Skip to main content

Epidemiology

  • Reference work entry
  • First Online:
Principles of Diabetes Mellitus

Abstract

There has been a continuous increase in the incidence and prevalence of diabetes mellitus over the past 20 years, both globally and in the United States of America. A 20 to 69% increase was projected from 2010 to 2030 in developing and developed countries, respectively. The majority of this increase is attributed to type 2 diabetes (T2DM) the most common type of diabetes (87 to 95% of cases). In 2015, it was estimated that 1 in 11 persons in the world had diabetes. T2DM prevalence in the U.S. has quadrupled since 1980s. In 2012, the prevalence was highest amongst American Indians/Alaska Natives (15.9%), lowest amongst Non-Hispanic Whites (7.6%) and intermediate amongst Non-Hispanic Blacks, Hispanics and Asian Americans (13.2, 12.8 and 9.0%, respectively). Recent trends in the U.S. reveal an overall plateau in prevalence, increased incidence amongst youth and an almost equal distribution of T2DM in men and women. This increase in diabetes prevalence in the U.S. and throughout the world has been attributed to an increase in the ability to diagnose diabetes, an increase in lifespan, and the worsening obesity and physical inactivity epidemics seen globally. Differences between groups exposed to similar environments implicates a genetic contribution to the development of diabetes. Data suggests that the modern lifestyle with consequent obesity and sedentarism may interact with preexisting diabetes genes and lead to epigenetic modifications.

The incidence of type 1 diabetes (T1DM) is also on the rise both globally and in the U.S., particularly amongst children under the age of 15. It is estimated that by the year 2050, there will be a 20 to 70% increase in the prevalence of T1DM, depending on age and geographic location. It is unclear whether this is due to improved ability of diagnosis versus a true increase in genetically stable populations under the inducing influence of non-genetic factors changing over time and place.

Once diabetes is diagnosed, efforts must be made to prevent secondary complications through strict glycemic control and control of other metabolic risk factors such as hypertension and hyperlipidemia. Recently in the U.S. there has been a decrease in complications such as stroke, myocardial infarction, amputations, and death due to hyperglycemia. Since many complications are present before T2DM is diagnosed, early diagnosis and prevention of T2DM is key to further decreasing the incidence of complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association. Classification and diagnosis of diabetes. Sec. 2 in standards of medical care in diabetes. Diabetes Care. 2016;39 Suppl 1:S13–22.

    Google Scholar 

  2. International Diabetes Federation. IDF diabetes atlas. 7th ed. Brussels: International diabetes federation; 2015.

    Google Scholar 

  3. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.

    Article  CAS  PubMed  Google Scholar 

  4. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  5. World Health Organization. Global report on diabetes. Geneva: WHO; 2016. Available at: http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf. Accessed 24 June 2016.

  6. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129–40.

    Article  CAS  PubMed  Google Scholar 

  7. Mbanya JC, Motala AA, Sobngwi E, et al. Diabetes in sub-Saharan Africa. Lancet. 2010;375(9733):2254–66.

    Article  PubMed  Google Scholar 

  8. Abubakari AR, Lauder W, Jones MC, et al. Prevalence and time trends in diabetes and physical inactivity among adult West African populations: the epidemic has arrived. Public Health. 2009;123(9):602–14.

    Article  CAS  PubMed  Google Scholar 

  9. Centers for Disease Control and Prevention (CDC). National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. Atlanta: U.S. Department of Health and Human Services. 2014. Available at: https://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf. Accessed 24 June 2016.

  10. Bullard KM, Saydah SH, Imperatore G, et al. Secular changes in U.S. Prediabetes prevalence defined by hemoglobin A1c and fasting plasma glucose: National Health and Nutrition Examination Surveys, 1999–2010. Diabetes Care. 2013;36(8):2286–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barker LE, Kirtland KA, Gregg EW, et al. Geographic distribution of diagnosed diabetes in the U.S.: a diabetes belt. Am J Prev Med. 2011;40(4):434–9.

    Article  PubMed  Google Scholar 

  12. Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.

    Article  PubMed  Google Scholar 

  13. Seidell JC. Obesity, insulin resistance and diabetes – a worldwide epidemic. Br J Nutr. 2000;83 Suppl 1:S5–8.

    CAS  PubMed  Google Scholar 

  14. Wandell PE, Johansson SE, Gafvels C, et al. Estimation of diabetes prevalence among immigrants from the Middle East in Sweden by using three different data sources. Diabetes Metab. 2008;34:328–33.

    Article  CAS  PubMed  Google Scholar 

  15. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339–50.

    Article  CAS  PubMed  Google Scholar 

  16. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab. 2010;21(4):223–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  20. Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J Int Med. 2000;247(3):301–10.

    Article  CAS  Google Scholar 

  21. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics, Division of Health Interview Statistics, data from the National Health Interview Survey. Number (in Millions) of civilian, non-institutionalized persons with diagnosed diabetes, United States, 1980–2014. Available at: http://www.cdc.gov/diabetes/statistics/incidence/fig1.htm. Accessed 24 June 2016.

  22. Geiss LS, Wang J, Cheng YJ, et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980–2012. JAMA. 2014;312(12):1218–26.

    Article  CAS  PubMed  Google Scholar 

  23. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pettitt DJ, Talton J, Dabelea D, et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014;37(2):402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dabelea D, Mayer-Davis EJ, Saydah S, et al. SEARCH for Diabetes in Youth Study. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gale EA, Gillespie KM. Diabetes and gender. Diabetologia. 2001;44(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  27. Logue J, Walker JJ, Colhoun HM, et al. Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia. 2011;54(12):3003–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics, Division of Health Interview Statistics, data from the National Health Interview Survey. Age-adjusted rates of diagnosed diabetes per 100 civilian, non-institutionalized population, by Sex, United States, 1980–2014. Available at: http://www.cdc.gov/diabetes/statistics/incidence/fig4.htm. Accessed 24 June 2016.

  29. Zhang Q, Wang Y, Huang ES. Changes in racial/ethnic disparities in the prevalence of Type 2 diabetes by obesity level among U.S. adults. Ethn Health. 2009;14(5):439–57.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Humes KR, Jones NA, Ramirez RR. Overview of race and Hispanic origin: 2010. Washington, DC: U.S.Department of Commerce, Economics and Statistics Administration, US Census Bureau; 2011.

    Google Scholar 

  31. Bureau of the Census. 1980 census of population: general population characteristics. Washingon, DC: U.S. Department of Commerce, Bureau of the Census; 1983.

    Google Scholar 

  32. Centers for Disease Control and Prevention (CDC). Diabetes report card 2014. Atlanta: Centers for Disease Control and Prevention, US Dept of Health and Human Services. 2015. Available at: https://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf. Accessed 18 July 2016.

  33. Diamond JM. Human evolution. Diabetes running wild. Nature. 1992;357:362–3.

    Article  CAS  PubMed  Google Scholar 

  34. Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev. 2002;3:141–6.

    Article  CAS  PubMed  Google Scholar 

  35. Yoon KH, Lee JH, Kim JW, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368:1681–8.

    Article  PubMed  Google Scholar 

  36. Huxley R, James WP, Barzi F, et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes Rev. 2008;9 Suppl 1:53–61.

    Article  PubMed  Google Scholar 

  37. Chiang JL, Kirkman MS, Laffel LM, et al. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care. 2014;37(7):2034–54.

    Article  PubMed  Google Scholar 

  38. Patterson CC, Gyurus E, Rosenbauer J, et al. Trends in childhood type 1 diabetes incidence in Europe during 1989–2008: evidence of non-uniformity over time in rates of increase. Diabetologia. 2012;55(8):2142–7.

    Article  CAS  PubMed  Google Scholar 

  39. The DIAMOND Project Group. Incidence and trends of childhood Type 1 diabetes worldwide 1990–1999. Diabet Med. 2006;23(8):857–66.

    Article  Google Scholar 

  40. Patterson CC, Dahlquist GG, Gyurus E, et al. EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet. 2009;373(9680):2027–33.

    Article  PubMed  Google Scholar 

  41. Ma RC, Chan JC. Incidence of childhood type 1 diabetes: a worrying trend. Nat Rev Endocrinol. 2009;5(10):529–30.

    Article  PubMed  Google Scholar 

  42. Rosenbauer J, Herzig P, von Kries R, et al. Temporal, seasonal, and geographical incidence patterns of type I diabetes mellitus in children under 5 years of age in Germany. Diabetologia. 1999;42(9):1055–9.

    Article  CAS  PubMed  Google Scholar 

  43. Moltchanova EV, Schreier N, Lammi N, et al. Seasonal variation of diagnosis of Type 1 diabetes mellitus in children worldwide. Diabet Med. 2009;26(7):673–8.

    Article  CAS  PubMed  Google Scholar 

  44. Waernbaum I, Dahlquist G. Low mean temperature rather than few sunshine hours are associated with an increased incidence of type 1 diabetes in children. Eur J Epidemiol. 2016;31(1):61–5.

    Article  PubMed  Google Scholar 

  45. Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016;12(3):154–67.

    Article  CAS  PubMed  Google Scholar 

  46. Virtanen SM, Knip M. Nutritional risk predictors of beta cell autoimmunity and type 1 diabetes at a young age. Am J Clin Nutr. 2003;78(6):1053–67.

    CAS  PubMed  Google Scholar 

  47. TEDDY Study Group. The environmental determinants of diabetes in the young (TEDDY) Study. Ann N Y Acad Sci. 2008;1150:1–13.

    Article  PubMed Central  Google Scholar 

  48. Thunander M, Petersson C, Jonzon K, et al. Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden. Diabetes Res Clin Pract. 2008;82(2):247–55.

    Article  CAS  PubMed  Google Scholar 

  49. Felner EI, Klitz W, Ham M, et al. Genetic interaction among three genomic regions creates distinct contributions to early- and late-onset type 1 diabetes mellitus. Pediatr Diabetes. 2005;6(4):213–20.

    Article  PubMed  Google Scholar 

  50. Molbak AG, Christau B, Marner B, et al. Incidence of insulin-dependent diabetes mellitus in age groups over 30 years in Denmark. Diabet Med. 1994;11(7):650–5.

    Article  CAS  PubMed  Google Scholar 

  51. Lammi N, Taskinen O, Moltchanova E, et al. A high incidence of type 1 diabetes and an alarming increase in the incidence of type 2 diabetes among young adults in Finland between 1992 and 1996. Diabetologia. 2007;50(7):1393–400.

    Article  CAS  PubMed  Google Scholar 

  52. Leslie RD, Williams R, Pozzilli P. Clinical review: type 1 diabetes and latent autoimmune diabetes in adults: one end of the rainbow. J Clin Endocrinol Metab. 2006;91(5):1654–9.

    Article  PubMed  Google Scholar 

  53. Turner R, Stratton I, Horton V, et al. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet. 1997;350:1288–93.

    Article  CAS  PubMed  Google Scholar 

  54. Wandell PE, Carlsson AC. Time trends and gender differences in incidence and prevalence of type 1 diabetes in Sweden. Curr Diabetes Rev. 2013;9(4):342–9.

    Article  PubMed  Google Scholar 

  55. Osler W. The principles and practice of medicine. New York: D. Appleton and Company; 1892.

    Google Scholar 

  56. National Diabetes Data Group. Diabetes in America. 2nd ed. Bethesda: National Institutes of Health; 1995.

    Google Scholar 

  57. Onkamo P, Vaananen S, Karvonen M, et al. Worldwide increase in incidence of Type I diabetes – the analysis of the data on published incidence trends. Diabetologia. 1999;42(12):1395–403.

    Article  CAS  PubMed  Google Scholar 

  58. Imperatore G, Boyle JP, Thompson TJ, et al. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: dynamic modeling of incidence, mortality, and population growth. Diabetes Care. 2012;35(12):2515–20.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Boyle JP, Thompson TJ, Gregg EW. Projection of the year 2050 burden of diabetes in the U.S. adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Spijkerman AM, Dekker JM, Nijpels G, et al. Microvascular complications at time of diagnosis of type 2 diabetes are similar among diabetic patients detected by targeted screening and patients newly diagnosed in general practice: the Hoorn Screening Study. Diabetes Care. 2003;26(9):2604–8.

    Article  PubMed  Google Scholar 

  61. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  62. UK Prospective Diabetes Study (UKPDS) Group. (UKPDS 33). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet. 1998;352:837–53.

    Article  Google Scholar 

  63. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  64. UK Prospective Diabetes Study (UKPDS) Group. (UKPDS 38). Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. BMJ. 1998;317:703–13.

    Article  Google Scholar 

  65. Holman RR, Paul SK, Bethel MA, et al. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med. 2008;359(15):1565–76.

    Article  CAS  PubMed  Google Scholar 

  66. Volpe M, Cosentino F, Tocci G, et al. Antihypertensive therapy in diabetes: the legacy effect and RAAS blockade. Curr Hypertens Rep. 2011;13(4):318–24.

    Article  CAS  PubMed  Google Scholar 

  67. Isomaa B, Henricsson M, Almgren P, et al. The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia. 2001;44(9):1148–54.

    Article  CAS  PubMed  Google Scholar 

  68. Tandon N, Ali MK, Narayan KM. Pharmacologic prevention of microvascular and macrovascular complications in diabetes mellitus: implications of the results of recent clinical trials in type 2 diabetes. Am J Cardiovasc Drugs. 2012;12(1):7–22.

    Article  CAS  PubMed  Google Scholar 

  69. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  70. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28(2):103–17.

    Article  CAS  PubMed  Google Scholar 

  71. Lachin JM, Orchard TJ, Nathan DM. Update on cardiovascular outcomes at 30 years of the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):39–43.

    Article  PubMed  Google Scholar 

  72. Fong DS, Aiello L, Gardner TW, et al. Retinopathy in diabetes. Diabetes Care. 2004;27 Suppl 1:S84–7.

    Article  PubMed  Google Scholar 

  73. Harris MI. Undiagnosed NIDDM: clinical and public health issues. Diabetes Care. 1993;16(4):642–52.

    Article  CAS  PubMed  Google Scholar 

  74. American Diabetes Association. Microvascular complications and foot care. Sec 9. in standards of medical care in diabetes. Diabetes Care. 2016;39 Suppl 1:S72–80.

    Google Scholar 

  75. Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  76. The National Eye Institute Statistics. Diabetic Retinopathy. NEI. Available at: https://nei.nih.gov/eyedata/diabetic. Accessed 18 July 2016.

  77. Barr EL, Zimmet PZ, Welborn TA, et al. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation. 2007;116(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  78. Danaei G, Lawes CM, Vander Hoorn S, et al. Global and regional mortality from ischaemic heart disease and stroke attributable to higher-than-optimum blood glucose concentration: comparative risk assessment. Lancet. 2006;368:1651–9.

    Article  PubMed  Google Scholar 

  79. Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370(16):1514–23.

    Article  CAS  PubMed  Google Scholar 

  80. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics, Division of Health Interview Statistics, data from the National Health Interview Survey. Number (in Millions) of people with diabetes aged 35 years or older with self-reported heart disease or stroke, United States, 1997–2011. Available at http://www.cdc.gov/diabetes/statistics/cvd/fig1.htm. Accessed 24 June 2016.

  81. Ali MK, Bullard KM, Saaddine JB, et al. Achievement of goals in U.S. diabetes care, 1999–2010. N Engl J Med. 2013;368(17):1613–24.

    Article  CAS  PubMed  Google Scholar 

  82. Centers for Disease Control and Prevention, National Center for Health Statistics, Division of Health Care Statistics. Crude and age-adjusted hospital discharge rates for major cardiovascular disease as first-listed diagnosis per 1,000 diabetic population, United States, 1988–2006. Available at: http://www.cdc.gov/diabetes/statistics/complications_national.htm. Accessed 24 June 2016.

  83. Gregg EW, Sorlie P, Paulose-Ram R, et al. Prevalence of lower-extremity disease in the US adult population > = 40 years of age with and without diabetes: 1999–2000 national health and nutrition examination survey. Diabetes Care. 2004;27(7):1591–7.

    Article  PubMed  Google Scholar 

  84. Gross JL, de Azevedo MJ, Silveiro SP, et al. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.

    Article  PubMed  Google Scholar 

  85. United States Renal Data System. 2014 USRDS annual data report: Epidemiology of kidney disease in the United States: international comparisons. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. 2014. Available at: https://www.usrds.org/2014/view/v2_10.aspx. Accessed 24 June 2016.

  86. Diabetes Prevention Program (DPP) Research Group. The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deena Adimoolam , Varalakshmi Muthukrishnan or Jeanine B. Albu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Adimoolam, D., Muthukrishnan, V., Albu, J.B. (2017). Epidemiology. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-18741-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18741-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18740-2

  • Online ISBN: 978-3-319-18741-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics