Skip to main content

Architecture of Silsesquioxanes

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

The family of silsesquioxanes includes compounds where each silicon atom is linked to three oxygen atoms and connected to an organic function or the hydrogen atom. The preparation of silsesquioxanes by sol–gel chemistry offers large possibilities for obtaining functional and smart materials, thanks to the large variety of available organoalkoxysilanes and the stability of the Si–C bond. However, only the deep understanding of oligomer growth and assembling and the knowledge of building blocks structural features can direct the synthesis approach toward the production of materials with desired functionalities. The main targets of this chapter include the influence of synthesis conditions on sol–gel preparation of silsesquioxanes, with focus on organoalkoxysilane hydrolytic condensation, and the characterization of oligo- and polysilsesquioxanes aimed at controlling structural features for tuning structure–property relationships. The structural characterization by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) analyses and the contribution of theoretical studies to the understanding of silsesquioxane architecture are discussed in this chapter, but it is worth of noting that many different techniques contributed in elucidating silsesquioxane structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alam TM. DEPT polarization transfer in29Si-NMR investigations of organically modified alkoxysilanes. Spectrochimica Acta Part A. 1997;53:545–52.

    Google Scholar 

  • Bahrami M, Hashemi H, Ma X, Kieffer J, Laine RM. Why do the [PhSiO1.5]8,10,12 cages self-brominate primarily in the ortho position? Modeling reveals a strong cage influence on the mechanism. Phys Chem Chem Phys. 2014;16:25760–4.

    Article  Google Scholar 

  • Bakhtiar R. Mass spectrometric characterization of silsesquioxanes. Rapid Commun Mass Spectrom. 1999;13:87–9.

    Article  Google Scholar 

  • Bakhtiar RE, Feher FJ. Mass spectrometric characterization of polyhedral oligosilsesquioxanes and heterosilsesquioxanes. Rapid Commun Mass Spectrom. 1999;13:687–94.

    Article  Google Scholar 

  • Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

    Article  Google Scholar 

  • Bassindale AR, Liu Z, MacKinnon IA, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB. A higher yielding route for T8 silsesquioxane cages and X-ray crystal structures of some novel spherosilicates. Dalton Trans. 2003;14:2945–9.

    Article  Google Scholar 

  • Bassindale AR, Chen H, Liu Z, MacKinnon IA, Parker DJ, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB. A higher yielding route to octasilsesquioxane cages using tetrabutylammonium fluoride, Part 2: further synthetic advances, mechanistic investigations and X-ray crystal structure studies into the factors that determine cage geometry in the solid state. J Organomet Chem. 2004;689:3287–300.

    Article  Google Scholar 

  • Bilyachenko AN, Korlyukov AA, Levitskii MM, Antipin MY, Zavin BG. New cage-like metallasiloxane containing Fe(III) ions in different coordination spheres. Russ Chem Bull Int Ed. 2007;56:543–5.

    Article  Google Scholar 

  • Binnewies M, Jug K. The formation of a solid from the reaction SiCl4(g) + O2(g)→ SiO2(s) + 2Cl2(g). Eur J Inorg Chem. 2000;6:1127–38.

    Article  Google Scholar 

  • Borovin E, Callone E, Papendorf B, Guella G, Dirè S. Influence of sol–gel conditions on the growth of thiol-functionalized silsesquioxanes prepared by in situ water production. J Nanosci Nanotech. 2016a;16:3030–8.

    Article  Google Scholar 

  • Borovin E, Callone E, Ribot F, Dirè S. Mechanism and kinetics of oligosilsesquioxanes growth in the ISWP sol–gel route: dependence on the water availability. Eur J Inorg Chem. 2016b;2166–74.

    Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel science. The physics and chemistry of sol–gel processing. Boston, Academic; 1990.

    Google Scholar 

  • Brown JF. Double chain polymers and nonrandom crosslinking. J Polym Sci Part C. 1963;1:83–97.

    Article  Google Scholar 

  • Brown JF. The polycondensation of phenylsilanetriol. J Am Chem Soc. 1965;87:4317–24.

    Article  Google Scholar 

  • Brown JF, Vogt LH, Katchman A, Eustance JW, Kiser KM, Krantz KW. Double chain polymers of phenylsilsesquioxane. J Am Chem Soc. 1960;82:6194–5.

    Article  Google Scholar 

  • Brown JF, Vogt LH, Prescott PI. Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc. 1964;86:1120–5.

    Article  Google Scholar 

  • Brunet F. Polymerization reactions in methyltriethoxysilane studied through29Si NMR with polarization transfer. J Non-Cryst Solid. 1998;231:58–77.

    Article  Google Scholar 

  • Chen Z, Ren Z, Zhang J, Fu W, Li Z, Zhang R. Reactive ladder-like poly(p-decyl anilino)silsesquioxane for functional material’s precursor: synthesis, characterization and functionalization. React Funct Polym. 2012;72:503–8.

    Article  Google Scholar 

  • Choi SS, Lee HS, Hwang SS, Choi DH, Baek KY. High photo- and electroluminescence efficiencies of ladder-like structured polysilsesquioxane with carbazole groups. J Mater Chem. 2010;20:9852–4.

    Article  Google Scholar 

  • Choi SS, Lee AS, Lee HS, Jeon HY, Baek KY, Choi DH, Hwang SS. Synthesis and characterization of UV-curable ladder-like polysilsesquioxane. J Polym Sci A Polym Chem. 2011;49:5012–8.

    Article  Google Scholar 

  • Choi SS, Lee AS, Hwang SS, Baek KY. Structural control of fully condensed polysilsesquioxanes: ladderlike vs cage structured polyphenylsilsesquioxanes. Macromolecules. 2015;48:6063–70.

    Article  Google Scholar 

  • Claridge TDW. High resolution NMR techniques in organic chemistry. 2nd ed. Amsterdam: Elsevier; 2009.

    Google Scholar 

  • Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  Google Scholar 

  • Dell’Erba IE, Fasce DP, Williams RJJ, Erra-Balsells R, Fukuyama Y, Nonami H. Poly(silsesquioxanes) derived from the hydrolytic condensation of organotrialkoxysilanes containing hydroxyl groups. J Organomet Chem. 2003;686:42–51.

    Article  Google Scholar 

  • Dirè S, Licoccia S. Sol–gel hybrid organic/inorganic nanocomposites by condensation reactions of diphenylsilanediol and organo-alkoxysilanes for photonic applications. In: Wyman EB, Skief MC, editors. Organosilanes: properties, performance and applications. New York: Nova; 2010. p. 131–55.

    Google Scholar 

  • Dirè S, Tagliazucca V, Brusatin G, Bottazzo J, Fortunati I, Signorini R, Dainese T, Andraud C, Trombetta M, Di Vona ML, Licoccia S. Hybrid organic/inorganic materials for photonic applications via assembling of nanostructured molecular units. J Sol–gel Sci Technol. 2008;48:217–23.

    Article  Google Scholar 

  • Dong H, Lee M, Thomas RD, Zhang Z, Reidy RF, Mueller DW. Methyltrimethoxysilane sol–gel polymerization in acidic ethanol solutions studied by29Si NMR spectroscopy. J Sol–Gel Sci Technol. 2003;28:5–14.

    Google Scholar 

  • Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas YC, Mauri AN, Nonami H, Riccardi CC, Williams RJJ. Cagelike precursors of high-molar-mass silsesquioxanes formed by the hydrolytic condensation of trialkoxysilanes. Macromolecules. 2000;33:1940–7.

    Article  Google Scholar 

  • Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas YC, Nonami H, Williams RJJ. Silsesquioxanes derived from the bulk polycondensation of [3-(Methacryloxy)propyl]trimethoxysilane with concentrated formic acid: evolution of molar mass distributions and fraction of intramolecular cycles. Macromolecules. 2002;35:1160–74.

    Article  Google Scholar 

  • Endo H, Takeda N, Unno M. Synthesis and properties of phenylsilsesquioxanes with ladder and double-decker structures. Organometallics. 2014;33:4148–51.

    Article  Google Scholar 

  • Endo H, Takeda N, Takanashi M, Imai T, Unno M. Refractive indices of silsesquioxanes with various structures. Silicon. 2015;7:127–32.

    Article  Google Scholar 

  • Fabritz S, Horner S, Avrutina O, Kolmar H. Bioconjugation on cube-octameric silsesquioxanes. Org Biomol Chem. 2013;11:2224–36.

    Article  Google Scholar 

  • Falkenhagen J, Jancke H, Krüger RP, Rikowski E, Schulz G. Characterization of silsesquioxanes by size-exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:285–90.

    Article  Google Scholar 

  • Fasce DP, Williams RJJ, Méchin F, Pascault JP, Llauro MF, Pétiaud R. Synthesis and characterization of polyhedral silsesquioxanes bearing bulky functionalized substituents. Macromolecules. 1999;32:4757–63.

    Article  Google Scholar 

  • Fasce DP, Williams RJJ, Erra-Balsells R, Ishikawa Y, Nonami H. One-step synthesis of polyhedral silsesquioxanes bearing bulky substituents: UV-MALDI-TOF and ESITOF mass spectrometry characterization of reaction products. Macromolecules. 2001;34:3534–9.

    Article  Google Scholar 

  • Fasce DP, Dell’Erba IE, Williams RJJ. Synthesis of a soluble functionalized-silica by the hydrolysis and condensation of organotrialkoxysilanes bearing (β-hydroxy) tertiary amine groups with tetraethoxysilane. Polymer. 2005;46:6649–56.

    Article  Google Scholar 

  • Feher FJ, Wyndham KD. Amine and ester-substituted silsesquioxanes: synthesis, characterization and use as a core for starburst dendrimers. Chem Commun. 1998;(3):323–4.

    Google Scholar 

  • Feher F, Newman DA, Walzer JF. Silsesquioxanes as models for silica surface. J Am Chem Soc. 1989;111:1741–8.

    Article  Google Scholar 

  • Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW. Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics. 1991;10:2526–8.

    Article  Google Scholar 

  • Feher FJ, Terroba R, Ziller JW. A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chem Commun. 1999;22:2309–10.

    Article  Google Scholar 

  • Frye CL, Collins WT. Oligomeric silsesquioxanes, (HSiO3/2)n. J Am Chem Soc. 1970;92:5586–8.

    Article  Google Scholar 

  • Gómez-Romero P, Sanchez C. Functional hybrid materials. Weinheim: WILEY-VCH Verlag GmbH & Co; 2004.

    Google Scholar 

  • Guglielmi M, Kickelbick G, Martucci A. Sol–gel nanocomposites. New York/Heidelberg/Dordrecht/London: Springer; 2014.

    Book  Google Scholar 

  • Handke M, Jastrzȩbski W. Vibrational spectroscopy of the ring structures in silicates and siloxanes. J Mol Struct. 2004;704:63–9.

    Article  Google Scholar 

  • Handke M, Jastrzȩbski W. Vibrational spectroscopy of the double 4-, 6-membered rings in silicates and siloxanes. J Mol Struct. 2005;744–747:671–5.

    Article  Google Scholar 

  • Handke B, Jastrzębski W, Mozgawa W, Kowalewska A. Structural studies of crystalline octamethylsilsesquioxane (CH3)8Si8O12. J Mol Struct. 2008a;887:159–64.

    Article  Google Scholar 

  • Handke M, Kowalewska A, Mozgawa W. Spectroscopic study of ceramic precursors obtained by hydrolytic condensation of ethoxycyclotetrasiloxane. J Mol Struct. 2008b;887:152–8.

    Article  Google Scholar 

  • Handke M, Handke B, Kowalewska A, Jastrzębski W. New polysilsesquioxane materials of ladder-like structure. J Mol Struct. 2009;924–926:254–63.

    Article  Google Scholar 

  • Harrison PG. Silicate cages: precursors to new materials. J Organomet Chem. 1997;542:141–83.

    Article  Google Scholar 

  • Hendan BJ, Marsmann HC. Semipräparative Trennung gemischt substituierter Octa-(organylsilsesquioxane) mittels Normal-Phase-HPLC und ihre29Si-NMR-spektroskopische Untersuchung. J Organomet Chem. 1994;483:33–8.

    Article  Google Scholar 

  • Hillson SD, Smith E, Zeldin M, Parish CA. Cages, baskets, ladders, and tubes: conformational studies of polyhedral oligomeric silsesquioxanes. J Phys Chem A. 2005;109:8371–8.

    Article  Google Scholar 

  • Hirotsu M, Taruno S, Yoshimura T, Ueno K, Unno M, Matsumoto H. Synthesis and structures of the first titanium(IV) complexes with cyclic tetrasiloxide ligands: incomplete and complete cage titanosiloxanes. Chem Lett. 2005;34:1542–3.

    Article  Google Scholar 

  • Itoh M. Polyhedral oligomeric silsesquioxanes (POSS). In: Kobayashi S, Müllen K, editors. Encyclopedia of polymeric nanomaterials. Berlin: Springer; 2014. p. 1–8.

    Chapter  Google Scholar 

  • Jia G, Wan QH. Separation and identification of oligomeric vinylmethoxysiloxanes by gradient elution chromatography coupled with electrospray ionization mass spectrometry. J Chromatogr A. 2015;1395:129–35.

    Article  Google Scholar 

  • Jiang Y, Wan QH. Separation and identification of oligomeric phenylethoxysiloxanols by liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2015;1394:95–102.

    Article  Google Scholar 

  • Johnson Jr CS. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc. 1999;34:203–56.

    Article  Google Scholar 

  • Jug K, Gloriozov IP. Mechanism of silsesquioxane growth. Phys Chem Chem Phys. 2002;4:1062–6.

    Article  Google Scholar 

  • Jug K, Wichmann D. Structure and stability of chlorosiloxanes. J Mol Struct. 1994;313:155–64.

    Article  Google Scholar 

  • Jug K, Wichmann D. MSINDO study of large silsesquioxanes. J Comput Chem. 2000;21:1549–53.

    Article  Google Scholar 

  • Kamiya K, Yoko T, Tanaka K, Takeuchi M. Thermal evolution of gels derived from CH3Si(OC2H5)3 by the sol–gel method. J Non-Cryst Solid. 1990;121:182–7.

    Article  Google Scholar 

  • Kaneko Y, Iyi N. Sol–gel synthesis of rodlike polysilsesquioxanes forming regular higher-ordered nanostructure. Z Kristallogr. 2007;222:656–62.

    Google Scholar 

  • Kaneko Y, Iyi N. Sol–gel synthesis of ladder polysilsesquioxanes forming chiral conformations and hexagonal stacking structures. J Mater Chem. 2009;19:7106–11.

    Article  Google Scholar 

  • Kaneko Y, Iyi N. Sol–gel synthesis of water-soluble polysilsesquioxanes with regular structures. Kobunshi Ronbunshu. 2010;67:280–7.

    Article  Google Scholar 

  • Kaneko Y, Iyi N, Kurashima K, Matsumoto T, Fujita T, Kitamura K. Hexagonal-structured polysiloxane material prepared by sol–gel reaction of aminoalkyltrialkoxysilane without using surfactants. Chem Mater. 2004;16:3417–23.

    Article  Google Scholar 

  • Kaneko Y, Iyi N, Matsumoto T, Kitamura K. Synthesis of rodlike polysiloxane with hexagonal phase by sol–gel reaction of organotrialkoxysilane monomer containing two amino groups. Polymer. 2005;46:1828–33.

    Article  Google Scholar 

  • Kaneko Y, Shoiriki M, Mizumo T. Preparation of cage-like octa(3-aminopropyl)silsesquioxane trifluoromethanesulfonate in higher yield with a shorter reaction time. J Mater Chem. 2012a;22:14475–8.

    Article  Google Scholar 

  • Kaneko Y, Toyodome H, Shoiriki M, Iyi N. Preparation of ionic silsesquioxanes with regular structures and their hybridization. Int J Polym Sci. 2012b:684278.

    Google Scholar 

  • Kaneko Y,Coughlin EB, Gunji T, Itoh M, Matsukawa K, Naka K. Silsesquioxanes: recent advancement and novel applications. Int J Polym Sci. 2012c:453821.

    Google Scholar 

  • Kaneko Y, Toyodome H, Mizumo T, Shikinaka K, Iyi N. Preparation of a sulfo-group-containing rod-like polysilsesquioxane with a hexagonally stacked structure and its proton conductivity. Chem Eur J. 2014;20:9394–9.

    Article  Google Scholar 

  • Kang WR, Lee AS, Park S, Park SH, Baek KY, Lee KB, Lee SH, Lee JH, Hwang SS, Lee JS. Free-standing, polysilsesquioxane-based inorganic/organic hybrid membranes for gas separations. J Membr Sci. 2015;475:384–94.

    Article  Google Scholar 

  • Kickelbick G. Introduction to hybrid materials. In: Kickelbick G, editor. Hybrid materials. Synthesis, characterization, and applications. Weinheim: Wiley; 2007. p. 1–46.

    Google Scholar 

  • Kickelbick G. Silsesquioxanes. Struct Bond. 2014;155:1–28.

    Article  Google Scholar 

  • Kim SG, Choi J, Tamaki R, Laine RM. Synthesis of amino-containing oligophenylsilsesquioxanes. Polymer. 2005;46:4514–24.

    Article  Google Scholar 

  • Klapdohr S, Moszner N, Kickelbick G, Krüger RP. Investigation of the structure of polymerizable silsesquioxanes by GPC and MALDI-TOF-MS in relation to their viscosity. Monatsh Chem. 2006;137:667–79.

    Article  Google Scholar 

  • Kolezynski A, Jastrzebski W, Szczypka W, Kowalewska A, Nowacka M, Sitarz M. The structure and bonding properties of chosen phenyl ladder-like silsesquioxane clusters. J Mol Struct. 2013;1044:314–22.

    Article  Google Scholar 

  • Komori Y, Nakashima H, Hayashi S, Sugahara Y. Silicon-29 cross-polarization/magic-angle-spinning NMR study of inorganic–organic hybrids: homogeneity of sol–gel derived hybrids gels. J Non-Cryst Solid. 2005;351:97–103.

    Article  Google Scholar 

  • Kowalewska A, Rózga-Wijas K, Handke M. Alkoxymethylcyclosiloxanes – new efficient precursors of crystalline (CH3SiO3/2)8 silsesquioxane and polymethylsilsesquioxanes. e-Polymers. 2008;150:1–15.

    Google Scholar 

  • Krüger RP, Much H, Schulz G, Rikowski E. Characterization of Si polymers by liquid chromatographic methods in coupling with MALDI-TOF-MS. Monatsh Chem. 1999;130:163–74.

    Google Scholar 

  • Laine RM. Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem. 2005;15:3725–44.

    Article  Google Scholar 

  • Lee AS, Choi SS, Lee HS, Jeon HY, Baek KY, Hwang SS. Synthesis and characterization of organic–inorganic hybrid block copolymers containing a fully condensed ladder-like polyphenylsilsesquioxane. J Poly Sci Part A Polym Chem. 2012;50:4563–70.

    Article  Google Scholar 

  • Lee AS, Baek KY, Hwang SS. Synthesis of a photocurable ladder-like poly(phenyl-co-mercaptopropyl)silsesquioxane as gate dielectric material. Mol Cryst Liq Cryst. 2013;580(1):88–94.

    Article  Google Scholar 

  • Lee AS, Lee JH, Lee JC, Hong SM, Hwang SS, Koo CM. Novel poly- silsesquioxane hybrid polymer electrolytes for lithium ion batteries. J Mater Chem A. 2014a;2:1277–83.

    Google Scholar 

  • Lee AS, Choi SS, Song SJ, Baek KY, Hwang SS. Cationically photopolymerizable epoxy functionalized thermoplastic polysilsesquioxanes: synthesis and properties. RSC Adv. 2014b;4:56532–8.

    Article  Google Scholar 

  • Lee AS, Young Jo YY, Jeon H, Choi SS, Baek KY, Hwang SS. Mechanical properties of thiol-ene UV-curable thermoplastic polysilsesquioxanes. Polymer. 2015;68:140–6.

    Article  Google Scholar 

  • Letailleur AA, Ribot F, Boissière C, Teisseire J, Barthel E, Desmazières B, Chemin N, Sanchez C. Sol–gel derived hybrid thin films: the chemistry behind processing. Chem Mater. 2011;23:5082–9.

    Article  Google Scholar 

  • Lichtenhan JD. Polyhedral oligomeric silsesquioxanes: building blocks for silsesquioxane-based polymers and hybrid materials. Comments Inorg Chem. 1995;17:115–30.

    Article  Google Scholar 

  • Liu C, Liu Y, Shen Z, Xie P, Dai D, Zhang R, He C, Chung T. Synthesis and characterization of novel alcohol-soluble ladderlike poly(silsesquioxane)s containing side-chain hydroxy groups. Macromol Chem Phys. 2001;202:1576–80.

    Article  Google Scholar 

  • Loy DA. Sol–gel processing of hybrid organic–inorganic materials based on polysilsesquioxanes. In: Kickelbick G, editor. Hybrid materials. Synthesis, characterization, and applications. Weinheim: Wiley; 2007. p. 225–53.

    Google Scholar 

  • Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K. Substituent effects on the sol–gel chemistry of organotrialkoxysilanes. Chem Mater. 2000;12:3624–32.

    Article  Google Scholar 

  • Lux P, Brunet F, Desvaux H, Virlet J. Determination of the structure of alkoxysilane polymers in solution by natural abundance two dimensional29Si-29Si INEPT DQF COSY NMR. Magn Reson Chem. 1993;31:623–31.

    Google Scholar 

  • Lux P, Brunet F, Virlet J, Cabane B. Combined DEPT 1D and INEPT DQF COSY 2D experiments in 29Si NMR spectroscopy of alkoxysilane polymers: 2-Application of29Si NMR to polymerization reactions in dimethyldiethoxysilane. Magn Reson Chem. 1996;34:173–80.

    Google Scholar 

  • Mammeri F, Bonhomme C, Ribot F, Babonneau F, Dirè S. New monofunctional POSS and its utilization as dewetting additive in methacrylate based free-standing films. Chem Mater. 2009;21:4163–71.

    Article  Google Scholar 

  • Matejka L, Duhk O, Brus J, Simonsick Jr WJ, Meissner B. Cage-like structure formation during sol–gel polymerization of glycidyloxypropyltrimethoxysilane. J Non Cryst Solids. 2000;270:34–47.

    Article  Google Scholar 

  • Matejka L, Dukh O, Hlavatá D, Meissner B, Brus J. Cyclization and self-organization in polymerization of trialkoxysilanes. Macromolecules. 2001;34:6904–14.

    Article  Google Scholar 

  • Molodtsova YA, Pozdnyakova YA, Blagodatskikh IV, Shchegolikhina OI. Hydrolytic condensation of trialkoxysilanes in the presence of alkali metal and copper(II) ions. Influence of the reaction conditions on the structure of Cu/M organosiloxanes. Russ Chem Bull Int Ed. 2003;52:2722–31.

    Article  Google Scholar 

  • Mori H. Design and synthesis of functional silsesquioxane-based hybrids by hydrolytic condensation of bulky triethoxysilanes. Int J Polym Sci. 2012;2012:1–17. doi:10.1155/2012/173624.

    Article  Google Scholar 

  • Mori H, Yamada M. Synthesis and characterization of cationic silsesquioxane hybrids by hydrolytic condensation of triethoxysilane derived from 2-(dimethylamino)ethyl acrylate. Colloid Polym Sci. 2012;290:1879–91.

    Article  Google Scholar 

  • Mori H, Lanzendörfer MG, Müller AHE. Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups. Macromolecules. 2004;37:5228–38.

    Article  Google Scholar 

  • Mori H, Miyamura HY, Endo T. Synthesis and characterization of water-soluble silsesquioxane-based nanoparticles by hydrolytic condensation of triethoxysilane derived from 2-hydroxyethyl acrylate. Langmuir. 2007;23:9014–23.

    Article  Google Scholar 

  • Mori H, Sada C, Konno T, Yonetake K. Synthesis and characterization of low-refractive-index fluorinated silsesquioxane-based hybrids. Polymer. 2011;52:5452–63.

    Article  Google Scholar 

  • Mori H, Sada C, Konno T, Koizumi R, Yonetake K. Film-forming amphiphilic silsesquioxane hybrids prepared by hydrolytic co-condensation of hydroxyl-functionalized and fluorinated triethoxysilanes. Polymer. 2012;53:3849–60.

    Article  Google Scholar 

  • Mori H, Takahashi K, Koizumi R, Ohmori K, Hidaka M. Sulfur-containing silsesquioxane hybrids with high refractive index and high Abbe number. Colloid Polym Sci. 2013;291:1085–94.

    Article  Google Scholar 

  • Murugavel R, Voigt A, Walawalkar MG, Roesky HW. Hetero- and metallasiloxanes derived from silanediols, disilanols, silanetriols and trisilanols. Chem Rev. 1996;96:2205–36.

    Article  Google Scholar 

  • Nowacka M, Kowalewska A, Gadzinowska K. Alkali-metal-directed hydrolytic condensation of 3-mercaptopropyltrimethoxysilane. Silicon. 2015;7:147–53.

    Article  Google Scholar 

  • Orel B, Jese R, Vilcnik A, Lavrencic SU. Hydrolysis and solvolysis of methyltriethoxysilane catalyzed with HCl or trifluoroacetic acid: IR spectroscopic and surface energy studies. J Sol–Gel Sci Technol. 2005;34:251–65.

    Article  Google Scholar 

  • Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY. Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem Mater. 2008;20:1548–54.

    Article  Google Scholar 

  • Pescarmona PP, Maschmeyer T. Oligomeric silsesquioxanes: synthesis, characterization and selected applications. Aust J Chem. 2001;54:583–96.

    Article  Google Scholar 

  • Pozdniakova YA, Lyssenko KA, Korlyukov AA, Blagodatskikh IV, Auner N, Katsoulis D, Shchegolikhina OI. Alkali-metal-directed hydrolytic condensation of trifunctional phenylalkoxysilanes. Eur J Inorg Chem. 2004;2004:1253–61.

    Article  Google Scholar 

  • Rikowski E, Marsmann HC. Cage-rearrangement of silsesquioxanes. Polyhedron. 1997;16:3357–61.

    Article  Google Scholar 

  • Sanchez C, Ribot F. Design of hybrid organic–inorganic materials synthesized via sol–gel chemistry. New J Chem. 1994;18:1007–47.

    Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L. Applications of advances hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.

    Article  Google Scholar 

  • Šapić IM, Bistričić L, Volovšek V, Dananić V. Vibrational analysis of 3-glycidoxypropyltrimethoxysilane polymer. Macromol Symp. 2014;339:122–9.

    Article  Google Scholar 

  • Seki H, Kajiwara T, Abe Y, Gunji T. Synthesis and structure of ladder polymethylsilsesquioxanes from sila-functionalized cyclotetrasiloxanes. J Organomet Chem. 2010;695:1363–9.

    Article  Google Scholar 

  • Sellinger A, Laine RM. Silsesquioxanes as synthetic platforms. 3. Photocurable, liquid epoxides as inorganic/organic hybrid precursors. Chem Mater. 1996;8:1592–3.

    Article  Google Scholar 

  • Sprung MM, Guenther FO. The partial hydrolysis of methyltriethoxysilane. J Am Chem Soc. 1955a;77:3990–6.

    Article  Google Scholar 

  • Sprung MM, Guenther FO. The partial hydrolysis of ethyltriethoxysilane. J Am Chem Soc. 1955b;77:3996–4002.

    Article  Google Scholar 

  • Surca Vuk A, Jovanovski V, Pollet-Villard A, Jerman I, Orel B. Imidazolium-based ionic liquid derivatives for application in electrochromic devices. Sol Energy Mater Sol Cells. 2008;92:126–35.

    Article  Google Scholar 

  • Suyama K, Gunji T, Arimitsu K, Abe Y. Synthesis and structure of ladder oligosilsesquioxanes: tricyclic ladder oligomethylsilsesquioxanes. Organometallics. 2006;25:5587–93.

    Article  Google Scholar 

  • Szczypka W, Jeleń P, Kolezyński A. Theoretical studies of bonding properties and vibrational spectra of chosen ladder-like silsesquioxane clusters. J Mol Struct. 2014;1075:599–604.

    Article  Google Scholar 

  • Tagliazucca V, Callone E, Dirè S. Influence of synthesis conditions on the cross-link architecture of silsesquioxanes prepared by in situ water production route. J Sol–Gel Sci Technol. 2011;60:236–45.

    Article  Google Scholar 

  • Tokunaga T, Shoiriki M, Mizumo T, Kaneko Y. Preparation of low-crystalline POSS containing two types of alkylammonium groups and its optically transparent film. J Mater Chem C. 2014;2:2496–501.

    Article  Google Scholar 

  • Toyodome H, Kaneko Y, Shikinaka K, Iyi N. Preparation of carboxylate group-containing rod-like polysilsesquioxane with hexagonally stacked structure by sol–gel reaction of 2-cyanoethyltriethoxysilane. Polymer. 2012;53:6021–6.

    Article  Google Scholar 

  • Unno M, Suto A, Matsumoto H. Pentacyclic laddersiloxane. J Am Chem Soc. 2002;124:1574–5.

    Article  Google Scholar 

  • Unno M, Suto A, Matsumoto H. Laddersiloxanes – silsesquioxanes with defined ladder structure. Russ Chem Rev. 2013;82(4):289–302.

    Article  Google Scholar 

  • Unno M, Endo H, Takeda N. Synthesis and structures of extended cyclic siloxanes. Heteroatom Chem. 2014;25(6):525–32.

    Article  Google Scholar 

  • Vogt LH, Brown JF. Crystalline methylsilsesquioxanes. Inorg Chem. 1963;2:189–92.

    Article  Google Scholar 

  • Volovšek V, Bistričić L, Dananić V, Šapić IM. DFT study of vibrational dynamics and structure of aminopropylsiloxane polymer. J Mol Struct. 2007;834–836:414–8.

    Article  Google Scholar 

  • Voronkov MG, Lavrent’yev VI. Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem. 1982;102:199–236.

    Article  Google Scholar 

  • Waddon AJ, Coughlin EB. Crystal structure of polyhedral oligomeric silsesquioxane (POSS) nano-materials: a study by X-ray diffraction and electron microscopy. Chem Mater. 2003;15:4555–61.

    Article  Google Scholar 

  • Wallace WE, Guttman CM, Antonucci JM. Molecular structure of silsesquioxanes determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom. 1999;10:224–30.

    Article  Google Scholar 

  • Wallace WE, Guttman CM, Antonucci JM. Polymeric silsesquioxanes: degree of intramolecular condensation measured by mass spectrometry. Polymer. 2000;41:2219–26.

    Article  Google Scholar 

  • Wang D, You H, Hu L. Study of three-dimensional configurations of (γ-methacryloxypropyl)-silsesquioxanes by ultraviolet laser matrix-assisted desorption/ionization time-of-flight mass spectrometry and quantum chemical calculation. Rapid Commun Mass Spectrom. 2011a;25:1652–60.

    Article  Google Scholar 

  • Wang D, Zhu P, Wei S, Hu L. Influence of molecular structure of POSS on gas-molecule diffusion coefficients using molecular dynamic simulation. Mater Sci Forum. 2011b;689:114–21.

    Article  Google Scholar 

  • Wang D, Zhu P, Wei S, Hu L. Influence of molecular structure on the optical property of POSS: a DFT calculation based quantum chemistry calculation. Mater Sci Forum. 2011c;689:58–63.

    Article  Google Scholar 

  • Wichmann D, Jug K. MSINDO study of hydridosilsesquioxanes. J Phys Chem B. 1999;103:10087–91.

    Article  Google Scholar 

  • Yang L, Feng J, Zhang W, Qu JE. Experimental and computational study on hydrolysis and condensation kinetics of γ-glycidoxypropyltrimethoxysilane (γ-GPS). Appl Surf Sci. 2010;257:990–6.

    Article  Google Scholar 

  • Zhang X, Hu L, Huang Y, Sun D, Sun Y. Three-dimensional configurations of organic/inorganic hybrid nanostructural blocks (I). A quantum mechanical investigation for ladder-like structure of vinylsilsesquioxane. Sci China Ser B Chem. 2004;47:388–95.

    Google Scholar 

  • Zhang X, Hu L, Huang Y, Sun D, Zhao W. Study of three-dimensional configurations of organic/inorganic hybrid nanostructural blocks: a quantum chemical investigation for cage structure of (γ-glycidoxypropyl)silsesquioxanes. J Mol Struct. 2008;872:197–204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Dirè .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Dirè, S., Borovin, E., Ribot, F. (2016). Architecture of Silsesquioxanes. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics