Skip to main content

Cellular Mechanisms of Insulin Action

  • Reference work entry
  • First Online:
Principles of Diabetes Mellitus
  • 3601 Accesses

Abstract

Insulin is a highly pleiotropic hormone, with predominantly anabolic actions in a variety of tissues. Selectivity of final responses to insulin arises both from cell-specific expression of final effector proteins and by activation of different signaling pathways. We will consider first an overview of mechanisms of insulin action in normal human physiology, introducing the pathways, players, and principles involved, before returning to consider how these elements are modulated in insulin-resistant conditions such as obesity and type 2 diabetes. While the critical initial studies in this area were performed in animal and cell systems and later confirmed in humans, for the consideration of pathophysiology we will concentrate on the literature concerning insulin action in humans. The organizing principles of insulin signaling include the following: (1) presence of phosphorylation/dephosphorylation cascades, (2) phosphorylation of specific sites creates recognition domains that permit the formation of multimolecular complexes, (3) complex formation involves scaffolding or adaptor proteins, (4) these multimolecular complexes often target enzymes to specific intracellular locales where critical substrates reside, and (5) posttranslational modifications other than phosphorylation can effect the behavior of steps 2–4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ottensmeyer FP, Beniac DR, Luo RZ, Yip CC. Mechanism of transmembrane signaling: insulin binding and the insulin receptor. Biochemistry. 2000;39(40):12103–12.

    Article  CAS  PubMed  Google Scholar 

  2. Hubbard SR. The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harb Perspect Biol. 2013;5:a008946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sidle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol. 2012;3:34.

    Google Scholar 

  4. Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55:2565–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bouzarki K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou J-P, et al. Reduced activation of phosphotidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes. 2003;52:1319–25.

    Article  Google Scholar 

  6. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol. 2000;14(6):783–94.

    Article  CAS  PubMed  Google Scholar 

  7. Danielsson A, Ost A, Nystron FH, Stralfors P. Attenuation of insulin-stimulated insulin receptor substrate-1 serine 307 phosphorylation in insulin resistance of type 2 diabetes. J Biol Chem. 2005;280(41):34389–92.

    Article  CAS  PubMed  Google Scholar 

  8. Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J. Asprin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem. 2003;278(27):24944–50.

    Article  CAS  PubMed  Google Scholar 

  9. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. JBiol Chem. 2002;277(50):48115–21.

    Article  CAS  Google Scholar 

  10. Jiang G, Dallas-Yang Q, Liu F, Moller DE, Zhang BB. Salicylic acid reverses phorbol 12-myristate-13-acetate (PMA)- and tumor necrosis factor a (TNFa)-induced insulin receptor substrate 1 (IRS1) serine 307 phosphorylation and insulin resistance in human embryonic kidney 293 (HEK293) cells. J Biol Chem. 2003;278(1):180–6.

    Article  CAS  PubMed  Google Scholar 

  11. Liberman Z, Eldar-Finkelman H. Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling. J Biol Chem. 2005;280(6):4422–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gual P, Gremeaux T, Gonzalez T, Le Marchand-Brustel Y, Tanti J-F. MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612, and 632. Diabetologia. 2003;46:1532–42.

    Article  CAS  PubMed  Google Scholar 

  13. Mothe I, Van Obberghen E. Phosphorylation of insulin receptor substrate-1 on multiple serine residues 612, 632, 662 and 731, modulates insulin action. J Biol Chem. 1996;271:11222–7.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Soos TJ, Li X, Wu J, DeGennaro M, Sun XJ, et al. Protein kinase C theta inhibits insulin signaling by phosphorylating IRS1 at Ser1001. J Biol Chem. 2004;279:45304–7.

    Article  CAS  PubMed  Google Scholar 

  15. Tremblay F, Brule S, Um SH, Masuda K, Roden M, Sun XJ, et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and onbesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2007;104:14056–61.

    Google Scholar 

  16. Kriplani N, Hermida MA, Brown ER, Leslie NR. Class 1 PI 3-kinases: function and evolution. Adv Biol Reg. 2015;59:53–64.

    Google Scholar 

  17. Virkamaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest. 1999;103(7):931–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shepherd PR. Mechanisms regulating phosphainositide 3-kinase signalling in insulin-sentsitive tissues. Acta Physiol Scand. 2005;183:3–12.

    Article  CAS  PubMed  Google Scholar 

  19. Faes S, Dormond O. PI3K and AKT: unfaithful partners in cancer. Int J Mol Sci. 2015;16:21138–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drospohila DSTPK61 kinase. Curr Biol. 1997;7(10):776–89.

    Article  CAS  PubMed  Google Scholar 

  21. Farese RV. Insulin-sensitive phospholipid signaling systems and glucose transport. Update II. Exp Biol Med. 2001;226(4):283–95.

    Article  CAS  Google Scholar 

  22. Valverde AM, Lorenzo M, Navarro P, Mur C, Benito M. Okadiac acid inhibits insulin-induced glucose transport in fetal brown adipocytes in an Akt-independent and protein kinase C zeta-dependent manner. FEBS Lett. 2000;472(1):153–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sajan MP, Standaert ML, Bandyopadhyay G, Quon MJ, Burke TR, Farese RV. Protein kinase C-zeta and phosphoinositide-dependent protein kinase-1 are required for insulin induced activation of ERK in rat adipocytes. J Biol Chem. 1999;274(43):30495–500.

    Article  CAS  PubMed  Google Scholar 

  24. Ravichandran LV, Esposito DL, Chen J, Quon MJ. Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem. 2001;276(5):3543–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kellerer M, Mushack J, Seffer E, Mischsak H, Ullrich A, Haring HU. Protein kinase C isoforms alpha, delta and theta require insulin receptor substrate-1 to inhibit the tyrosine kinase asctivty of the insulin receptor in human kidney embbyronic cells (HEK 293 cells). Diabetologia. 1998;41(7):833–8.

    Article  CAS  PubMed  Google Scholar 

  26. Farese RV, Sajan MP, Standaert ML. Atypical protein kinase C in insulin action and insulin resistance. Biochem Soc Trans. 2005;33:350–3.

    Article  CAS  PubMed  Google Scholar 

  27. Kitamura T, Ogawa W, Sakaue H, Hino Y, Kuroda S, Takata M, et al. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol. 1997;18:3708–17.

    Article  Google Scholar 

  28. Cross BAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.

    Article  CAS  PubMed  Google Scholar 

  29. Amar S, Belmaker RH, Agam G. The possible involvement of glycogen synthase kinase-3 (GSK-3) in diabetes, cancer and central nervous system diseases. Curr Diabetes Des. 2011;17:2264–77.

    CAS  Google Scholar 

  30. Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia. 2015;58:19–30.

    Article  CAS  PubMed  Google Scholar 

  32. Musi N, Goodyear LJ. Insulin resistance and improvements in signal transduction. Endocrine. 2006;29:73–80.

    Article  CAS  PubMed  Google Scholar 

  33. Thong FSL, Bilan PJ, Klip A. The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes. 2007;56:414–23.

    Article  CAS  PubMed  Google Scholar 

  34. Chakrabarti P, Kandror KV. The role of mTOR in lipid homeostasis and diabetes progression. Curr Opin Endocrinol Diabetes Obes. 2015;22:340–6.

    Article  CAS  PubMed  Google Scholar 

  35. Halse R, Rochford JJ, McCormack JG, Vandendeede JR, Hemmings BA, Yeaman SJ. Control of glycogen synthesis in cultured human muscle cells. J Biol Chem. 1999;274(2):776–80.

    Article  CAS  PubMed  Google Scholar 

  36. Sanchez AMJ, Candau RB, Bernaedi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014;71:1657–71.

    Article  CAS  PubMed  Google Scholar 

  37. Klip A, Sun Y, Chiu TT, Foley KP. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol. 2014;306:C879–86.

    Article  CAS  PubMed  Google Scholar 

  38. Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signaling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal. 2011;23:1546–54.

    Article  CAS  PubMed  Google Scholar 

  39. Sylow L, Jensen TE, Kleinert M, Hojlund K, Kiens B, Wojtaszewski J, et al. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes. 2013;62:1865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord. 2014;15:79–97.

    Article  CAS  PubMed  Google Scholar 

  41. Elchebly M, Cheng A, Tremblay ML. Modulation of insulin signaling by protein tyrosine phosphatases. J Mol Med. 2000;78(9):473–82.

    Google Scholar 

  42. Gurzov EN, Stanley WJ, Brodnicki TC, Thomas HE. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab. 2015;26:30–9.

    Article  CAS  PubMed  Google Scholar 

  43. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283:1544–8.

    Article  CAS  PubMed  Google Scholar 

  44. Rocchi S, Tartare-Deckert S, Sawka-Verhelle D, Gamha A, Van Obberghen E. Interaction of SH2-containing protein tyrosine phosphatase 2 with the insulin receptor and the insulin-like growth factor-I receptor: studies of the domains involved using the yeast two-hybrid system. Endocrinology. 1996;137:4944–52.

    Article  CAS  PubMed  Google Scholar 

  45. Sugimoto S, Wandless TJ, Sholeson SE, Neel BG, Walsh CT. Activation of the SH2-containing protein tyrosine phosphatase, SH-PTP2, by phosphotyrosine-containing peptides derived from insulin receptor substrate-1. J Biol Chem. 1994;269:13614–22.

    CAS  PubMed  Google Scholar 

  46. Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov. 2006;5:333–42.

    Article  CAS  PubMed  Google Scholar 

  47. Brognard J, Sierecki E, Gao T, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell. 2007;25:917–31.

    Article  CAS  PubMed  Google Scholar 

  48. Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, et al. Ras activation of the Raf kinaseL tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res. 2001;56:127–55.

    Article  CAS  PubMed  Google Scholar 

  49. Coffer PJ, van Puijenbroek A, Burgering BM, Klop-de Jonge M, Koenderman L, Bos JL, et al. Insulin activates Stat3 independently of p21ras-ERK and PI-3K signal transduction. Oncogene. 1997;15(21):2529–39.

    Article  CAS  PubMed  Google Scholar 

  50. Saltiel AR, Pessin JE. Insulin signaling in microdomains of the plasma membrane. Traffic. 2003;4:711–6.

    Article  CAS  PubMed  Google Scholar 

  51. Scheepers A, Joost HG, Schurmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enter Nutr. 2004;28:364–71.

    Article  CAS  Google Scholar 

  52. Hou JC, Pessin JE. Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking. Curr Opin Cell Biol. 2007;19:466–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Richter EA, Hargreaves M. Exercise, GLUT4 and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.

    Article  CAS  PubMed  Google Scholar 

  54. Brady MJ, Saltiel AR. The role of protein phosphatase-1 in insulin action. Recent Prog Horm Res. 2001;56:157–73.

    Article  CAS  PubMed  Google Scholar 

  55. Bak J, Jacobsen U, Jorgensen F, Pedersen O. Insulin receptor function and glycogen sythase activity in skeletal muscle biopsies from the patients with insulin-dependent diabetes mellitus: effects of physical training. J Clin Endocrinol Metab. 1989;69:158–64.

    Article  CAS  PubMed  Google Scholar 

  56. Handberg A, Vaag A, Vinten J, Beck-Nielsen H. Decreased tyrosine kinase activity in partially purified insulin receptors from muscle of young non-obese first degree relatives of patients with Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1993;36:668–74.

    Article  CAS  PubMed  Google Scholar 

  57. Kolterman OG, Reaven GM, Olefsky JM. Relationship between in vivo insulin resistance and decreased insulin receptors in obese man. J Clin Endocrinol Metab. 1979;48:487–94.

    Article  CAS  PubMed  Google Scholar 

  58. Hunter SJ, Garvey WT. Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction and the glucose transport effector system. Am J Med. 1998;105(4):331–45.

    Article  CAS  PubMed  Google Scholar 

  59. Obermaier-Kusser B, White MF, Pongrantz DE, Su Z, Ermel B, Muhlbacher C, et al. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus. J Biol Chem. 1989;264:9497–504.

    CAS  PubMed  Google Scholar 

  60. Freidenberg GR, Henry RR, Klein HH, Reichart DR, Olefsky JM. Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjects. J Clin Invest. 1987;79:240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kellerer M, Coghlan M, Capp E, Muhlhofer A, Kroder G, Mosthaf L, et al. Mechanism of insulin receptor kinase inhibition in non-insulin-dependent diabetes mellitus patients. J Clin Invest. 1995;96:6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. J Clin Invest. 1988;82:1398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lei H-H, Coresh J, Shuldiner AR, Boerwinkle E, Brancati FL. Variants of the insulin receptor substrate-1 and fatty acid binding protein 2 genes and the risk of type 2 diabetes, obesity, and hyperinsulinemia in African Americans. Diabetes. 1999;48(9):1868–72.

    Article  CAS  PubMed  Google Scholar 

  64. McGettrick AJ, Feener EP, Kahn CR. Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit insulin receptor phosphorylation. J Biol Chem. 2005;280:6441–6.

    Article  CAS  PubMed  Google Scholar 

  65. Ura S, Araki E, Kishikawa H, Shirotani T, Todaka M, Isami S, et al. Molecular scanning of the insulin receptor substrate-1 (IRS-1) gene in Japanese patients with NIDDM: identification of five novel polymorphisms. Diabetologia. 1996;39:600–8.

    Article  CAS  PubMed  Google Scholar 

  66. Florez JC, Sjogren M, Burtt N, Ortho-Melander M, Schayer S, Sun M, et al. Association testing in 9,000 people fails to confirm the association of the insulin receptor substrate-1 G972R polymorphism with type 2 diabetes. Diabetes. 2004;53:3313–9.

    Article  CAS  PubMed  Google Scholar 

  67. Bernal D, Almind K, Yenush L, Ayoub M, Zhang Y, Rosshani L, et al. Insulin receptor substrate-2 amino acid polymorphisms are not associated with random type 2 diabetes among caucasians. Diabetes. 1998;47:976–9.

    Article  CAS  PubMed  Google Scholar 

  68. Bektas A, Warram JH, White MF, Krolewski AS, Doria A. Exclusion of insulin receptor substrate 2 (IRS-2) as a major locus for early-onset autosomal dominant type 2 diabetes. Diabetes. 1999;48:640–2.

    Article  CAS  PubMed  Google Scholar 

  69. Le Fur S, Le Stunff C, Bougneres P. Increased insulin resistance in obese children who have both 972 IRS-1 and 1057 IRS-2 polymorphisms. Diabetes. 2002;51 Suppl 3:S304–7.

    Article  PubMed  Google Scholar 

  70. Rondinone CM, Wang L-M, Lonnroth P, Wesslau C, Pierce JH, Smith U. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phospahtidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1997;94(4):4171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andreelli F, Laville M, Ducluzeau P-H, Vega N, Vallier P, Khalfallah Y, et al. Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia. 1999;42:358–64.

    Article  CAS  PubMed  Google Scholar 

  72. Bjornholm M, Kawano Y, Lehtihet M, Zierath JR. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes. 1997;46:524–7.

    Article  CAS  PubMed  Google Scholar 

  73. Carvalho E, Eliasson B, Wesslau C, Smith U. Impaired phosphorylation and insulin stimulated translocation to the plasma membrane of protein kinaseB/Akt in adipocytes from Type II diabetic subjects. Diabetologia. 2000;43:1107–15.

    Article  CAS  PubMed  Google Scholar 

  74. Krook A, Roth RA, Jiang XJ, Zierath JR, Wallberg-Henriksson H. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes. 1998;47:1281–6.

    Article  CAS  PubMed  Google Scholar 

  75. Krook A, Bjornholm M, Galuska D, Jiang XJ, Fahlman R, Meyers MG, et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes. 2000;49(2):284–92.

    Article  CAS  PubMed  Google Scholar 

  76. Gregor MF, Hotamisligil GS. Inflammatiory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  77. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999;48(6):1270–4.

    Article  CAS  PubMed  Google Scholar 

  78. Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE, et al. Mechanisms by which high-dose asprin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002;109:1321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kossila M, Sinkovic M, Karkkaiinen P, Laukkanen MO, Miettinen R, Rissanen J, et al. Gene coding for the catalytic subunit p110ß of human phosphatidylinositol 3-kinase. Cloniong, genomic structure, and screening for variant in patients with type 2 diabetes. Diabetes. 2000;49(10):1740–3.

    Google Scholar 

  80. Hansen T, Andersen CB, Echwald SM, Urhammer SA, Clausen JO, Vestergaard H, et al. Identification of a common amino acid polymorphism in the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. Diabetes. 1997;46:494–501.

    Article  CAS  PubMed  Google Scholar 

  81. Baier LJ, Wiedrich C, Hanson RL, Bogardus C. Variant in the regulatory subunit of phosphatidylinositol 3-kinase (p85alpha). Diabetes. 1998;47:973–5.

    Google Scholar 

  82. Kim Y-B, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest. 1999;104(9):733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000;105(3):311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Karlsson HKR, Zierath JR, Kane S, Krook A, Lienhard GE, Wallberg-Henriksson H. Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes. 2005;54:1692–7.

    Article  CAS  PubMed  Google Scholar 

  85. Itani SI, Pories WJ, Macdonald KG, Dohm GL. Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism. 2001;50(5):553–7.

    Article  CAS  PubMed  Google Scholar 

  86. Farese RV, Lee MC, Sajan MP. Atypical PKC: a target for treating insulin-resistant disorders of obesity, the metabolic syndrome and type 2 diabetes mellitus. Expert Opin Ther Targets. 2014;18:1163–75.

    Article  CAS  PubMed  Google Scholar 

  87. Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism. 1997;46:1140–5.

    Article  CAS  PubMed  Google Scholar 

  88. Cheung A, Kusari J, Jansen D, Bandyopadhyay D, Kusari A, Bryer-Ash M. Marked impairment of protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type 2 diabetes mellitus. J Lab Clin Med. 1999;134(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  89. Kusari J, Kenner KA, Suh K-L, Hill DE, Henry RR. Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase1B protein content are associated with insulin action and resistance. J Clin Invest. 1994;93:1156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Worm D, Vinten J, Staehr P, Henriksen JE, Handberg A, Beck-Nielsen H. Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM paitents compared with control subjects. Diabetologia. 1996;39:1208–14.

    Article  CAS  PubMed  Google Scholar 

  91. Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest. 1997;100(2):449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Palmer ND, Bento JC, Mychaleckyi CD, LAngefield JK, Campbell JM. Norris sM, et al. Associations of protein tyrosine phosphatase 1B gene polymorphsims with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (IRAS) family study. Diabetes. 2004;53:3013–9.

    Article  CAS  PubMed  Google Scholar 

  93. Florez JC, Agapakis CM, Burtt NP, Sun M, Almgren P, Rastam L, et al. Association testiing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people. Diabetes. 2005;54:1881–91.

    Article  Google Scholar 

  94. Meshkani R, Taghikhani M, Al-Kateb H, Larijani B, Khatami S, Sidiropoulos GK, et al. Polymorphmisms with the protein tyrosine phosphatase 1B (PTPN1) gene and promoter: functional characterization and association with type 2 diabetes and related metabolic traits. Clin Chem. 2007;53:1585–92.

    Article  CAS  PubMed  Google Scholar 

  95. Li YY, Xiao R, Li CP, Huangfu J, Mao JF. Increased plasma levels of FABP4 and PTEN is associated with more severe insulin resistance in women with gestational diabetes mellitus. Med Sci Monit. 2015;21:426–31.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pak A, Barber TM, Van de Bunt M, Rudge SA, Zhang Q, Lachlan KL, et al. PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N Engl J Med. 2012;367:1002–11.

    Article  CAS  Google Scholar 

  97. Ishihara H, Sasaoka T, Kagawa S, Murakami S, Fukui K, Kawagishi Y, et al. Association of the polymorphisms in the 5′-untranslated region of PTEN gene with type 2 diabetes in a Japanese population. FEBS Lett. 2003;20:450–4.

    Article  CAS  Google Scholar 

  98. Hansen L, Jensen LL, Ekstrom CT, Vestergaard H, Hansen T, Pedersen O. Studies of variability in the PTEN gene among Danish caucasian patients with type II diabetes mellitus. Diabetologia. 2001;44(2):237–40.

    Article  CAS  PubMed  Google Scholar 

  99. Suwa A, Kurama T, Shimokawa T. SHIP2 and its involvement in various diseases. Expert Opin Ther Targets. 2010;14:727–37.

    Article  CAS  PubMed  Google Scholar 

  100. Cozzone D, Frojdo S, Disse E, Debard C, Laville M, Pirola L, et al. Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients. Diabetologia. 2008;51:512–21.

    Article  CAS  PubMed  Google Scholar 

  101. Pontiroli AE, Capra F, Vegila F, Ferrari M, Xiang KS, Bell GI, et al. Genetic contribution of polymorphism of the GLUT1 and GLUT4 genes to the susceptibility to type 2 (non-insulin-dependent) diabetes mellitus in different populations. Acta Diabetol. 1996;33(3):193–7.

    Article  CAS  PubMed  Google Scholar 

  102. Lesage S, Zouali H, Vionnet N, Philippi A, Velho G, Serradas P, et al. Genetic analyses of glucose transporter genes in French non-insulin-dependent diabetic families. Diabetes Metab. 1997;23(2):137–42.

    CAS  PubMed  Google Scholar 

  103. Garvey WT, Maianu L, Huecksteadt TP, Birnbaum MJ, Molina JM, Ciaraldi TP. Pretranslational suppression of GLUT4 glucose transporters causes insulin resistance in type II diabetes. J Clin Invest. 1991;87:1072–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, et al. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes. 1990;39:865–70.

    Article  CAS  PubMed  Google Scholar 

  105. Garvey WT, Maianu L, Zhu J-H, Brechtel-Hook G, Wallace P, Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest. 1998;101:2377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ryder JW, Yang J, GAluska D, Rincon J, Bjornholm M, Krook A, et al. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 3 diabetic patients. Diabetes. 2000;49(4):647–54.

    Article  CAS  PubMed  Google Scholar 

  107. Thorburn AW, Gumbiner B, Bulacan F, Wallace P, Henry RR. Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin dependent (Type II) diabetes independent of impaired glucose uptake. J Clin Invest. 1990;85:522–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bjorbaek C, Echwald SM, Hubricht P, Vestergaard H, Hansen T, Zierath J, et al. Genetic varients in promoters and coding regions of the muscle glycogen synthase and the insulin responsive GLUT4 genes in NIDDM. Diabetes. 1994;43:976–83.

    Article  CAS  PubMed  Google Scholar 

  109. Vestergaard H, Lund S, Larsen FS, Bjerrum OJ, Pedersen O. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1993;91:2342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bjorbaek C, Vik TA, Echwald SM, Yang P-Y, Vestergaard H, Wang JP, et al. Cloning of a human insulin-stimulated protein kinase (ISPK-1) gene and analysis of coding regions and mRNA levels of the ISPK-1 and protein phosphatase-1 genes in muscle from NIDDM patients. Diabetes. 1995;44:90–7.

    Article  CAS  PubMed  Google Scholar 

  111. Freymond D, Bogardus C, Okubo M, Stone K, Mott D. Impaired insulin-stimulated muscle glycogen synthase activation in vivo in man is related to low fasting glycogen synthase phosphatase activity. J Clin Invest. 1988;82:1503–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nikoulina SE, Ciaraldi TP, Mudaliar S, Mohideen P, Carter L, Henry RR. Potential role of glycogen synthase kinase 3 in skeletal muscle insulin resistance of Type 2 diabetes. Diabetes. 2000;49:263–71.

    Article  CAS  PubMed  Google Scholar 

  113. Myslicki JP, Belke DD, Shearer J. Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise. Appl Physiol Nutr Metab. 2014;39:1205–13.

    Article  CAS  PubMed  Google Scholar 

  114. LaBarge S, Migdal C, Schenk S. Is acetylation a metabolic rheostat that regulates skeletal muscle insulin action? Mol Cells. 2015;38:297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Risso G, Blaustein M, Pozzi B, Mammi P, Srebrow A. Akt/PKB: one kinase, many modifications. Biochem J. 2015;468:203–14.

    Article  CAS  PubMed  Google Scholar 

  116. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  117. Sireesh D, Bhakkiyalakshmi E, Ramkumar KM, Rathinakumar S, Jennifer PS, Rajaguru P, et al. Targeting SUMOylation cascade for diabetes management. Curr Drug Targets. 2014;15:1094–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore P. Ciaraldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Ciaraldi, T.P. (2017). Cellular Mechanisms of Insulin Action. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-18741-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18741-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18740-2

  • Online ISBN: 978-3-319-18741-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics