    Article  Google Scholar 

  • Kelly JA, Giese M, Shopsowitz KE, Hamad WY, MacLachlan MJ. The development of chiral nematic mesoporous materials. Acc Chem Res. 2014;47:1088–96.

    Article  Google Scholar 

  • Kim NH, Herth W, Vuong R, Chanzy H. The cellulose system in the cell wall of Micrasterias. J Struct Biol. 1996;117:195–203.

    Article  Google Scholar 

  • Kim S, Xiong R, Tsukruk VV. Probing flexural properties of cellulose nanocrystal − graphene nanomembranes with force spectroscopy and bulging test. Langmuir. 2016;32:5383–93.

    Article  Google Scholar 

  • Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir. 2005;21:2034–7.

    Article  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed. 2011;50:5438–66.

    Article  Google Scholar 

  • Kong LP, Zhang CF, Wang JT, Long DH, Qiao WM, Ling LC. Ultrahigh intercalation pseudocapacitance of mesoporous orthorhombic niobium pentoxide from a novel cellulose nanocrystal template. Mater Chem Phys. 2015;149:495–504.

    Article  Google Scholar 

  • Lee SD. A numerical investigation of nematic ordering based on a simple hard-rod model. J Chem Phys. 1987;87:4972–4.

    Article  Google Scholar 

  • Lee DW. Iridescent blue plants. Am Sci. 1997;85:56–63.

    Google Scholar 

  • Leijonmarck S, Cornell A, Lindbergh G, Wagberg L. Flexible nano-paper-based positive electrodes for Li-ion batteries- preparation process and properties. Nano Energy. 2013;2:794–800.

    Article  Google Scholar 

  • Lekkerkerker HNW, Coulon P, Van der Haegen R, Deblieck R. On the isotropic-liquid crystal phase separation in a solution of rodlike particles of different lengths. J Chem Phys. 1984;80:3427–33.

    Article  Google Scholar 

  • Lenau T, Barfoed M. Colours and metallic sheen in beetle shells – a biomimetic search for material structuring principles causing light interference. Adv Eng Mater. 2008;10:299–314.

    Article  Google Scholar 

  • Li J, Revol JF, Naranjo E, Marchessault RH. Effect of electrostatic interaction on phase separation behavior of chitin crystalline suspensions. Int J Biol Macromol. 1996;18:177–87.

    Article  Google Scholar 

  • Li J, Revol JF, Marchessault RH. Effect of degree of deacetylation of chitin on the properties of chitin crystallites. J Appl Polym Sci. 1997a;65:373–80.

    Article  Google Scholar 

  • Li J, Revol JF, Marchessault RH. Effect of N-sulfonation on the colloidal and liquid crystal behavior of chitin crystallites. J Colloid Interf Sci. 1997b;192:447–57.

    Article  Google Scholar 

  • Li W, Zhao Y, Lu SX. Mesoporous TiO2 spheres prepared by an acid catalyzed hydrolysis method using nanocrystalline cellulose as template. Chin J Catal. 2012;33:342–7.

    Google Scholar 

  • Liimatainen H, Ezekiel N, Sliz R, Ohenoja K, Sirvio JA, Berglund L, et al. High-strength nanocellulose-talc hybrid barrier films. ACS Appl Mater Interf. 2013;5:13412–8.

    Article  Google Scholar 

  • Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012;4:3274–94.

    Article  Google Scholar 

  • Liu Y, Guo R. Synthesis of protein-gold nanoparticle hybrid and gold nanoplates in protein aggregates. Mater Chem Phys. 2011;126:619–27.

    Article  Google Scholar 

  • Liu SL, Tao DD, Bai HY, Liu XY. Cellulose-nanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J Appl Polym Sci. 2012;126:E281–9.

    Google Scholar 

  • Liu DM, Wu Q, Andersson RL, Hedenqvist MS, Farris S, Olsson RT. Cellulose nanofibril core-shell silica coatings and their conversion into thermally stable nanotube aerogels. J Mater Chem A. 2015a;3:15745–54.

    Article  Google Scholar 

  • Liu K, Nasrallah J, Chen LH, Huang LL, Ni YH. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper. Carbohyd Polym. 2015b;126:175–8.

    Article  Google Scholar 

  • Livolant F. Cholesteric organization of DNA in vivo and in vitro. Eur J Cell Biol. 1984;33:300–11.

    Google Scholar 

  • Lizundia E, Urruchi A, Vilas JL, Leon LM. Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohyd Polym. 2016;136:250–8.

    Article  Google Scholar 

  • Lou HM, Zhu DM, Yuan L, Lin HK, Lin XL, Qiu XQ. Fabrication and properties of low crystallinity nanofibrillar cellulose and a nanofibrillar cellulose-graphene oxide composite. RSC Adv. 2015;5:67568–73.

    Article  Google Scholar 

  • Lu Y, Poole JE, Aytug T, Meyer HM, Ozcana S. Tunable morphologies of indium tin oxide nanostructures using nanocellulose templates. RSC Adv. 2015;5:103680–5.

    Article  Google Scholar 

  • Lukach A, Therien-Aubin H, Querejeta-Fernandez A, Pitch N, Chauve G, Methot M, et al. Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir. 2015;31:5033–41.

    Article  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM. Liquid crystal systems from fibrillar polysaccharides. Nature. 1959;184:632–3.

    Article  Google Scholar 

  • Marchessault R, Morehead FF, Koch MJ. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci. 1961;16:327–44.

    Article  Google Scholar 

  • Matsumura S, Kajiyama S, Nishimura T, Kato T. Formation of helically structured chitin/CaCO3 hybrids through an approach inspired by the biomineralization processes of crustacean cuticles. Small. 2015;11:5127–33.

    Article  Google Scholar 

  • Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci. 2008;53:1–206.

    Article  Google Scholar 

  • Minke R, Blackwell J. The structure of alpha-chitin. J Mol Biol. 1978;120:167–81.

    Article  Google Scholar 

  • Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nat Mater. 2006;5:361–4.

    Article  Google Scholar 

  • Mukherjee SM, Woods HJ. X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta. 1953;10:499–511.

    Article  Google Scholar 

  • Mushi NE, Butchosa N, Salajkova M, Zhou Q, Berglund LA. Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohyd Polym. 2014;112:255–63.

    Article  Google Scholar 

  • Nelson K, Deng YL. The shape dependence of core-shell and hollow titania nanoparticles on coating thickness during layer-by-layer and sol–gel synthesis. Nanotechnology. 2006;17:3219–25.

    Article  Google Scholar 

  • Neville AC. Insect ultrastructure. Oxford: Blackwell Scientific Publications; 1970.

    Google Scholar 

  • Neville AC, Caveney S. Scarabaeid beetle exocuticle as an optical analog of cholesteric liquid crystals. Biol Rev Cambridge Phil Soc. 1969;44:531–62.

    Article  Google Scholar 

  • Nge TT, Hori N, Takemura AK, Ono H, Kimura T. Phase behavior of liquid crystalline chitin/acrylic acid liquid mixture. Langmuir. 2003;19:1390–5.

    Article  Google Scholar 

  • Nguyen TD, MacLachlan MJ. Biomimetic chiral nematic mesoporous materials from crab cuticles. Adv Opt Mater. 2014;2:1031–7.

    Article  Google Scholar 

  • Nguyen TD, Hamad WY, MacLachlan MJ. Tuning the iridescence of chiral nematic cellulose nanocrystals and mesoporous silica films by substrate variation. Chem Commun. 2013a;49:11296–8.

    Article  Google Scholar 

  • Nguyen TD, Shopsowitz KE, MacLachlan MJ. Mesoporous silica and organosilica films templated by nanocrystalline chitin. Chem Eur J. 2013b;19:15148–54.

    Article  Google Scholar 

  • Nishimura T, Toyoda K, Ito T, Oaki Y, Namatame Y, Kato T. Liquid-crystalline biomacromolecular templates for the formation of oriented thin-film hybrids composed of ordered chitin and alkaline-earth carbonate. Chem Asian J. 2015;10:2356–60.

    Article  Google Scholar 

  • Niu ZW, Kabisatpathy S, He JB, Lee LA, Rong JH, Yang L, et al. Synthesis and characterization of bionanoparticle-silica composites and mesoporous silica with large pores. Nano Res. 2009;2:474–83.

    Article  Google Scholar 

  • Nypelo T, Rodriguez-Abreu C, Rivas J, Dickey MD, Rojas OJ. Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose. 2014;21:2557–66.

    Article  Google Scholar 

  • Ogasawara W, Shenton W, Davis SA, Mann S. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chem Mater. 2000;12:2835–7.

    Article  Google Scholar 

  • Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Strom V, Berglund LA, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol. 2010;5:584–8.

    Article  Google Scholar 

  • Ono Y, Kanekiyo Y, Inoue K, Hojo J, Nango M, Shinkai S. Preparation of novel hollow fiber silica using collagen fibers as a template. Chem Lett. 1999;6:475–6.

    Article  Google Scholar 

  • Onsager L. The effects of shapes on the interaction of colloidal particles. Ann NY Acad Sci. 1949;51:627–59.

    Article  Google Scholar 

  • Orts WJ, Godbout L, Marchessault RH, Revol JF. Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small-angle neutron scattering study. Macromolecules. 1998;31:5717–25.

    Article  Google Scholar 

  • Patil AJ, Li M, Dujardin E, Mann S. Novel bioinorganic nanostructures based on mesolamellar intercalation or single-molecule wrapping of DNA using organoclay building blocks. Nano Lett. 2007;7:2660–5.

    Article  Google Scholar 

  • Peng XY, Ding EY. Low-temperature synthesis of flower-like TiO2 nanocrystals. Micro Nano Lett. 2011;6:998–1001.

    Article  Google Scholar 

  • Peng XY, Ding EY. Novel synthesis of TiO2 nanocrystals induced by nanocrystal cellulose. Mater Comput Mech, Pts 1–3. 2012a;117–119:944–8.

    Google Scholar 

  • Peng XY, Ding EY. Preparation and characterization of flower-like TiO2 induced by rod-like nanocrystalline cellulose. J Inorg Mater. 2012b;27:1068–72.

    Article  Google Scholar 

  • Pouget E, Grelet E. Dispersions of monodisperse hybrid rod-like particles by mineralization of filamentous viruses. Langmuir. 2013;29:8010–6.

    Article  Google Scholar 

  • Pullawan T, Wilkinson AN, Eichhorn SJ. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules. 2012;13:2528–36.

    Article  Google Scholar 

  • Qin YF, Qin ZY, Liu YN, Cheng M, Qian PF, Wang Q, et al. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition. Appl Surf Sci. 2015;357:2103–11.

    Article  Google Scholar 

  • Qu D, Zhang JN, Chu G, Jiang HJ, Wu CF, Xu Y. Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission. J Mater Chem C. 2016;4:1764–8.

    Article  Google Scholar 

  • Raabe D, Sachs C, Romano P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 2005;53:4281–92.

    Article  Google Scholar 

  • Revol JF. On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym. 1982;2:123–34.

    Article  Google Scholar 

  • Revol JF, Marchessault RH. In-vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol. 1993;15:329–35.

    Article  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol. 1992;14:170–2.

    Article  Google Scholar 

  • Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G. Chiral nematic suspensions of cellulose crystallites – phase-separation and magnetic-field orientation. Liq Cryst. 1994;16:127–34.

    Article  Google Scholar 

  • Roland JC, Reis D, Vian B. Liquid crystal order and turbulence in the planar twist of the growing plant cell walls. Tissue Cell. 1992;24:335–45.

    Article  Google Scholar 

  • Sachse A, Hulea V, Kostov KL, Marcotte N, Boltoeva MY, Belamie E, et al. Efficient mesoporous silica-titania catalysts from colloidal self-assembly. Chem Commun. 2012;48:10648–50.

    Article  Google Scholar 

  • Sachse A, Cardoso L, Kostov KL, Gerardin C, Belamie E, Alonso B. Mesoporous alumina from colloidal biotemplating of Al clusters. Chem Eur J. 2015a;21:3206–10.

    Article  Google Scholar 

  • Sachse A, Hulea V, Kostov KL, Belamie E, Alonso B. Improved silica-titania catalysts by chitin biotemplating. Catal Sci Technol. 2015b;5:415–27.

    Article  Google Scholar 

  • Saito Y, Putaux JL, Okano T, Gaill F, Chanzy H. Structural aspects of the swelling of beta chitin in HCl and its conversion into alpha chitin. Macromolecules. 1997;30:3867–73.

    Article  Google Scholar 

  • Saito T, Oaki Y, Nishimura T, Isogai A, Kato T. Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3. Mater Horiz. 2014;1:321–5.

    Article  Google Scholar 

  • Samir MASA, Alloin F, Sanchez JY, El Kissi N, Dufresne A. Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules. 2004;37:1386–93.

    Article  Google Scholar 

  • Sato T, Teramoto A. Perturbation theory of isotropic-liquid-crystal phase equilibria in polyelectrolyte solutions. Physica A. 1991;176:72–86.

    Article  Google Scholar 

  • Scheel H, Zollfrank C, Greil P. Luminescent silica nanotubes and nanowires: preparation from cellulose whisker templates and investigation of irradiation-induced luminescence. J Mater Res. 2009;24:1709–15.

    Article  Google Scholar 

  • Schlesinger M, Giese M, Blusch LK, Hamad WY, MacLachlan MJ. Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose. Chem Commun. 2015a;51:530–3.

    Article  Google Scholar 

  • Schlesinger M, Hamad WY, MacLachlan MJ. Optically tunable chiral nematic mesoporous cellulose films. Soft Matter. 2015b;11:4686–94.

    Article  Google Scholar 

  • Schutz C, Sort J, Bacsik Z, Oliynyk V, Pellicer E, Fall A, et al. Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids. PLoS One. 2012;7(10):e45828.

    Article  Google Scholar 

  • Shchipunov Y, Shipunova N. Regulation of silica morphology by proteins serving as a template for mineralization. Colloid Surf B. 2008;63:7–11.

    Article  Google Scholar 

  • Shin Y, Exarhos GJ. Template synthesis of porous titania using cellulose nanocrystals. Mater Lett. 2007;61:2594–7.

    Article  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature. 2010;468:422–5.

    Article  Google Scholar 

  • Shopsowitz KE, Hamad WY, MacLachlan MJ. Flexible and iridescent chiral nematic mesoporous organosilica films. J Am Chem Soc. 2012a;134:867–70.

    Article  Google Scholar 

  • Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ. Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed. 2012b;51:6886–90.

    Article  Google Scholar 

  • Shopsowitz KE, Kelly JA, Hamad WY, MacLachlan MJ. Biopolymer templated glass with a twist: controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystals. Adv Funct Mater. 2014;24:327–38.

    Article  Google Scholar 

  • Singh V, Srivastava P, Singh A, Singh D, Malviya T. Polysaccharide-silica hybrids: design and applications. Polym Rev. 2016;56:113–36.

    Article  Google Scholar 

  • Smolyakov G, Pruvost S, Cardoso L, Alonso B, Belamie E, Duchet-Rumeau J. AFM PeakForce QNM mode: evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites. Carbohyd Polym. 2016;151:373–80.

    Article  Google Scholar 

  • Song JL, Fu GS, Cheng Q, Jin YC. Bimodal mesoporous silica nanotubes fabricated by dual templates of CTAB and bare nanocrystalline cellulose. Ind Eng Chem Res. 2014;53:708–14.

    Article  Google Scholar 

  • Spinde K, Kammer M, Freyer K, Ehrlich H, Vournakis JN, Brunner E. Biomimetic silicification of fibrous chitin from diatoms. Chem Mater. 2011;23:2973–8.

    Article  Google Scholar 

  • Stroobants A, Lekkerkerker HNW, Odijk T. Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rodlike polyelectrolytes. Macromolecules. 1986;19:2232–8.

    Article  Google Scholar 

  • Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N. Lattice images from ultrathin sections of cellulose microfibrils in the cell-wall of Valonia-macrophysa kutz. Planta. 1985;166:161–8.

    Article  Google Scholar 

  • Sugiyama J, Chanzy H, Maret G. Orientation of cellulose microcrystals by strong magnetic-fields. Macromolecules. 1992;25:4232–4.

    Article  Google Scholar 

  • Tang YJ, He ZB, Mosseler JA, Ni YH. Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose. 2014;21:4569–81.

    Article  Google Scholar 

  • Tian C, Fu SY, Lucia LA. Magnetic Cu0.5Co0.5Fe2O4 ferrite nanoparticles immobilized in situ on the surfaces of cellulose nanocrystals. Cellulose. 2015;22:2571–87.

    Article  Google Scholar 

  • Valentini L, Cardinali M, Fortunati E, Torre L, Kenny JM. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater Lett. 2013;105:4–7.

    Article  Google Scholar 

  • Valentini L, Cardinali M, Fortunati E, Kenny JM. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films. Appl Phys Lett. 2014;105:153111.

    Article  Google Scholar 

  • Vignolini S, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, et al. Pointillist structural color in Pollia fruit. Proc Natl Acad Sci U S A. 2012;109:15712–5.

    Article  Google Scholar 

  • Vroege GJ, Lekkerkerker HNW. Phase transitions in lyotropic colloidal and polymer liquid crystals. Rep Prog Phys. 1992;55:1241–309.

    Article  Google Scholar 

  • Wang JF, Cheng QF, Lin L, Jiang L. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano. 2014;8:2739–45.

    Article  Google Scholar 

  • Wang BC, Torres-Rendon JG, Yu JC, Zhang YM, Walther A. Aligned bioinspired cellulose nanocrystal-based nanocomposites with synergetic mechanical properties and improved hygromechanical performance. ACS Appl Mater Interf. 2015;7:4595–607.

    Article  Google Scholar 

  • Wicklein B, Salazar-Alvarez G. Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials. J Mater Chem A. 2013;1:5469–78.

    Article  Google Scholar 

  • Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol. 2015;10:277–83.

    Article  Google Scholar 

  • Wood SJ, Maleeff B, Hart T, Wetzel R. Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer’s amyloid peptide AP. J Mol Biol. 1996;256:870–7.

    Article  Google Scholar 

  • Wysokowski M, Motylenko M, Stocker H, Bazhenov VV, Langer E, Dobrowolska A, et al. An extreme biomimetic approach: hydrothermal synthesis of beta-chitin/ZnO nanostructured composites. J Mater Chem B. 2013;1:6469–76.

    Article  Google Scholar 

  • Xiong R, Hu KS, Grant AM, Ma RL, Xu WN, Lu CH, et al. Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv Mater. 2016;28:1501–9.

    Article  Google Scholar 

  • Xu J, Nguyen TD, Xie K, Hamad WY, MacLachlan MJ. Chiral nematic porous germania and germanium/carbon films. Nanoscale. 2015;7:13215–23.

    Article  Google Scholar 

  • Yao Y, Wu F. Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy. 2015;17:91–103.

    Article  Google Scholar 

  • Ye YS, Zeng HX, Wu J, Dong LY, Zhu JT, Xue ZG, et al. Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chem. 2016;18:1674–83.

    Article  Google Scholar 

  • Yu HY, Chen GY, Wang YB, Yao JM. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose. 2015;22:261–73.

    Article  Google Scholar 

  • Zeng JB, He YS, Li SL, Wang YZ. Chitin whiskers: an overview. Biomacromolecules. 2012;13:1–11.

    Article  Google Scholar 

  • Zhang DY, Qi LM. Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem Commun. 2005;21:2735–7.

    Article  Google Scholar 

  • Zhang W, Zhang D, Fan TX, Ding J, Gu QX, Ogawa H. Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales. Nanotechnol. 2006a;17:840–4.

    Article  Google Scholar 

  • Zhang W, Zhang D, Fan TX, Ding J, Guo QX, Ogawa H. Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates. Micropor Mesopor Mater. 2006b;92:227–33.

    Article  Google Scholar 

  • Zhou Y, Ding EY, Li WD. Synthesis of TiO2 nanocubes induced by cellulose nanocrystal (CNC) at low temperature. Mater Lett. 2007;61:5050–2.

    Article  Google Scholar 

  • Zhou ZH, Lu CH, Wu XD, Zhang XX. Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv. 2013;3:26066–73.

    Article  Google Scholar 

  • Zollfrank C, Cromme P, Rauch M, Scheel H, Kostova MH, Gutbrod K, et al. Biotemplating of inorganic functional materials from polysaccharides. Bioinspir Biomim Nan. 2012;1:13–25.

    Google Scholar 

Download references

Acknowledgments

The authors thank Laura Cardoso for her help with the bibliographic research. ANR Programme Blanc (HYSIKIT Program) is acknowledged for its specific funding; EPHE and CNRS for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emmanuel Belamie or Bruno Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Belamie, E., Alonso, B. (2016). Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_120-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics