Skip to main content

HIV Infection and Diabetes

  • Reference work entry
  • First Online:
Book cover Principles of Diabetes Mellitus

Abstract

HIV-infected individuals are at high risk for abnormal glucose metabolism, speculated to be multifactorial in etiology, including, but not limited to, the effects of HIV infection itself, common comorbidities, and the use of antiretroviral medications. Since the introduction of highly active HAART therapy, it has been well recognized that there is considerable variability among individual agents with newer medications generally being associated with a less severe metabolic profile. The postulated mechanisms by which antiretroviral causes dysglycemia include via direct effects on peripheral and hepatic insulin sensitivity, as well as pancreatic β-cell function, mitochondrial toxicity, and the development of peripheral lipoatrophy and/or visceral fat accumulation. Changes in body composition, including peripheral lipoatrophy (rarely seen in the setting of contemporary antiretroviral agents) and lipohypertrophy, are also seen. It is recommended that HIV-infected individuals be screened for the presence of glucose abnormalities with a fasting glucose prior to the initiation of ARV therapy, 1–3 months after starting treatment and then every 3–6 months. There are increasing data that the HbA1c may underestimate glucose derangements.

Overall, avoidance of older ARV regimens associated with metabolic disease is recommended when possible. Oral diabetes medications and insulin can safely be used in individuals with HIV. First-line treatment is with metformin, though one must screen for risk factors associated with lactic acidosis. Use of PPARs has fallen out of favor in the setting of adverse cardiovascular effects reported with rosiglitazone use. Limited data exist on the use of other oral agents (sulfonylureas, SGLT2 inhibitors, DPP4 inhibitors) and injectables (GLP-1 agonists) in HIV-infected individuals. The current recommended strategy of peripheral lipoatrophy is to replace the older NRTIs most closely associated with lipoatrophy with more commonly used and newer NRTIs. Tesamorelin, a growth hormone releasing hormone analogue, may be useful in reduction of VAT in the setting of lipohypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). 1983. Rev Invest Clin. 2004;56(2):126–9.

    CAS  PubMed  Google Scholar 

  2. Gallo RC, Salahuddin SZ, Popovic M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224(4648):500–3.

    Article  CAS  PubMed  Google Scholar 

  3. Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224(4648):497–500.

    Article  CAS  PubMed  Google Scholar 

  4. Brook I. Approval of zidovudine (AZT) for acquired immunodeficiency syndrome. A challenge to the medical and pharmaceutical communities. JAMA. 1987;258(11):1517.

    Article  CAS  PubMed  Google Scholar 

  5. Moyle GJ, Nelson MR, Hawkins D, Gazzard BG. The use and toxicity of didanosine (ddI) in HIV antibody-positive individuals intolerant to zidovudine (AZT). Q J Med. 1993;86(3):155–63.

    CAS  PubMed  Google Scholar 

  6. Munshi MN, Martin RE, Fonseca VA. Hyperosmolar nonketotic diabetic syndrome following treatment of human immunodeficiency virus infection with didanosine. Diabetes Care. 1994;17(4):316–7.

    Article  CAS  PubMed  Google Scholar 

  7. Vittecoq D, Zucman D, Auperin I, Passeron J. Transient insulin-dependent diabetes mellitus in an HIV-infected patient receiving didanosine. AIDS. 1994;8(9):1351.

    Article  CAS  PubMed  Google Scholar 

  8. Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med. 1998;338(13):853–60.

    Article  PubMed  Google Scholar 

  9. Dube MP, Johnson DL, Currier JS, Leedom JM. Protease inhibitor-associated hyperglycaemia. Lancet. 1997;350(9079):713–4.

    Article  CAS  PubMed  Google Scholar 

  10. Lo JC, Mulligan K, Tai VW, Algren H, Schambelan M. “Buffalo hump” in men with HIV-1 infection. Lancet. 1998;351(9106):867–70.

    Article  CAS  PubMed  Google Scholar 

  11. Miller KD, Jones E, Yanovski JA, Shankar R, Feuerstein I, Falloon J. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet. 1998;351(9106):871–5.

    Article  CAS  PubMed  Google Scholar 

  12. Miller KK, Daly PA, Sentochnik D, et al. Pseudo-cushing’s syndrome in human immunodeficiency virus-infected patients. Clin Infect Dis. 1998;27(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  13. Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12(7):F51–8.

    Article  CAS  PubMed  Google Scholar 

  14. Saint-Marc T, Partisani M, Poizot-Martin I, et al. A syndrome of peripheral fat wasting (lipodystrophy) in patients receiving long-term nucleoside analogue therapy. AIDS. 1999;13(13):1659–67.

    Article  CAS  PubMed  Google Scholar 

  15. Carr A, Samaras K, Chisholm DJ, Cooper DA. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet. 1998;351(9119):1881–3.

    Article  CAS  PubMed  Google Scholar 

  16. Brown TT, Cole SR, Li X, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84.

    Article  PubMed  Google Scholar 

  17. De Wit S, Sabin CA, Weber R, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D:A:D) study. Diabetes Care. 2008;31(6):1224–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rasmussen LD, Mathiesen ER, Kronborg G, Pedersen C, Gerstoft J, Obel N. Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS One. 2012;7(9):e44575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Polsky S, Floris-Moore M, Schoenbaum EE, Klein RS, Arnsten JH, Howard AA. Incident hyperglycaemia among older adults with or at-risk for HIV infection. Antivir Ther. 2011;16(2):181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Monroe AK, Glesby MJ, Brown TT. Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis. 2015;60(3):453–62.

    Article  CAS  PubMed  Google Scholar 

  21. Mehta SH, Moore RD, Thomas DL, Chaisson RE, Sulkowski MS. The effect of HAART and HCV infection on the development of hyperglycemia among HIV-infected persons. J Acquir Immune Defic Syndr. 2003;33(5):577–84.

    Article  CAS  PubMed  Google Scholar 

  22. Howard AA, Lo Y, Floris-Moore M, Klein RS, Fleischer N, Schoenbaum EE. Hepatitis C virus infection is associated with insulin resistance among older adults with or at risk of HIV infection. AIDS. 2007;21(5):633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Monroe AK, Dobs AS, Xu X, et al. Sex hormones, insulin resistance, and diabetes mellitus among men with or at risk for HIV infection. J Acquir Immune Defic Syndr. 2011;58(2):173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Howard AA, Hoover DR, Anastos K, et al. The effects of opiate use and hepatitis C virus infection on risk of diabetes mellitus in the women’s interagency HIV study. J Acquir Immune Defic Syndr. 2010;54(2):152–9.

    PubMed  PubMed Central  Google Scholar 

  25. Tsiodras S, Mantzoros C, Hammer S, Samore M. Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy: a 5-year cohort study. Arch Intern Med. 2000;160(13):2050–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ledergerber B, Furrer H, Rickenbach M, et al. Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the swiss HIV cohort study. Clin Infect Dis. 2007;45(1):111–9.

    Article  PubMed  Google Scholar 

  27. Frontini M, Chotalia J, Spizale L, Onya W, Ruiz M, Clark RA. Sex and race effects on risk for selected outcomes among elderly HIV-infected patients. J Int Assoc Physicians AIDS Care (Chic). 2012;11(1):12–5.

    Article  Google Scholar 

  28. Adeyemi OM, Livak B, Orsi J, et al. Vitamin D and insulin resistance in non-diabetic women’s interagency HIV study participants. AIDS Patient Care STDS. 2013;27(6):320–5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Buchacz K, Baker RK, Palella Jr FJ, et al. Disparities in prevalence of key chronic diseases by gender and race/ethnicity among antiretroviral-treated HIV-infected adults in the US. Antivir Ther. 2013;18(1):65–75.

    Article  PubMed  Google Scholar 

  30. Tien PC, Schneider MF, Cole SR, et al. Antiretroviral therapy exposure and incidence of diabetes mellitus in the women’s interagency HIV study. AIDS. 2007;21(13):1739–45.

    Article  CAS  PubMed  Google Scholar 

  31. Danoff A, Shi Q, Justman J, et al. Oral glucose tolerance and insulin sensitivity are unaffected by HIV infection or antiretroviral therapy in overweight women. J Acquir Immune Defic Syndr. 2005;39(1):55–62.

    Article  PubMed  Google Scholar 

  32. Mulligan K, Anastos K, Justman J, et al. Fat distribution in HIV-infected women in the United States: DEXA substudy in the women’s interagency HIV study. J Acquir Immune Defic Syndr. 2005;38(1):18–22.

    Article  PubMed  Google Scholar 

  33. Willig AL, Westfall AO, Overton ET, et al. Obesity is associated with race/sex disparities in diabetes and hypertension prevalence, but not cardiovascular disease, among HIV-infected adults. AIDS Res Hum Retroviruses. 2015;31(9):898–904.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aebi-Popp K, Lapaire O, Glass TR, et al. Pregnancy and delivery outcomes of HIV infected women in Switzerland 2003–2008. J Perinat Med. 2010;38(4):353–8.

    Article  PubMed  Google Scholar 

  35. Moore R, Adler H, Jackson V, et al. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis. Int J STD AIDS. 2015;0(0):1–5

    Google Scholar 

  36. Marti C, Pena JM, Bates I, et al. Obstetric and perinatal complications in HIV-infected women. Analysis of a cohort of 167 pregnancies between 1997 and 2003. Acta Obstet Gynecol Scand. 2007;86(4):409–15.

    Article  PubMed  Google Scholar 

  37. Gonzalez-Tome MI, Ramos Amador JT, Guillen S, et al. Gestational diabetes mellitus in a cohort of HIV-1 infected women. HIV Med. 2008;9(10):868–74.

    Article  CAS  PubMed  Google Scholar 

  38. Jao J, Wong M, Van Dyke RB, et al. Gestational diabetes mellitus in HIV-infected and -uninfected pregnant women in cameroon. Diabetes Care. 2013;36(9):e141–2.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hitti J, Andersen J, McComsey G, et al. Protease inhibitor-based antiretroviral therapy and glucose tolerance in pregnancy: AIDS clinical trials group A5084. Am J Obstet Gynecol. 2007;196(4):331.e1–7.

    Google Scholar 

  40. Tang JH, Sheffield JS, Grimes J, et al. Effect of protease inhibitor therapy on glucose intolerance in pregnancy. Obstet Gynecol. 2006;107(5):1115–9.

    Article  CAS  PubMed  Google Scholar 

  41. Watts DH, Balasubramanian R, Maupin Jr RT, et al. Maternal toxicity and pregnancy complications in human immunodeficiency virus-infected women receiving antiretroviral therapy: PACTG 316. Am J Obstet Gynecol. 2004;190(2):506–16.

    Article  CAS  PubMed  Google Scholar 

  42. Tuomala RE, Kalish LA, Zorilla C, et al. Changes in total, CD4+, and CD8+ lymphocytes during pregnancy and 1 year postpartum in human immunodeficiency virus-infected women. The women and infants transmission study. Obstet Gynecol. 1997;89(6):967–74.

    Article  CAS  PubMed  Google Scholar 

  43. Hadigan C, Corcoran C, Piecuch S, Rodriguez W, Grinspoon S. Hyperandrogenemia in human immunodeficiency virus-infected women with the lipodystrophy syndrome. J Clin Endocrinol Metab. 2000;85(10):3544–50.

    CAS  PubMed  Google Scholar 

  44. Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353(9170):2093–9.

    Article  CAS  PubMed  Google Scholar 

  45. Saves M, Chene G, Dellamonica P. Incidence of lipodystrophy and glucose and lipid abnormalities during the follow-up of a cohort of HIV-infected patients started on a protease inhibitor (PI)-containing regimen. In: 9th conference on retroviruses and opportunistic infections, Seattle, WA 302. 2002.

    Google Scholar 

  46. Hommes MJ, Romijn JA, Endert E, Eeftinck Schattenkerk JK, Sauerwein HP. Insulin sensitivity and insulin clearance in human immunodeficiency virus-infected men. Metabolism. 1991;40(6):651–6.

    Article  CAS  PubMed  Google Scholar 

  47. Heyligenberg R, Romijn JA, Hommes MJ, Endert E, Eeftinck Schattenkerk JK, Sauerwein HP. Non-insulin-mediated glucose uptake in human immunodeficiency virus-infected men. Clin Sci (Lond). 1993;84(2):209–16.

    Article  CAS  Google Scholar 

  48. Stein TP, Nutinsky C, Condoluci D, Schluter MD, Leskiw MJ. Protein and energy substrate metabolism in AIDS patients. Metabolism. 1990;39(8):876–81.

    Article  CAS  PubMed  Google Scholar 

  49. Brown TT, Li X, Cole SR, et al. Cumulative exposure to nucleoside analogue reverse transcriptase inhibitors is associated with insulin resistance markers in the multicenter AIDS cohort study. AIDS. 2005;19(13):1375–83.

    Article  CAS  PubMed  Google Scholar 

  50. Galli L, Salpietro S, Pellicciotta G, et al. Risk of type 2 diabetes among HIV-infected and healthy subjects in Italy. Eur J Epidemiol. 2012;27(8):657–65.

    Article  PubMed  Google Scholar 

  51. Rasmussen LD, Mathiesen ER, Kronborg G, Pedersen C, Gerstoft J, Obel N. Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS One. 2012;7(9), e44575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown TT, Tassiopoulos K, Bosch RJ, Shikuma C, McComsey GA. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010;33(10):2244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Capeau J, Bouteloup V, Katlama C, et al. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS. 2012;26(3):303–14.

    Article  CAS  PubMed  Google Scholar 

  54. Panel on antiretroviral guidelines for adults and adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at http://Aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf. Accessed 1 Oct 2015.

  55. Lo JC, Kazemi MR, Hsue PY, et al. The relationship between nucleoside analogue treatment duration, insulin resistance, and fasting arterialized lactate level in patients with HIV infection. Clin Infect Dis. 2005;41(9):1335–40.

    Article  CAS  PubMed  Google Scholar 

  56. Blumer RM, van Vonderen MG, Sutinen J, et al. Zidovudine/lamivudine contributes to insulin resistance within 3 months of starting combination antiretroviral therapy. AIDS. 2008;22(2):227–36.

    Article  PubMed  CAS  Google Scholar 

  57. Walli R, Herfort O, Michl GM, et al. Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1-infected patients. AIDS. 1998;12(15):F167–73.

    Article  CAS  PubMed  Google Scholar 

  58. Walli R, Goebel FD, Demant T. Impaired glucose tolerance and protease inhibitors. Ann Intern Med. 1998;129(10):837–8.

    Article  CAS  PubMed  Google Scholar 

  59. Mulligan K, Grunfeld C, Tai VW, et al. Hyperlipidemia and insulin resistance are induced by protease inhibitors independent of changes in body composition in patients with HIV infection. J Acquir Immune Defic Syndr. 2000;23(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  60. Visnegarwala F, Darcourt J, Sajja P, et al. Changes in metabolic profile among antiretroviral-naive patients initiating protease inhibitor versus non-protease inhibitor containing HAART regimens. J Acquir Immune Defic Syndr. 2003;33(5):653–5.

    Article  PubMed  Google Scholar 

  61. Noor MA, Parker RA, O’Mara E, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults. AIDS. 2004;18(16):2137–44.

    Article  CAS  PubMed  Google Scholar 

  62. Noor MA, Flint OP, Maa JF, Parker RA. Effects of atazanavir/ritonavir and lopinavir/ritonavir on glucose uptake and insulin sensitivity: demonstrable differences in vitro and clinically. AIDS. 2006;20(14):1813–21.

    Article  CAS  PubMed  Google Scholar 

  63. Guffanti M, Caumo A, Galli L, et al. Switching to unboosted atazanavir improves glucose tolerance in highly pretreated HIV-1 infected subjects. Eur J Endocrinol. 2007;156(4):503–9.

    Article  CAS  PubMed  Google Scholar 

  64. Yan Q, Hruz PW. Direct comparison of the acute in vivo effects of HIV protease inhibitors on peripheral glucose disposal. J Acquir Immune Defic Syndr. 2005;40(4):398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. d’Ettorre G, Ceccarelli G, Zaccarelli M, et al. Impact of switching from lopinavir/ritonavir to boosted and un-boosted atazanavir on glucose metabolism: ATAzanavir & GLUcose metabolism (ATAGLU) study. Int J STD AIDS. 2015;0(0): 1–6

    Google Scholar 

  66. Vrouenraets SM, Wit FW, Fernandez Garcia E, et al. Randomized comparison of metabolic and renal effects of saquinavir/r or atazanavir/r plus tenofovir/emtricitabine in treatment-naive HIV-1-infected patients. HIV Med. 2011;12(10):620–31.

    Article  CAS  PubMed  Google Scholar 

  67. Capel E, Auclair M, Caron-Debarle M, Capeau J. Effects of ritonavir-boosted darunavir, atazanavir and lopinavir on adipose functions and insulin sensitivity in murine and human adipocytes. Antivir Ther. 2012;17(3):549–56.

    Article  CAS  PubMed  Google Scholar 

  68. Arathoon E, Schneider S, Baraldi E, et al. Effects of once-daily darunavir/ritonavir versus lopinavir/ritonavir on metabolic parameters in treatment-naive HIV-1-infected patients at week 96: ARTEMIS. Int J STD AIDS. 2013;24(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  69. Aberg JA, Tebas P, Overton ET, et al. Metabolic effects of darunavir/ritonavir versus atazanavir/ritonavir in treatment-naive, HIV type 1-infected subjects over 48 weeks. AIDS Res Hum Retroviruses. 2012;28(10):1184–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Antinori A, Borderi M, Cauda R, et al. Safety of darunavir/ritonavir (DRV/r) in HIV-1-infected DRV/r-experienced and -naive patients: analysis of data in the real-world setting in Italy. J Int AIDS Soc. 2014;17(4 Suppl 3):19573.

    PubMed  PubMed Central  Google Scholar 

  71. Menzaghi B, Ricci E, Carenzi L, et al. Safety and durability in a cohort of HIV-1 positive patients treated with once and twice daily darunavir-based therapy (SCOLTA project). Biomed Pharmacother. 2013;67(4):293–8.

    Article  CAS  PubMed  Google Scholar 

  72. Dube MP, Edmondson-Melancon H, Qian D, Aqeel R, Johnson D, Buchanan TA. Prospective evaluation of the effect of initiating indinavir-based therapy on insulin sensitivity and B-cell function in HIV-infected patients. J Acquir Immune Defic Syndr. 2001;27(2):130–4.

    Article  CAS  PubMed  Google Scholar 

  73. Noor MA, Lo JC, Mulligan K, et al. Metabolic effects of indinavir in healthy HIV-seronegative men. AIDS. 2001;15(7):F11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Noor MA, Seneviratne T, Aweeka FT, et al. Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS. 2002;16(5):F1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shankar SS, Considine RV, Gorski JC, Steinberg HO. Insulin sensitivity is preserved despite disrupted endothelial function. Am J Physiol Endocrinol Metab. 2006;291(4):E691–6.

    Article  CAS  PubMed  Google Scholar 

  76. Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000;275(27):20251–4.

    Article  CAS  PubMed  Google Scholar 

  77. Murata H, Hruz PW, Mueckler M. Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS. 2002;16(6):859–63.

    Article  CAS  PubMed  Google Scholar 

  78. Nolte LA, Yarasheski KE, Kawanaka K, Fisher J, Le N, Holloszy JO. The HIV protease inhibitor indinavir decreases insulin- and contraction-stimulated glucose transport in skeletal muscle. Diabetes. 2001;50(6):1397–401.

    Article  CAS  PubMed  Google Scholar 

  79. Hruz PW, Murata H, Qiu H, Mueckler M. Indinavir induces acute and reversible peripheral insulin resistance in rats. Diabetes. 2002;51(4):937–42.

    Article  CAS  PubMed  Google Scholar 

  80. Lee GA, Lo JC, Aweeka F, et al. Single-dose lopinavir-ritonavir acutely inhibits insulin-mediated glucose disposal in healthy volunteers. Clin Infect Dis. 2006;43(5):658–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee GA, Seneviratne T, Noor MA, et al. The metabolic effects of lopinavir/ritonavir in HIV-negative men. AIDS. 2004;18(4):641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinez E, Domingo P, Galindo MJ, et al. Risk of metabolic abnormalities in patients infected with HIV receiving antiretroviral therapy that contains lopinavir-ritonavir. Clin Infect Dis. 2004;38(7):1017–23.

    Article  CAS  PubMed  Google Scholar 

  83. Lafeuillade A, Hittinger G, Philip G, Lambry V, Jolly P, Poggi C. Metabolic evaluation of HIV-infected patients receiving a regimen containing lopinavir/ritonavir (kaletra). HIV Clin Trials. 2004;5(6):392–8.

    Article  PubMed  Google Scholar 

  84. Lee GA, Rao M, Mulligan K, et al. Effects of ritonavir and amprenavir on insulin sensitivity in healthy volunteers. AIDS. 2007;21(16):2183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dube MP, Qian D, Edmondson-Melancon H, et al. Prospective, intensive study of metabolic changes associated with 48 weeks of amprenavir-based antiretroviral therapy. Clin Infect Dis. 2002;35(4):475–81.

    Article  CAS  PubMed  Google Scholar 

  86. Fisac C, Virgili N, Ferrer E, et al. A comparison of the effects of nevirapine and nelfinavir on metabolism and body habitus in antiretroviral-naive human immunodeficiency virus-infected patients: a randomized controlled study. J Clin Endocrinol Metab. 2003;88(11):5186–92.

    Article  CAS  PubMed  Google Scholar 

  87. Dube MP, Parker RA, Tebas P, et al. Glucose metabolism, lipid, and body fat changes in antiretroviral-naive subjects randomized to nelfinavir or efavirenz plus dual nucleosides. AIDS. 2005;19(16):1807–18.

    Article  CAS  PubMed  Google Scholar 

  88. Hruz PW, Yan Q. Tipranavir without ritonavir does not acutely induce peripheral insulin resistance in a rodent model. J Acquir Immune Defic Syndr. 2006;43(5):624–5.

    Article  PubMed  Google Scholar 

  89. Vyas AK, Koster JC, Tzekov A, Hruz PW. Effects of the HIV protease inhibitor ritonavir on GLUT4 knock-out mice. J Biol Chem. 2010;285(47):36395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anderson PL, Brundage RC, Bushman L, Kakuda TN, Remmel RP, Fletcher CV. Indinavir plasma protein binding in HIV-1-infected adults. AIDS. 2000;14(15):2293–7.

    Article  CAS  PubMed  Google Scholar 

  91. van Vonderen MG, Blumer RM, Hassink EA, et al. Insulin sensitivity in multiple pathways is differently affected during zidovudine/lamivudine-containing compared with NRTI-sparing combination antiretroviral therapy. J Acquir Immune Defic Syndr. 2010;53(2):186–93.

    Article  PubMed  CAS  Google Scholar 

  92. Fleischman A, Johnsen S, Systrom DM, et al. Effects of a nucleoside reverse transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial function in muscle of healthy adults. Am J Physiol Endocrinol Metab. 2007;292(6):E1666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pace CS, Martin AM, Hammond EL, Mamotte CD, Nolan DA, Mallal SA. Mitochondrial proliferation, DNA depletion and adipocyte differentiation in subcutaneous adipose tissue of HIV-positive HAART recipients. Antivir Ther. 2003;8(4):323–31.

    CAS  PubMed  Google Scholar 

  94. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martinez E, Garcia-Viejo MA, Blanco JL, et al. Impact of switching from human immunodeficiency virus type 1 protease inhibitors to efavirenz in successfully treated adults with lipodystrophy. Clin Infect Dis. 2000;31(5):1266–73.

    Article  CAS  PubMed  Google Scholar 

  96. Martinez E, Conget I, Lozano L, Casamitjana R, Gatell JM. Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine. AIDS. 1999;13(7):805–10.

    Article  CAS  PubMed  Google Scholar 

  97. Petit JM, Duong M, Masson D, et al. Serum adiponectin and metabolic parameters in HIV-1-infected patients after substitution of nevirapine for protease inhibitors. Eur J Clin Invest. 2004;34(8):569–75.

    Article  CAS  PubMed  Google Scholar 

  98. Estrada V, De Villar NG, Larrad MT, Lopez AG, Fernandez C, Serrano-Rios M. Long-term metabolic consequences of switching from protease inhibitors to efavirenz in therapy for human immunodeficiency virus-infected patients with lipoatrophy. Clin Infect Dis. 2002;35(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  99. Fisac C, Fumero E, Crespo M, et al. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS. 2005;19(9):917–25.

    Article  CAS  PubMed  Google Scholar 

  100. Seelmeier S, Schmidt H, Turk V, von der Helm K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci U S A. 1988;85(18):6612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kohl NE, Diehl RE, Rands E, et al. Expression of active human immunodeficiency virus type 1 protease by noninfectious chimeric virus particles. J Virol. 1991;65(6):3007–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. DiIanni CL, Davis LJ, Holloway MK, et al. Characterization of an active single polypeptide form of the human immunodeficiency virus type 1 protease. J Biol Chem. 1990;265(28):17348–54.

    CAS  PubMed  Google Scholar 

  103. Mackin RB. Proinsulin: recent observations and controversies. Cell Mol Life Sci. 1998;54(7):696–702.

    Article  CAS  PubMed  Google Scholar 

  104. Behrens G, Dejam A, Schmidt H, et al. Impaired glucose tolerance, beta cell function and lipid metabolism in HIV patients under treatment with protease inhibitors. AIDS. 1999;13(10):F63–70.

    Article  CAS  PubMed  Google Scholar 

  105. Woerle HJ, Mariuz PR, Meyer C, et al. Mechanisms for the deterioration in glucose tolerance associated with HIV protease inhibitor regimens. Diabetes. 2003;52(4):918–25.

    Article  CAS  PubMed  Google Scholar 

  106. Danoff A, Ling WL. Protease inhibitors do not interfere with prohormone processing. Ann Intern Med. 2000;132(4):330.

    Article  CAS  PubMed  Google Scholar 

  107. Koster JC, Remedi MS, Qiu H, Nichols CG, Hruz PW. HIV protease inhibitors acutely impair glucose-stimulated insulin release. Diabetes. 2003;52(7):1695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haugaard SB, Andersen O, Halsall I, Iversen J, Hales CN, Madsbad S. Impaired proinsulin secretion before and during oral glucose stimulation in HIV-infected patients who display fat redistribution. Metabolism. 2007;56(7):939–46.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang S, Carper MJ, Lei X, Cade WT, Yarasheski KE, Ramanadham S. Protease inhibitors used in the treatment of HIV+ induce beta-cell apoptosis via the mitochondrial pathway and compromise insulin secretion. Am J Physiol Endocrinol Metab. 2009;296(4):E925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schwarz JM, Lee GA, Park S, et al. Indinavir increases glucose production in healthy HIV-negative men. AIDS. 2004;18(13):1852–4.

    Article  PubMed  Google Scholar 

  111. Lee GA, Schwarz JM, Patzek S, et al. The acute effects of HIV protease inhibitors on insulin suppression of glucose production in healthy HIV-negative men. J Acquir Immune Defic Syndr. 2009;52(2):246–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sekhar RV, Jahoor F, White AC, et al. Metabolic basis of HIV-lipodystrophy syndrome. Am J Physiol Endocrinol Metab. 2002;283(2):E332–7.

    Article  CAS  PubMed  Google Scholar 

  113. Hadigan C, Borgonha S, Rabe J, Young V, Grinspoon S. Increased rates of lipolysis among human immunodeficiency virus-infected men receiving highly active antiretroviral therapy. Metabolism. 2002;51(9):1143–7.

    Article  CAS  PubMed  Google Scholar 

  114. Reeds DN, Mittendorfer B, Patterson BW, Powderly WG, Yarasheski KE, Klein S. Alterations in lipid kinetics in men with HIV-dyslipidemia. Am J Physiol Endocrinol Metab. 2003;285(3):E490–7.

    Article  CAS  PubMed  Google Scholar 

  115. Hadigan C, Rabe J, Meininger G, Aliabadi N, Breu J, Grinspoon S. Inhibition of lipolysis improves insulin sensitivity in protease inhibitor-treated HIV-infected men with fat redistribution. Am J Clin Nutr. 2003;77(2):490–4.

    CAS  PubMed  Google Scholar 

  116. Hadigan C, Liebau J, Torriani M, Andersen R, Grinspoon S. Improved triglycerides and insulin sensitivity with 3 months of acipimox in human immunodeficiency virus-infected patients with hypertriglyceridemia. J Clin Endocrinol Metab. 2006;91(11):4438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lindegaard B, Frosig C, Petersen AM, et al. Inhibition of lipolysis stimulates peripheral glucose uptake but has no effect on endogenous glucose production in HIV lipodystrophy. Diabetes. 2007;56(8):2070–7.

    Article  CAS  PubMed  Google Scholar 

  118. Seltzer HS. Drug-induced hypoglycemia. A review of 1418 cases. Endocrinol Metab Clin North Am. 1989;18(1):163–83.

    CAS  PubMed  Google Scholar 

  119. Abourizk NN, Lyons RW, Madden GM. Transient state of NIDDM in a patient with AIDS. Diabetes Care. 1993;16(6):931–3.

    Article  CAS  PubMed  Google Scholar 

  120. Nasti G, Zanette G, Inchiostro S, Donadon V, Tirelli U. Diabetes mellitus following intravenous pentamidine administration in a patient with HIV infection. Arch Intern Med. 1995;155(6):645–6.

    Article  CAS  PubMed  Google Scholar 

  121. Coyle P, Carr AD, Depczynski BB, Chisholm DJ. Diabetes mellitus associated with pentamidine use in HIV-infected patients. Med J Aust. 1996;165(10):587–8.

    CAS  PubMed  Google Scholar 

  122. Uzzan B, Bentata M, Campos J, et al. Effects of aerosolized pentamidine on glucose homeostasis and insulin secretion in HIV-positive patients: a controlled study. AIDS. 1995;9(8):901–7.

    Article  CAS  PubMed  Google Scholar 

  123. Jain P, Girardi LS, Sherman L, Berelowicz M, Smith LG. Insulin resistance and development of diabetes mellitus associated with megestrol acetate therapy. Postgrad Med J. 1996;72(848):365–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kilby JM, Tabereaux PB. Severe hyperglycemia in an HIV clinic: preexisting versus drug-associated diabetes mellitus. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  125. Gonzalez Del Valle L, Herrero Ambrosio A, Martinez Hernandez P, Garcia Diaz B, Jimenez Caballero E. Hyperglycemia induced by megestrol acetate in a patient with AIDS. Ann Pharmacother. 1996;30(10):1113–4.

    Article  CAS  PubMed  Google Scholar 

  126. Samaras K, Pett S, Gowers A, McMurchie M, Cooper DA. Iatrogenic cushing’s syndrome with osteoporosis and secondary adrenal failure in human immunodeficiency virus-infected patients receiving inhaled corticosteroids and ritonavir-boosted protease inhibitors: six cases. J Clin Endocrinol Metab. 2005;90(7):4394–8.

    Article  CAS  PubMed  Google Scholar 

  127. Lewis J, Turtle L, Khoo S, Nsutebu EN. A case of iatrogenic adrenal suppression after co-administration of cobicistat and fluticasone nasal drops. AIDS. 2014;28(17):2636–7.

    Article  PubMed  Google Scholar 

  128. Ramanathan R, Pau AK, Busse KH, et al. Iatrogenic cushing syndrome after epidural triamcinolone injections in an HIV type 1-infected patient receiving therapy with ritonavir-lopinavir. Clin Infect Dis. 2008;47(12):e97–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med. 2005;352(1):48–62.

    Article  CAS  PubMed  Google Scholar 

  130. Lo JC, Mulligan K, Noor MA, et al. The effects of low-dose growth hormone in HIV-infected men with fat accumulation: a pilot study. Clin Infect Dis. 2004;39(5):732–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Blanch J, Rousaud A, Martinez E, et al. Factors associated with severe impact of lipodystrophy on the quality of life of patients infected with HIV-1. Clin Infect Dis. 2004;38(10):1464–70.

    Article  PubMed  Google Scholar 

  132. Ammassari A, Antinori A, Cozzi-Lepri A, et al. Relationship between HAART adherence and adipose tissue alterations. J Acquir Immune Defic Syndr. 2002;31 Suppl 3:S140–4.

    Article  PubMed  Google Scholar 

  133. Martinez E, Mocroft A, Garcia-Viejo MA, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet. 2001;357(9256):592–8.

    Article  CAS  PubMed  Google Scholar 

  134. Heath KV, Singer J, O’Shaughnessy MV, Montaner JS, Hogg RS. Intentional nonadherence due to adverse symptoms associated with antiretroviral therapy. J Acquir Immune Defic Syndr. 2002;31(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  135. Galli M, Cozzi-Lepri A, Ridolfo AL, et al. Incidence of adipose tissue alterations in first-line antiretroviral therapy: the LipoICoNa study. Arch Intern Med. 2002;162(22):2621–8.

    Article  PubMed  Google Scholar 

  136. Saves M, Raffi F, Capeau J, et al. Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis. 2002;34(10):1396–405.

    Article  CAS  PubMed  Google Scholar 

  137. Bacchetti P, Gripshover B, Grunfeld C, et al. Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr. 2005;40(2):121–31.

    Article  PubMed  Google Scholar 

  138. Carr A, Emery S, Law M, et al. An objective case definition of lipodystrophy in HIV-infected adults: a case-control study. Lancet. 2003;361(9359):726–35.

    Article  CAS  PubMed  Google Scholar 

  139. Mankal PK, Kotler DP. From wasting to obesity, changes in nutritional concerns in HIV/AIDS. Endocrinol Metab Clin North Am. 2014;43(3):647–63.

    Article  PubMed  Google Scholar 

  140. Lichtenstein KA, Ward DJ, Moorman AC, et al. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS. 2001;15(11):1389–98.

    Article  CAS  PubMed  Google Scholar 

  141. Kotler DP, Rosenbaum K, Wang J, Pierson RN. Studies of body composition and fat distribution in HIV-infected and control subjects. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;20(3):228–37.

    Article  CAS  PubMed  Google Scholar 

  142. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401(6748):73–6.

    Article  CAS  PubMed  Google Scholar 

  143. Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350(12):1220–34.

    Article  CAS  PubMed  Google Scholar 

  145. Heath KV, Hogg RS, Singer J, Chan KJ, O’Shaughnessy MV, Montaner JS. Antiretroviral treatment patterns and incident HIV-associated morphologic and lipid abnormalities in a population-based cohort. J Acquir Immune Defic Syndr. 2002;30(4):440–7.

    Article  CAS  PubMed  Google Scholar 

  146. Podzamczer D, Ferrer E, Martinez E, et al. How much fat loss is needed for lipoatrophy to become clinically evident? AIDS Res Hum Retroviruses. 2009;25(6):563–7.

    Article  PubMed  Google Scholar 

  147. Raulin J. Human immunodeficiency virus and host cell lipids. interesting pathways in research for a new HIV therapy. Prog Lipid Res. 2002;41(1):27–65.

    Article  CAS  PubMed  Google Scholar 

  148. Mallon PW, Sedwell R, Rogers G, et al. Effect of rosiglitazone on peroxisome proliferator-activated receptor gamma gene expression in human adipose tissue is limited by antiretroviral drug-induced mitochondrial dysfunction. J Infect Dis. 2008;198(12):1794–803.

    Article  CAS  PubMed  Google Scholar 

  149. Edgeworth A, Treacy MP, Hurst TP. Thiazolidinediones in the treatment of HIV/HAART-associated lipodystrophy syndrome. AIDS Rev. 2013;15(3):171–80.

    PubMed  Google Scholar 

  150. Mallal SA, John M, Moore CB, James IR, McKinnon EJ. Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS. 2000;14(10):1309–16.

    Article  CAS  PubMed  Google Scholar 

  151. Shlay JC, Visnegarwala F, Bartsch G, et al. Body composition and metabolic changes in antiretroviral-naive patients randomized to didanosine and stavudine vs. abacavir and lamivudine. J Acquir Immune Defic Syndr. 2005;38(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  152. Duong M, Petit JM, Piroth L, et al. Association between insulin resistance and hepatitis C virus chronic infection in HIV-hepatitis C virus-coinfected patients undergoing antiretroviral therapy. J Acquir Immune Defic Syndr. 2001;27(3):245–50.

    Article  CAS  PubMed  Google Scholar 

  153. Jacobson DL, Knox T, Spiegelman D, Skinner S, Gorbach S, Wanke C. Prevalence of, evolution of, and risk factors for fat atrophy and fat deposition in a cohort of HIV-infected men and women. Clin Infect Dis. 2005;40(12):1837–45.

    Article  PubMed  Google Scholar 

  154. McDermott AY, Terrin N, Wanke C, Skinner S, Tchetgen E, Shevitz AH. CD4+ cell count, viral load, and highly active antiretroviral therapy use are independent predictors of body composition alterations in HIV-infected adults: a longitudinal study. Clin Infect Dis. 2005;41(11):1662–70.

    Article  PubMed  Google Scholar 

  155. Mulligan K, Parker RA, Komarow L, et al. Mixed patterns of changes in central and peripheral fat following initiation of antiretroviral therapy in a randomized trial. J Acquir Immune Defic Syndr. 2006;41(5):590–7.

    Article  CAS  PubMed  Google Scholar 

  156. Mallon PW, Miller J, Cooper DA, Carr A. Prospective evaluation of the effects of antiretroviral therapy on body composition in HIV-1-infected men starting therapy. AIDS. 2003;17(7):971–9.

    Article  CAS  PubMed  Google Scholar 

  157. Domingo P, Matias-Guiu X, Pujol RM, et al. Subcutaneous adipocyte apoptosis in HIV-1 protease inhibitor-associated lipodystrophy. AIDS. 1999;13(16):2261–7.

    Article  CAS  PubMed  Google Scholar 

  158. Bastard JP, Caron M, Vidal H, et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet. 2002;359(9311):1026–31.

    Article  CAS  PubMed  Google Scholar 

  159. Dowell P, Flexner C, Kwiterovich PO, Lane MD. Suppression of preadipocyte differentiation and promotion of adipocyte death by HIV protease inhibitors. J Biol Chem. 2000;275(52):41325–32.

    Article  CAS  PubMed  Google Scholar 

  160. Caron M, Auclair M, Vigouroux C, Glorian M, Forest C, Capeau J. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes. 2001;50(6):1378–88.

    Article  CAS  PubMed  Google Scholar 

  161. Caron M, Auclair M, Sterlingot H, Kornprobst M, Capeau J. Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS. 2003;17(17):2437–44.

    Article  CAS  PubMed  Google Scholar 

  162. Roche R, Poizot-Martin I, Yazidi CM, et al. Effects of antiretroviral drug combinations on the differentiation of adipocytes. AIDS. 2002;16(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  163. Nolan D, Hammond E, Martin A, et al. Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. AIDS. 2003;17(9):1329–38.

    Article  CAS  PubMed  Google Scholar 

  164. Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med. 1995;1(5):417–22.

    Article  CAS  PubMed  Google Scholar 

  165. Dalakas MC, Illa I, Pezeshkpour GH, Laukaitis JP, Cohen B, Griffin JL. Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med. 1990;322(16):1098–105.

    Article  CAS  PubMed  Google Scholar 

  166. Lewis W, Simpson JF, Meyer RR. Cardiac mitochondrial DNA polymerase-gamma is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ Res. 1994;74(2):344–8.

    Article  CAS  PubMed  Google Scholar 

  167. Hammond E, McKinnon E, Nolan D. Human immunodeficiency virus treatment-induced adipose tissue pathology and lipoatrophy: prevalence and metabolic consequences. Clin Infect Dis. 2010;51(5):591–9.

    Article  PubMed  Google Scholar 

  168. Sievers M, Walker UA, Sevastianova K, et al. Gene expression and immunohistochemistry in adipose tissue of HIV type 1-infected patients with nucleoside analogue reverse-transcriptase inhibitor-associated lipoatrophy. J Infect Dis. 2009;200(2):252–62.

    Article  CAS  PubMed  Google Scholar 

  169. Joly V, Flandre P, Meiffredy V, et al. Increased risk of lipoatrophy under stavudine in HIV-1-infected patients: results of a substudy from a comparative trial. AIDS. 2002;16(18):2447–54.

    Article  CAS  PubMed  Google Scholar 

  170. Podzamczer D, Ferrer E, Sanchez P, et al. Less lipoatrophy and better lipid profile with abacavir as compared to stavudine: 96-week results of a randomized study. J Acquir Immune Defic Syndr. 2007;44(2):139–47.

    Article  CAS  PubMed  Google Scholar 

  171. Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: A 3-year randomized trial. JAMA. 2004;292(2):191–201.

    Article  CAS  PubMed  Google Scholar 

  172. Shlay JC, Sharma S, Peng G, Gibert CL, Grunfeld C. Long-term subcutaneous tissue changes among antiretroviral-naive persons initiating stavudine, zidovudine, or abacavir with lamivudine. J Acquir Immune Defic Syndr. 2008;48(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  173. Dube MP, Komarow L, Mulligan K, et al. Long-term body fat outcomes in antiretroviral-naive participants randomized to nelfinavir or efavirenz or both plus dual nucleosides. Dual X-ray absorptiometry results from A5005s, a substudy of adult clinical trials group 384. J Acquir Immune Defic Syndr. 2007;45(5):508–14.

    Article  CAS  PubMed  Google Scholar 

  174. Shlay JC, Sharma S, Peng G, et al. The effect of individual antiretroviral drugs on body composition in HIV-infected persons initiating highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;51(3):298–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gallant JE, DeJesus E, Arribas JR, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med. 2006;354(3):251–60.

    Article  CAS  PubMed  Google Scholar 

  176. van der Valk M, Gisolf EH, Reiss P, et al. Increased risk of lipodystrophy when nucleoside analogue reverse transcriptase inhibitors are included with protease inhibitors in the treatment of HIV-1 infection. AIDS. 2001;15(7):847–55.

    Article  PubMed  Google Scholar 

  177. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6.

    Article  CAS  PubMed  Google Scholar 

  178. Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395.

    Article  CAS  PubMed  Google Scholar 

  179. Estrada V, Martinez-Larrad MT, Gonzalez-Sanchez JL, et al. Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metabolism. 2006;55(7):940–5.

    Article  CAS  PubMed  Google Scholar 

  180. Verkauskiene R, Dollfus C, Levine M, et al. Serum adiponectin and leptin concentrations in HIV-infected children with fat redistribution syndrome. Pediatr Res. 2006;60(2):225–30.

    Article  CAS  PubMed  Google Scholar 

  181. Paruthi J, Gill N, Mantzoros CS. Adipokines in the HIV/HAART-associated lipodystrophy syndrome. Metabolism. 2013;62(9):1199–205.

    Article  CAS  PubMed  Google Scholar 

  182. Kosmiski LA, Bacchetti P, Kotler DP, et al. Relationship of fat distribution with adipokines in human immunodeficiency virus infection. J Clin Endocrinol Metab. 2008;93(1):216–24.

    Article  CAS  PubMed  Google Scholar 

  183. Addy CL, Gavrila A, Tsiodras S, Brodovicz K, Karchmer AW, Mantzoros CS. Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia, and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy. J Clin Endocrinol Metab. 2003;88(2):627–36.

    Article  CAS  PubMed  Google Scholar 

  184. Reeds DN, Yarasheski KE, Fontana L, et al. Alterations in liver, muscle, and adipose tissue insulin sensitivity in men with HIV infection and dyslipidemia. Am J Physiol Endocrinol Metab. 2006;290(1):E47–53.

    Article  CAS  PubMed  Google Scholar 

  185. Lee GA, Mafong DD, Noor MA, et al. HIV protease inhibitors increase adiponectin levels in HIV-negative men. J Acquir Immune Defic Syndr. 2004;36(1):645–7.

    Article  PubMed  Google Scholar 

  186. Omar F, Dave JA, King JA, Levitt NS, Pillay TS. High molecular weight (HMW): total adiponectin ratio is low in hiv-infected women receiving protease inhibitors. BMC Clin Pathol. 2014;14(1):46-6890-14-46. eCollection 2014.

    Google Scholar 

  187. Chen D, Misra A, Garg A. Clinical review 153: lipodystrophy in human immunodeficiency virus-infected patients. J Clin Endocrinol Metab. 2002;87(11):4845–56.

    Article  CAS  PubMed  Google Scholar 

  188. Yanovski JA, Miller KD, Kino T, et al. Endocrine and metabolic evaluation of human immunodeficiency virus-infected patients with evidence of protease inhibitor-associated lipodystrophy. J Clin Endocrinol Metab. 1999;84(6):1925–31.

    Article  CAS  PubMed  Google Scholar 

  189. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “cushing’s disease of the omentum”? Lancet. 1997;349(9060):1210–3.

    Article  CAS  PubMed  Google Scholar 

  190. Sutinen J, Kannisto K, Korsheninnikova E, et al. In the lipodystrophy associated with highly active antiretroviral therapy, pseudo-cushing’s syndrome is associated with increased regeneration of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue. Diabetologia. 2004;47(10):1668–71.

    Article  CAS  PubMed  Google Scholar 

  191. Brown TT, Chu H, Wang Z, et al. Longitudinal increases in waist circumference are associated with HIV-serostatus, independent of antiretroviral therapy. AIDS. 2007;21(13):1731–8.

    Article  CAS  PubMed  Google Scholar 

  192. de Waal R, Cohen K, Maartens G. Systematic review of antiretroviral-associated lipodystrophy: lipoatrophy, but not central fat gain, is an antiretroviral adverse drug reaction. PLoS One. 2013;8(5):e63623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Palella Jr FJ, Cole SR, Chmiel JS, et al. Anthropometrics and examiner-reported body habitus abnormalities in the multicenter AIDS cohort study. Clin Infect Dis. 2004;38(6):903–7.

    Article  PubMed  Google Scholar 

  194. Herman WH. Standards of medical care in diabetes-2016: summary of revisions. Diabetes Care. 2016;39 Suppl 1:S4–5.

    Google Scholar 

  195. Kim PS, Woods C, Georgoff P, et al. A1C underestimates glycemia in HIV infection. Diabetes Care. 2009;32(9):1591–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Diop ME, Bastard JP, Meunier N, et al. Inappropriately low glycated hemoglobin values and hemolysis in HIV-infected patients. AIDS Res Hum Retroviruses. 2006;22(12):1242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Polgreen PM, Putz D, Stapleton JT. Inaccurate glycosylated hemoglobin A1C measurements in human immunodeficiency virus-positive patients with diabetes mellitus. Clin Infect Dis. 2003;37(4):e53–6.

    Article  CAS  PubMed  Google Scholar 

  198. Glesby MJ, Hoover DR, Shi Q, et al. Glycated haemoglobin in diabetic women with and without HIV infection: data from the women’s interagency HIV study. Antivir Ther. 2010;15(4):571–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Slama L, Palella Jr FJ, Abraham AG, et al. Inaccuracy of haemoglobin A1c among HIV-infected men: effects of CD4 cell count, antiretroviral therapies and haematological parameters. J Antimicrob Chemother. 2014;69(12):3360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Aberg JA, Gallant JE, Ghanem KG, et al. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the infectious diseases society of America. Clin Infect Dis. 2014;58(1):e1–34.

    Article  PubMed  Google Scholar 

  201. Roubenoff R, Schmitz H, Bairos L, et al. Reduction of abdominal obesity in lipodystrophy associated with human immunodeficiency virus infection by means of diet and exercise: case report and proof of principle. Clin Infect Dis. 2002;34(3):390–3.

    Article  PubMed  Google Scholar 

  202. Jones SP, Doran DA, Leatt PB, Maher B, Pirmohamed M. Short-term exercise training improves body composition and hyperlipidaemia in HIV-positive individuals with lipodystrophy. AIDS. 2001;15(15):2049–51.

    Article  CAS  PubMed  Google Scholar 

  203. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–4.

    Article  CAS  PubMed  Google Scholar 

  204. Saint-Marc T, Touraine JL. Effects of metformin on insulin resistance and central adiposity in patients receiving effective protease inhibitor therapy. AIDS. 1999;13(8):1000–2.

    Article  CAS  PubMed  Google Scholar 

  205. Hadigan C, Corcoran C, Basgoz N, Davis B, Sax P, Grinspoon S. Metformin in the treatment of HIV lipodystrophy syndrome: a randomized controlled trial. JAMA. 2000;284(4):472–7.

    Article  CAS  PubMed  Google Scholar 

  206. Hadigan C, Rabe J, Grinspoon S. Sustained benefits of metformin therapy on markers of cardiovascular risk in human immunodeficiency virus-infected patients with fat redistribution and insulin resistance. J Clin Endocrinol Metab. 2002;87(10):4611–5.

    Article  CAS  PubMed  Google Scholar 

  207. Mulligan K, Yang Y, Wininger DA, et al. Effects of metformin and rosiglitazone in HIV-infected patients with hyperinsulinemia and elevated waist/hip ratio. AIDS. 2007;21(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  208. van Wijk JP, de Koning EJ, Cabezas MC, et al. Comparison of rosiglitazone and metformin for treating HIV lipodystrophy: a randomized trial. Ann Intern Med. 2005;143(5):337–46.

    Article  PubMed  Google Scholar 

  209. Joven J, Menendez JA, Fernandez-Sender L, et al. Metformin: a cheap and well-tolerated drug that provides benefits for viral infections. HIV Med. 2013;14(4):233–40.

    Article  CAS  PubMed  Google Scholar 

  210. Bevilacqua M, Dominguez LJ, Barbagallo M. Insulin resistance and the cardiometabolic syndrome in HIV infection. J Cardiometab Syndr. 2009;4(1):40–3.

    Article  PubMed  Google Scholar 

  211. Fitch K, Abbara S, Lee H, et al. Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome. AIDS. 2012;26(5):587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kohli R, Shevitz A, Gorbach S, Wanke C. A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV Med. 2007;8(7):420–6.

    Article  CAS  PubMed  Google Scholar 

  213. Sheth SH, Larson RJ. The efficacy and safety of insulin-sensitizing drugs in HIV-associated lipodystrophy syndrome: a meta-analysis of randomized trials. BMC Infect Dis. 2010;10:183-2334-10-183.

    Google Scholar 

  214. Vrouenraets SM, Treskes M, Regez RM, et al. Hyperlactataemia in HIV-infected patients: the role of NRTI-treatment. Antivir Ther. 2002;7(4):239–44.

    CAS  PubMed  Google Scholar 

  215. Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc. 2014;17(4 Suppl 3):19584.

    PubMed  PubMed Central  Google Scholar 

  216. Aperis G, Paliouras C, Zervos A, Arvanitis A, Alivanis P. Lactic acidosis after concomitant treatment with metformin and tenofovir in a patient with HIV infection. J Ren Care. 2011;37(1):25–9.

    Article  PubMed  Google Scholar 

  217. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18.

    Article  PubMed  Google Scholar 

  218. Renga B, Francisci D, D’Amore C, et al. The HIV matrix protein p17 subverts nuclear receptors expression and induces a STAT1-dependent proinflammatory phenotype in monocytes. PLoS One. 2012;7(4):e35924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Carr A. HIV protease inhibitor-related lipodystrophy syndrome. Clin Infect Dis. 2000;30 Suppl 2:S135–42.

    Article  CAS  PubMed  Google Scholar 

  220. Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.

    Article  CAS  PubMed  Google Scholar 

  221. Tungsiripat M, Bejjani DE, Rizk N, et al. Rosiglitazone improves lipoatrophy in patients receiving thymidine-sparing regimens. AIDS. 2010;24(9):1291–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Slama L, Lanoy E, Valantin MA, et al. Effect of pioglitazone on HIV-1-related lipodystrophy: a randomized double-blind placebo-controlled trial (ANRS 113). Antivir Ther. 2008;13(1):67–76.

    CAS  PubMed  Google Scholar 

  223. Gavrila A, Hsu W, Tsiodras S, et al. Improvement in highly active antiretroviral therapy-induced metabolic syndrome by treatment with pioglitazone but not with fenofibrate: a 2 × 2 factorial, randomized, double-blinded, placebo-controlled trial. Clin Infect Dis. 2005;40(5):745–9.

    Article  CAS  PubMed  Google Scholar 

  224. Yarasheski KE, Cade WT, Overton ET, et al. Exercise training augments the peripheral insulin-sensitizing effects of pioglitazone in HIV-infected adults with insulin resistance and central adiposity. Am J Physiol Endocrinol Metab. 2011;300(1):E243–51.

    Article  CAS  PubMed  Google Scholar 

  225. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    Article  CAS  PubMed  Google Scholar 

  226. van Wijk JP, Hoepelman AI, de Koning EJ, Dallinga-Thie G, Rabelink TJ, Cabezas MC. Differential effects of rosiglitazone and metformin on postprandial lipemia in patients with HIV-lipodystrophy. Arterioscler Thromb Vasc Biol. 2011;31(1):228–33.

    Article  PubMed  CAS  Google Scholar 

  227. Tungsiripat M, El-Bejjani D, Rizk N, et al. Carotid intima media thickness, inflammatory markers, and endothelial activation markers in HIV patients with lipoatrophy increased at 48 weeks regardless of use of rosiglitazone or placebo. AIDS Res Hum Retroviruses. 2011;27(3):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459–69.

    Article  CAS  PubMed  Google Scholar 

  229. Carr A, Workman C, Carey D, et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet. 2004;363(9407):429–38.

    Article  CAS  PubMed  Google Scholar 

  230. Goodwin SR, Reeds DN, Royal M, Struthers H, Laciny E, Yarasheski KE. Dipeptidyl peptidase IV inhibition does not adversely affect immune or virological status in HIV infected men and women: a pilot safety study. J Clin Endocrinol Metab. 2013;98(2):743–51.

    Article  CAS  PubMed  Google Scholar 

  231. Best C, Struthers H, Laciny E, Royal M, Reeds DN, Yarasheski KE. Sitagliptin reduces inflammation and chronic immune cell activation in HIV+ adults with impaired glucose tolerance. J Clin Endocrinol Metab. 2015;100(7):2621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care. 2011;34 Suppl 2:S279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Oriot P, Hermans MP, Selvais P, Buysschaert M, de la Tribonniere X. Exenatide improves weight loss insulin sensitivity and beta-cell function following administration to a type 2 diabetic HIV patient on antiretroviral therapy. Ann Endocrinol (Paris). 2011;72(3):244–6.

    Article  CAS  Google Scholar 

  234. Diamant M, van Agtmael M. Liraglutide treatment in a patient with HIV and uncontrolled insulin-treated type 2 diabetes. Diabetes Care. 2012;35(5):e34-0021.

    Article  Google Scholar 

  235. Arioglu E, Duncan-Morin J, Sebring N, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med. 2000;133(4):263–74.

    Article  CAS  PubMed  Google Scholar 

  236. Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care. 1999;22(6):908–12.

    Article  CAS  PubMed  Google Scholar 

  237. Kawai T, Takei I, Oguma Y, et al. Effects of troglitazone on fat distribution in the treatment of male type 2 diabetes. Metabolism. 1999;48(9):1102–7.

    Article  CAS  PubMed  Google Scholar 

  238. Kelly IE, Han TS, Walsh K, Lean ME. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care. 1999;22(2):288–93.

    Article  CAS  PubMed  Google Scholar 

  239. Gelato MC, Mynarcik DC, Quick JL, et al. Improved insulin sensitivity and body fat distribution in HIV-infected patients treated with rosiglitazone: a pilot study. J Acquir Immune Defic Syndr. 2002;31(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  240. Hadigan C, Yawetz S, Thomas A, Havers F, Sax PE, Grinspoon S. Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann Intern Med. 2004;140(10):786–94.

    Article  CAS  PubMed  Google Scholar 

  241. Sutinen J, Hakkinen AM, Westerbacka J, et al. Rosiglitazone in the treatment of HAART-associated lipodystrophy–a randomized double-blind placebo-controlled study. Antivir Ther. 2003;8(3):199–207.

    CAS  PubMed  Google Scholar 

  242. Cavalcanti RB, Raboud J, Shen S, Kain KC, Cheung A, Walmsley S. A randomized, placebo-controlled trial of rosiglitazone for HIV-related lipoatrophy. J Infect Dis. 2007;195(12):1754–61.

    Article  CAS  PubMed  Google Scholar 

  243. Tungsiripat M, El-Bejjani D, Rizk N, et al. Changes in inflammation, oxidative stress, mitochondrial DNA content after rosiglitazone in HIV lipoatrophy. J AIDS Clin Res. 2012;3(8):174.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Carr A, Workman C, Smith DE, et al. Abacavir substitution for nucleoside analogs in patients with HIV lipoatrophy: a randomized trial. JAMA. 2002;288(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  245. John M, McKinnon EJ, James IR, et al. Randomized, controlled, 48-week study of switching stavudine and/or protease inhibitors to combivir/abacavir to prevent or reverse lipoatrophy in HIV-infected patients. J Acquir Immune Defic Syndr. 2003;33(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  246. Martin A, Smith DE, Carr A, et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX extension study. AIDS. 2004;18(7):1029–36.

    Article  CAS  PubMed  Google Scholar 

  247. Tebas P, Zhang J, Yarasheski K, et al. Switching to a protease inhibitor-containing, nucleoside-sparing regimen (lopinavir/ritonavir plus efavirenz) increases limb fat but raises serum lipid levels: results of a prospective randomized trial (AIDS clinical trial group 5125s). J Acquir Immune Defic Syndr. 2007;45(2):193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Carr A, Hudson J, Chuah J, et al. HIV protease inhibitor substitution in patients with lipodystrophy: a randomized, controlled, open-label, multicentre study. AIDS. 2001;15(14):1811–22.

    Article  CAS  PubMed  Google Scholar 

  249. Moyle GJ, Sabin CA, Cartledge J, et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS. 2006;20(16):2043–50.

    Article  CAS  PubMed  Google Scholar 

  250. Driscoll SD, Meininger GE, Lareau MT, et al. Effects of exercise training and metformin on body composition and cardiovascular indices in HIV-infected patients. AIDS. 2004;18(3):465–73.

    Article  CAS  PubMed  Google Scholar 

  251. Falutz J, Mamputu JC, Potvin D, et al. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab. 2010;95(9):4291–304.

    Article  CAS  PubMed  Google Scholar 

  252. Falutz J, Allas S, Blot K, et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N Engl J Med. 2007;357(23):2359–70.

    Article  CAS  PubMed  Google Scholar 

  253. Stanley TL, Feldpausch MN, Oh J, et al. Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial. JAMA. 2014;312(4):380–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Glesby MJ, Albu J, Chiu YL, et al. Recombinant human growth hormone and rosiglitazone for abdominal fat accumulation in HIV-infected patients with insulin resistance: a randomized, double-blind, placebo-controlled, factorial trial. PLoS One. 2013;8(4):e61160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Dobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Yalamanchi, S., Brown, T., Dobs, A. (2017). HIV Infection and Diabetes. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-18741-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18741-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18740-2

  • Online ISBN: 978-3-319-18741-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics