Skip to main content

Bioactive Ceramic Porcelain/Glass for Dental Application

  • Living reference work entry
  • First Online:
  • 344 Accesses

Abstract

The development of dental materials with the ability to heal and regenerate the natural architecture of lost or damaged dental or periodontal tissues is an area of ongoing research. In this concept, the term bioactivity has started to emerge as an important property for the dental materials. Several bioactive calcium-based or calcium-containing materials, including dental cements, composites, and glass-ceramics that develop a surface layer of an apatite-like phase in the presence of an inorganic phosphate solution, have been proposed in various dental applications. The induction of bioactive properties in conventional dental ceramics used in restorative dentistry could lead to materials able to support tissue attachment, extending their applications beyond the current limitations of restoring only the morphological and esthetics characteristics of the destroyed tooth structures. Among the different fabrication techniques, the application of the low-temperature sol–gel (solution–gelation) process in the fabrication of dental bioactive glasses and glass-ceramics is an advanced well-established approach, as this process allows the tailoring of the structural (specific surface area and porosity) and chemical characteristics, in order to develop optimized bioactive surfaces, with enhanced bioactivity over a wide range of silica concentrations. This chapter reviews some of the key approaches for the induction of bioactivity in commercial bioinert dental composites and mostly highlights the advantages of sol–gel technology in the synthesis of new glass-ceramics and composites for dental restorations which combine bioactive properties and antimicrobial activity with optimum textural characteristics and biological and mechanical properties.

This is a preview of subscription content, log in via an institution.

References

  • Abbasi Z, Bahrololoum ME, Bagheri R, Shariat MH. Characterization of the bioactive and mechanical behavior of dental ceramic/sol–gel derived bioactive glass mixtures. J Mech Behav Biomed Mater. 2016;54:115–22. doi:10.1016/j.jmbbm.2015.09.025.

    Article  Google Scholar 

  • Arcos D, Greenspan DC, Vallet-Regi M. Influence of the stabilization temperature on textural and structural features and ion release in SiO2-CaO-P2O5 sol–gel glasses. Chem Mater. 2002;14:1515–22.

    Article  Google Scholar 

  • Aronne A, Esposito S, Pernice P. FTIR and DTA study of lanthanum aluminosilicate glasses. Mater Chem Phys. 1997;51:163–8.

    Article  Google Scholar 

  • Beketova A, Poulakis N, Bakopoulou A, Zorba T, Papadopoulou L, Christofilos D, Kantiranis N, Zachariadis GA, Kontonasaki E, Kourouklis GA, Paraskevopoulos KM, Koidis P. Inducing bioactivity of dental ceramic/bioactive glass composites by Nd:YAG laser. Accepted for publication in Dent Mater September 2016.

    Google Scholar 

  • Brostow W, Estevez M, Lobland HEH, Hoang L, Rodriguez JR, Vargar S. Porous hydroxyapatite based obturation materials for dentistry. J Mater Res. 2008;23:1587–96.

    Article  Google Scholar 

  • Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22:493–507.

    Article  Google Scholar 

  • Chatzistavrou X, Chrissafis K, Polychroniadis E, Kontonasaki E, Koidis P, Paraskevopoulos KM. Inducing bioactivity in dental porcelain through Bioglass® Changes in thermal behaviour. J Therm Anal Calor. 2006;86:255–9.

    Article  Google Scholar 

  • Chatzistavrou X, Esteve D, Hatzistavrou E, Kontonasaki E, Paraskevopoulos KM, Boccaccini AR. Sol–gel based fabrication of novel glass-ceramics and composites for dental applications. Mater Sci Eng C. 2010;30:730–9.

    Article  Google Scholar 

  • Chatzistavrou X, Tsigkou O, Amin HD, Paraskevopoulos KM, Salih V, Boccaccini AR. Sol–gel based fabrication and characterization of new bioactive glass–ceramic composites for dental applications. J Eur Ceram Soc. 2012a;32:3051–61.

    Google Scholar 

  • Chatzistavrou X, Kontonasaki E, Bakopoulou A, Theocharidou A, Sivropoulou A, Paraskevopoulos KM, Koidis P, Boccaccini AR, Kasuga T. Development of new sol–gel derived Ag-doped biomaterials for dental applications. In MRS Proceedings. vol. 1417. Cambridge University Press; 2012b. p. mrsf11-1417.

    Google Scholar 

  • Chatzistavrou X, Fenno JC, Faulk D, Badylak S, Kasuga T, Boccaccini AR, Papagerakis P. Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta Biomater. 2014;10:3723–32.

    Article  Google Scholar 

  • Chatzistavrou X, Velamakanni S, DiRenzo K, Lefkelidou A, Fenno JC, Kasuga T, Boccaccini AR, Papagerakis P. Designing dental composites with bioactive and bactericidal properties. Mater Sci Eng C. 2015;52:267–72.

    Article  Google Scholar 

  • Demirkesen E, Maytalman E. Effect of Al2O3 additions on the crystallization behaviour and bending strength of a Li2O–ZnO–SiO2 glass-ceramic. Ceram Int. 2001;27:99–104.

    Article  Google Scholar 

  • Fathi MH, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett. 2007;61:3978–83.

    Article  Google Scholar 

  • Forsback AP, Areva S, Salonen J. Mineralization of dentin induced by treatment with bioactive glass S53P4 in vitro. Acta Odontol Scand. 2004;62:14–20.

    Article  Google Scholar 

  • Goudouri OM, Kontonasaki E, Kantiranis N, Chatzistavrou X, Papadopoulou L, Koidis P, Paraskevopoulos KM. A bioactive glass/dental porcelain system by the sol gel route: fabrication and characterization. Key Eng Mater. 2009;396–398:95–9.

    Article  Google Scholar 

  • Goudouri O-M, Kontonasaki E, Theocharidou A, Papadopoulou L, Kantiranis N, Chatzistavrou X, Koidis P, Paraskevopoulos KM. Modifying a dental ceramic by bioactive glass via the sol–gel route: characterization and bioactivity investigation. Mater Chem Phys. 2011a;125:309–13.

    Article  Google Scholar 

  • Goudouri OM, Kontonasaki E, Papadopoulou L, Chatzistavrou X, Koidis P, Paraskevopoulos KM. In vitro bioactivity studies of sol–gel derived dental ceramics/bioactive glass composites in periodically renewed biomimetic solution. Bioceram Develop Appl. 2011b;1: Article ID D110257. doi:10.4303/bda/D110250.

    Google Scholar 

  • Goudouri OM, Kontonasaki E, Theocharidou A, Kantiranis N, Chatzistavrou X, Koidis P, Paraskevopoulos KM. Dental ceramics/bioactive glass composites: characterization and mechanical properties investigation. Bioceram Dev Appl. 2011c; 1. doi:10.4303/bda/D110257.

    Google Scholar 

  • Goudouri O-M, Kontonasaki E, Papadopoulou L, Kantiranis N, Lazaridis NK, Chrissafis K, Chatzistavrou X, Koidis P, Paraskevopoulos KM. Towards the synthesis of an experimental bioactive dental ceramic. Part I: crystallinity characterization and bioactive behavior evaluation. Mater Chem Phys. 2014;145:125–34.

    Article  Google Scholar 

  • Goudouri O-M, Kontonasaki E, Papadopoulou L, Manda M, Triantafyllidis KS, Stefanidou M, Koidis P, Paraskevopoulos KM. An experimental bioactive dental ceramic for metal-ceramic restorations. Part II: textural characteristics and mechanical properties investigation. Submitted to the Journal of the Mechanical Behavior of Biomedical Materials August 2016.

    Google Scholar 

  • Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials. 2006;27:2865–73.

    Article  Google Scholar 

  • Höland W. Biocompatible and bioactive glass-ceramics – state of the art and new directions. J Non-Cryst Solids. 1997;219:192–7.

    Article  Google Scholar 

  • Kattan H, Chatzistavrou X, Boynton J, Dennison J, Yaman P, Papagerakis P. Physical properties of an Ag-doped bioactive flowable composite resin. Materials. 2015;8:4668–78.

    Article  Google Scholar 

  • Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:721–34.

    Article  Google Scholar 

  • Kontonasaki E, Papadopoulou L, Zorba T, Pavlidou E, Paraskevopoulos K, Koidis P. Apatite formation on dental ceramics modified by a bioactive glass. J Oral Rehabil. 2003;30:893–902.

    Article  Google Scholar 

  • Kontonasaki E, Sivropoulou A, Papadopoulou L, Garefis P, Paraskevopoulos K, Koidis P. Attachment and proliferation of periodontal ligament fibroblasts on bioactive glass modified ceramics. J Oral Rehabil. 2007;34:57–67.

    Article  Google Scholar 

  • Kontonasaki E, Kantiranis N, Chatzistavrou X, Papadopoulou L, Paraskevopoulos KM, Koidis P. Studying dental ceramic-bioactive glass composites. Key Eng Mater. 2008;361–363:881–4.

    Article  Google Scholar 

  • Kudo K, Miyasawa M, Fujioka Y, Kamegai T, Nakano H, Seino Y, et al. Clinical application of dental implant with root of coated bioglass: short-term results. Oral Surg Oral Med Oral Pathol. 1990;70:18–23.

    Article  Google Scholar 

  • Li P, Yang Q, Zhang F, Kokubo T. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro. J Biomed Mater Res. 1992;3:452–6.

    Google Scholar 

  • Manda M, Goudouri O-M, Papadopoulou L, Kantiranis N, Christofilos D, Triantafyllidis K, Paraskevopoulos KM, Koidis P. Material characterization and bioactivity evaluation of dental porcelain modified by bioactive glass. Ceram Int. 2012;38:5585–96.

    Article  Google Scholar 

  • Mendonça G, Mendonca D, Aragao FJL, Cooper LF. Advancing dental implant surface technology– from micron-to nanotopography. Biomaterials. 2008;29:3822–35.

    Article  Google Scholar 

  • Nganga S, Zhang D, Moritz N, Vallittu PK, Hupa L. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass. Dent Mater. 2012;28:1134–45.

    Article  Google Scholar 

  • Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids. 1992;143:84–92.

    Article  Google Scholar 

  • Pecheva E, Petrov T, Lungu C, Montgomery P, Pramatarova L. Stimulated in vitro bone-like apatite formation by a novel laser processing technique. Chem Eng J. 2008;137:144–53.

    Article  Google Scholar 

  • Peitl Filho O, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996;30:509–14.

    Article  Google Scholar 

  • Piva E, Silva AF, Nor JE. Functionalized scaffolds to control dental pulp stem cell fate. J Endod. 2014;40 Suppl 4:S33–40.

    Article  Google Scholar 

  • Ratner BD. Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J Dent Educ. 2001;65:1340–7.

    Google Scholar 

  • Rizkalla AS, Jones DW, Clarke DB, Hall GC. Crystallization of experimental bioactive glass compositions. J Biomed Mater Res. 1996;32:119–24.

    Article  Google Scholar 

  • Salinas AJ, Martin AI, Vallet-Regí M. Bioactivity of three CaO–P2O5–SiO2 sol-gel glasses. J Biomed Mater Res. 2002;61:524–32.

    Article  Google Scholar 

  • Sauro S, Watson TF, Thompson I, Toledano M, Nucci C, Banerjee A. Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement. Eur J Oral Sci. 2012a;120:168–77.

    Article  Google Scholar 

  • Sauro S, Osorio R, Watson TF, Toledano M. Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface. J Mater Sci Mater Med. 2012b;23:1521–32.

    Article  Google Scholar 

  • Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res. 2002;61:301–11.

    Article  Google Scholar 

  • Sung Y-M, Kim D-H. Crystallization characteristics of yttria-stabilized zirconia/hydroxyapatite composite nanopowder. J Cryst Growth. 2003;254:411–7.

    Article  Google Scholar 

  • Sung Y-M, Lee J-C, Yang J-W. Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder. J Cryst Growth. 2004;262(1):467–72.

    Article  Google Scholar 

  • Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent. 2007;35:636–42.

    Article  Google Scholar 

  • Tulyaganov DU, Ribeiro MJ, Labrincha JA. Development of glass-ceramics by sintering and crystallization of fine powders of calcium-magnesium-aluminosilicate glass. Ceram Int. 2002;28:515–20.

    Article  Google Scholar 

  • Verné E, Brovarone CV, Milanese D. Glass-matrix biocomposites. J Biomed Mater Res. 2000;53:408–13.

    Article  Google Scholar 

  • Wang L, Nancollas GH. Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls. Dalton Trans. 2009;15:2665–72. doi:10.1039/b815887h.

    Article  Google Scholar 

  • Yli-Urpo H, Närhi M, Närhi T. Compound changes and tooth mineralization effects of glass ionomer cements containing bioactive glass (S53P4), an in vivo study. Biomaterials. 2005;26:5934–41.

    Article  Google Scholar 

  • Zhong J, Greenspan DC. Processing and properties of sol–gel bioactive glasses. J Biomed Mater Res. 2000;53:694–701.

    Article  Google Scholar 

  • Zhong JP, Greenspan DC, Feng JW. A microstructural examination of apatite induced by Bioglass in vitro. J Mater Sci Mater Med. 2002;13:321–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Kontonasaki , X. Chatzistavrou , K. M. Paraskevopoulos or P. Koidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Kontonasaki, E., Chatzistavrou, X., Paraskevopoulos, K.M., Koidis, P. (2016). Bioactive Ceramic Porcelain/Glass for Dental Application. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_117-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_117-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics