Abstract
The amorphous nature and complex structure of sol–gel-derived hybrid materials often prohibit an experimental determination of the underlying atomistic and molecular structures in detail. Atomistic modeling methods provide an insight into these structures and are an effective tool for a better understanding of material behavior in general.
This chapter gives a short introduction to sophisticated hybrid polymers and different modeling approaches for these materials. As classical force field simulations are the method of choice for most problems, different methods to validate the results of this type of calculations are presented. Three hybrid polymer systems of different complexity are presented as model systems in detail. A generalized step-by-step simulation scheme is provided which can be applied to similar sol–gel-derived hybrid materials or polymers.
Keywords
- Force Field
- Hybrid Material
- Polymer Model
- Hybrid Polymer
- Organic Hybrid Material
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
References
Abbott LJ, Hart KE, Colina CM. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theor Chem Accounts. 2013;132:1334.
Abell GC. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys Rev B. 1985;31:6184–96.
Allcock HR. Inorganic–organic polymers. Adv Mater. 1994;6:106–15.
Amberg-Schwab S, Hoffmann M, Bader H, Gessler M. Inorganic–organic polymers with barrier properties for water vapor, oxygen and flavors. J Sol–Gel Sci Technol. 1998;1(2):141–6.
Asche TS, Behrens P, Schneider AM. Validation of the COMPASS force field for complex inorganic–organic hybrid polymers. submitted. 2016.
Avnir D. Organic chemistry within ceramic matrices: doped sol–gel materials. Acc Chem Res. 1995;28:328–34.
Bacchi A, Feitosa V, da Silva Fonseca AQ, Cavalcante LA, Silikas N, Schneider LJ. Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites. J Conserv Dent. 2015;18:384–8.
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–90.
Bharadwaj RK. Molecular dynamics simulation study of norbornene-POSS polymers. Polymer. 2000;41:7209–21.
Binder K. Monte Carlo methods in statistical physics. 2nd ed. Berlin: Springer; 1986.
Bizet S, Galy J, Gérard J-F. Molecular dynamics simulation of organic–inorganic copolymers based on methacryl-POSS and methyl methacrylate. Polymer. 2006;47:8219–27.
Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1990;42:9458–71.
Brenner DW. Erratum: empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1992;46:1948.
Brenner DW, Harrison JA, White CT, Colton RJ. Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene. Thin Solid Films. 1991;206:220–3.
Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing. 1st ed. San Diego: Academic; 1990.
Buestrich R, Kahlenberg F, Popall M, Dannberg P, Müller-Fiedler R, Rösch O. ORMOCER®s for optical interconnection technology. J Sol–gel Sci Technol. 2001;20:181–6.
Burmeister F, Steenhusen S, Houbertz R, Zeitner UD, Nolte S, Tünnermann A. Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization. J Laser Appl. 2012;24:042014.
Burmeister F, Steenhusen S, Houbertz R, Asche TS, Nickel J, Nolte S, Tucher N, Josten P, Obel K, Wolter H, Fessel S, Schneider AM, Gärtner K-H, Beck C, Behrens P, Tünnermann A, Walles H. Chapter 5, Two-photon polymerization of inorganic–organic polymers for biomedical and microoptical applications. In: König K, Ostendorf A, editors. Optically induced nanostructures. Boston: Walter de Gruyter Inc; 2015. p. 239–66.
Chenoweth K, Cheung S, van Duin ACT, Goddard WA, Kober EM. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc. 2005;127:7192–202.
Dassault Systèmes BIOVIA. BIOVIA materials studio. San Diego, CA 92121: USA; 2014.
Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Genet. 1988;4:31–47.
de Jaeger R, Gleria M, editors. Inorganic polymers. New York: Nova Science Publishers; 2007.
de Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ. Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput. 2013;9:687–97.
de Pablo JJ. Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu Rev Phys Chem. 2011;62:555–74.
Deetz JD, Faller R. Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. J Phys Chem B. 2014;118:10966–78.
Deetz JD, Faller R. Reactive modeling of the initial stages of alkoxysilane polycondensation: effects of precursor molecule structure and solution composition. Soft Matter. 2015a;11:6780–9.
Deetz JD, Faller R. Reactive molecular dynamics simulations of siliceous solids polycondensed from tetra- and trihydroxysilane. J Non Cryst Solids. 2015b;429:183–9.
Drisko GL, Sanchez C. Hybridization in materials science – evolution, current state, and future aspirations. Eur J Inorg Chem. 2012;2012:5097–105.
Elanany M, Selvam P, Yokosuka T, Takami S, Kubo M, Imamura A, Miyamoto A. A quantum molecular dynamics simulation study of the initial hydrolysis step in sol–gel process. J Phys Chem B. 2003;107:1518–24.
El-Murr J, Ruel D, St-Georges AJ. Effects of external bleaching on restorative materials: a review. J Can Dent Assoc. 2011;77:b59.
Engelhardt G, Michel D. High-resolution solid-state NMR of silicates and zeolites. Chichester: Wiley; 1987.
Ewald PP. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;369:253–87.
Fessel S. Zur Zweiphotonenpolymerisation von ORMOCER®en: Modellierung und strukturelle Untersuchungen. Dissertation, Leibniz Universität. Hannover; 2013
Fessel S, Schneider AM, Steenhusen S, Houbertz R, Behrens P. Towards an atomistic model for ORMOCER®-I: application of forcefield methods. J Sol–gel Sci Technol. 2012;63:356–65.
Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci. 1999;15:31–49.
Göppert-Mayer M. Über Elementarakte mit zwei Quantensprüngen. Ann Phys. 1931;401:273–94.
Haas K-H, Rose K. Hybrid inorganic/organic polymers with nanoscale building blocks: precursors, processing, properties and applications. Rev Adv Mater Sci. 2003;5:47–52.
Haas K-H, Wolter H. Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER®s). Curr Opin Solid State Mater Sci. 1999;4:571–80.
Haas K-H, Amberg-Schwab S, Rose K. Functionalized coating materials based on inorganic–organic polymers. Thin Solid Films. 1999;351:198–203.
Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 2003;12:399–450.
Halgren TA. Merck molecular force field. III. molecular geometries and vibrational frequencies for MMFF94. J Comput Chem. 1996;17:553–86.
Henschel H, Schneider AM, Prosenc MH. Initial steps of the sol–gel process: modeling silicate condensation in basic medium. Chem Mater. 2010;22:5105–11.
Hofmann D, Fritz L, Ulbrich J, Paul D. Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides. Comput Theor Polym Sci. 2000;10:419–36.
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–71.
Houbertz R, Domann G, Cronauer C, Schmitt A, Martin H, Park J-U, Fröhlich L, Buestrich R, Popall M, Streppel U, Dannberg P, Wächter C, Bräuer A. Inorganic–organic hybrid materials for application in optical devices. Thin Solid Films. 2003a;442:194–200.
Houbertz R, Fröhlich L, Popall M, Streppel U, Dannberg P, Bräuer A, Serbin J, Chichkov BN. Inorganic–organic hybrid polymers for information technology: from planar technology to 3D nanostructures. Adv Eng Mater. 2003b;5:551–5.
Houbertz R, Domann G, Schulz J, Olsowski B, Fröhlich L, Kim W-S. Impact of photoinitiators on the photopolymerization and the optical properties of inorganic–organic hybrid polymers. Appl Phys Lett. 2004;84:1105–7.
Hu H, Hou H, He Z, Wang B. Theoretical characterizations of the mechanism for the dimerization of monosilicic acid in basic solution. Phys Chem Chem Phys. 2013;15:15027–32.
Ionita M. Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Composites Part B Eng. 2012;43:3491–6.
Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU. Relative reactivity volume criterion for cross-linking: application to vinyl ester resin molecular dynamics simulations. Macromolecules. 2012;45:4876–85.
Kahlenberg F. Structure–property Correlations in Fluoroaryl Functionalized Inorganic–organic Hybrid Polymers for Telecom Applications. Dissertation, Julius-Maximilians-Universität, Würzburg; 2004.
Kasemann R, Schmidt H. Coatings for mechanical and chemical protection based on organic–inorganic sol–gel nanocomposites. New J Chem. 1994;18:1117–23.
Kickelbick G, editor. Hybrid materials. Synthesis, characterization, and applications. 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007.
Kim W-S, Houbertz R, Lee TH, Bae BS. Effect of photoinitiator on photopolymerization of inorganic–organic hybrid polymers (ORMOCER®). J Polym Sci Part B Polym Phys. 2004;42:1979–86.
Kim W-S, Kim K-S, Eo Y-J, Yoon KB, Bae B-S. Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure. J Mater Chem. 2005;15:465.
Lange J, Wyser Y. Recent innovations in barrier technologies for plastic packaging – a review. Packag Technol Sci. 2003;16:149–58.
Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil. 2010;37:364–76.
Levine IN. Quantum chemistry. 7th ed. Upper Saddle River: Pearson Education International; 2013.
Li C, Strachan A. Molecular scale simulations on thermoset polymers: a review. J Polym Sci Part B Polym Phys. 2015;53:103–22.
López CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hünenberger PH, Marrink SJ. Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput. 2009;5:3195–210.
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–24.
Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett. 1997;22:132–4.
Matějka L, Strachota A, Pleštil J, Whelan P, Steinhart M, Šlouf M. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Structure and morphology. Macromolecules. 2004;37:9449–56.
McIntosh GJ. Theoretical investigations into the nucleation of silica growth in basic solution part I – ab initio studies of the formation of trimers and tetramers. Phys Chem Chem Phys. 2013a;15:3155–72.
McIntosh GJ. Theoretical investigations into the nucleation of silica growth in basic solution part II – derivation and benchmarking of a first principles kinetic model of solution chemistry. Phys Chem Chem Phys. 2013b;15:17496.
Metroke TL, Parkhill RL, Knobbe ET. Passivation of metal alloys using sol–gel-derived materials – a review. Prog Org Coat. 2001;41:233–8.
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087–92.
Microresist.de. Ormocore and Ormoclad datasheet. Available from: http://www.microresist.de/sites/default/files/download/PI_OrmoCore_OrmoClad_2015.pdf. Accessed 26 Jan 2016.
Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput. 2008;4:819–34.
Moszner N, Gianasmidis A, Klapdohr S, Fischer UK, Rheinberger V. Sol–gel materials: 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components. Dent Mater. 2008;24:851–6.
Newsome DA, Sengupta D, Foroutan H, Russo MF, van Duin ACT. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study part I. J Phys Chem C. 2012;116:16111–21.
Novak BM. Hybrid nanocomposite materials – between inorganic glasses and organic polymers. Adv Mater. 1993;5:422–33.
Pereira JCG, Catlow CRA, Price GD, Almeida RM. Atomistic modeling of silica based sol–gel processes. J Sol–gel Sci Technol. 1997;8:55–8.
Pereira JCG, Catlow CRA, Price GD. Ab initio studies of silica-based clusters. part I. Energies and conformations of simple clusters. J Phys Chem A. 1999a;103:3252–67.
Pereira JCG, Catlow CRA, Price GD. Ab initio studies of silica-based clusters. part II. Structures and energies of complex clusters. J Phys Chem A. 1999b;103:3268–84.
Popall M, Andrei M, Kappel J, Kron J, Olma K, Olsowski B. ORMOCERs as inorganic–organic electrolytes for new solid state lithium batteries and supercapacitors. Electrochim Acta. 1998;43:1155–61.
Pursch M, Jäger A, Schneller T, Brindle R, Albert K, Lindner E. The sol–gel method: a new way to reversed phase materials. Synthesis and characterization by solid-state NMR spectroscopy. Chem Mater. 1996;8:1245–9.
Rappé AK, Goddard WA. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95:3358–63.
Rimsza JM, Deng L, Du J. Molecular dynamics simulations of nanoporous organosilicate glasses using reactive force field (ReaxFF). J Non Cryst Solids. 2016;431:103–11.
Rossi G, Monticelli L, Puisto SR, Vattulainen I, Ala-Nissila T. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter. 2011;7:698–708.
Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.
Schottner G, Kron J, Deichmann A. Industrial application of hybrid sol–gel coatings for the decoration of crystal glassware. J Sol–gel Sci Technol. 1998;13:183–7.
Schottner G, Rose K, Posset U. Scratch and abrasion resistant coatings on plastic lenses – state of the art, current developments and perspectives. J Sol–gel Sci Technol. 2003;27:71–9.
Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M. Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett. 2003;28:301–3.
Shiu S-C, Tsai J-L. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos Part B Eng. 2014;56:691–7.
Shokuhfar A, Arab B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model. 2013;19:3719–31.
Song X, Sun Y, Wu X, Zeng F. Molecular dynamics simulation of a novel kind of polymer composite incorporated with polyhedral oligomeric silsesquioxane (POSS). Comput Mater Sci. 2011;50:3282–9.
Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112:6472–86.
Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications – overview with details on alkane and benzene compounds. J Phys Chem B. 1998;102:7338–64.
Sun H, Rigby D. Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties. Spectrochim Acta, Part A Mol Biomol Spectrosc. 1997;53:1301–23.
Tersoff J. New empirical model for the structural properties of silicon. Phys Rev Lett. 1986;56:632–5.
Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988a;37:6991–7000.
Tersoff J. Empirical interatomic potential for silicon with improved elastic properties. Phys Rev B. 1988b;38:9902–5.
Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP, Marrink SJ. Martini coarse-grained force field: extension to DNA. J Chem Theory Comput. 2015;11:3932–45.
van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–409.
van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A. 2003;107:3803–11.
van Gunsteren WF, Mark AE. Validation of molecular dynamics simulation. J Chem Phys. 1998;108:6109–16.
van Krevelen DW, te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. 4th ed. Philadelphia: Elsevier; 2009.
Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA. Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev. 2015;44:7044–111.
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2009;31:671–90.
Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys Rev. 1967;159:98–103.
Wang Z, Lv Q, Chen S, Li C, Sun S, Hu S. Glass transition investigations on highly crosslinked epoxy resins by molecular dynamics simulations. Mol Simul. 2015;41:1515–27.
Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol- gel approach. Chem Mater. 1996;8:1667–81.
White CE, Provis JL, Kearley GJ, Riley DP, van Deventer JSJ. Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans. 2011;40:1348–55.
Wu C, Xu W. Atomistic molecular modelling of crosslinked epoxy resin. Polymer. 2006;47:6004–9.
Xin D, Han Q. Study on thermomechanical properties of cross-linked epoxy resin. Mol Simul. 2015;41:1081–5.
Acknowledgements
We thank the State of Lower Saxony for general support of this work. T.S.A. and M.D. are grateful for fellowships obtained within the framework of the Graduate Program MARIO, also funded by the State of Lower Saxony. This work benefited from the cooperation within the research initiative Biofabrication for NIFE, funded by the Volkswagenstiftung and the State of Lower Saxony.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this entry
Cite this entry
Asche, T.S., Duderstaedt, M., Behrens, P., Schneider, A.M. (2016). Atomistic Simulation of Sol–Gel-Derived Hybrid Materials. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_109-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-19454-7_109-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Online ISBN: 978-3-319-19454-7
eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science