Advertisement

HIV Infection and Diabetes

  • Swaytha Yalamanchi
  • Todd Brown
  • Adrian DobsEmail author
Reference work entry

Abstract

HIV-infected individuals are at high risk for abnormal glucose metabolism, speculated to be multifactorial in etiology, including, but not limited to, the effects of HIV infection itself, common comorbidities, and the use of antiretroviral medications. Since the introduction of highly active HAART therapy, it has been well recognized that there is considerable variability among individual agents with newer medications generally being associated with a less severe metabolic profile. The postulated mechanisms by which antiretroviral causes dysglycemia include via direct effects on peripheral and hepatic insulin sensitivity, as well as pancreatic β-cell function, mitochondrial toxicity, and the development of peripheral lipoatrophy and/or visceral fat accumulation. Changes in body composition, including peripheral lipoatrophy (rarely seen in the setting of contemporary antiretroviral agents) and lipohypertrophy, are also seen. It is recommended that HIV-infected individuals be screened for the presence of glucose abnormalities with a fasting glucose prior to the initiation of ARV therapy, 1–3 months after starting treatment and then every 3–6 months. There are increasing data that the HbA1c may underestimate glucose derangements.

Overall, avoidance of older ARV regimens associated with metabolic disease is recommended when possible. Oral diabetes medications and insulin can safely be used in individuals with HIV. First-line treatment is with metformin, though one must screen for risk factors associated with lactic acidosis. Use of PPARs has fallen out of favor in the setting of adverse cardiovascular effects reported with rosiglitazone use. Limited data exist on the use of other oral agents (sulfonylureas, SGLT2 inhibitors, DPP4 inhibitors) and injectables (GLP-1 agonists) in HIV-infected individuals. The current recommended strategy of peripheral lipoatrophy is to replace the older NRTIs most closely associated with lipoatrophy with more commonly used and newer NRTIs. Tesamorelin, a growth hormone releasing hormone analogue, may be useful in reduction of VAT in the setting of lipohypertrophy.

Keywords

HIV Diabetes Diabetes mellitus Antiretrovirals Glucose 

References

  1. 1.
    Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). 1983. Rev Invest Clin. 2004;56(2):126–9.PubMedGoogle Scholar
  2. 2.
    Gallo RC, Salahuddin SZ, Popovic M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224(4648):500–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224(4648):497–500.PubMedCrossRefGoogle Scholar
  4. 4.
    Brook I. Approval of zidovudine (AZT) for acquired immunodeficiency syndrome. A challenge to the medical and pharmaceutical communities. JAMA. 1987;258(11):1517.PubMedCrossRefGoogle Scholar
  5. 5.
    Moyle GJ, Nelson MR, Hawkins D, Gazzard BG. The use and toxicity of didanosine (ddI) in HIV antibody-positive individuals intolerant to zidovudine (AZT). Q J Med. 1993;86(3):155–63.PubMedGoogle Scholar
  6. 6.
    Munshi MN, Martin RE, Fonseca VA. Hyperosmolar nonketotic diabetic syndrome following treatment of human immunodeficiency virus infection with didanosine. Diabetes Care. 1994;17(4):316–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Vittecoq D, Zucman D, Auperin I, Passeron J. Transient insulin-dependent diabetes mellitus in an HIV-infected patient receiving didanosine. AIDS. 1994;8(9):1351.PubMedCrossRefGoogle Scholar
  8. 8.
    Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med. 1998;338(13):853–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Dube MP, Johnson DL, Currier JS, Leedom JM. Protease inhibitor-associated hyperglycaemia. Lancet. 1997;350(9079):713–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Lo JC, Mulligan K, Tai VW, Algren H, Schambelan M. “Buffalo hump” in men with HIV-1 infection. Lancet. 1998;351(9106):867–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Miller KD, Jones E, Yanovski JA, Shankar R, Feuerstein I, Falloon J. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet. 1998;351(9106):871–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Miller KK, Daly PA, Sentochnik D, et al. Pseudo-cushing’s syndrome in human immunodeficiency virus-infected patients. Clin Infect Dis. 1998;27(1):68–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12(7):F51–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Saint-Marc T, Partisani M, Poizot-Martin I, et al. A syndrome of peripheral fat wasting (lipodystrophy) in patients receiving long-term nucleoside analogue therapy. AIDS. 1999;13(13):1659–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Carr A, Samaras K, Chisholm DJ, Cooper DA. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet. 1998;351(9119):1881–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Brown TT, Cole SR, Li X, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84.PubMedCrossRefGoogle Scholar
  17. 17.
    De Wit S, Sabin CA, Weber R, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D:A:D) study. Diabetes Care. 2008;31(6):1224–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rasmussen LD, Mathiesen ER, Kronborg G, Pedersen C, Gerstoft J, Obel N. Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS One. 2012;7(9):e44575.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Polsky S, Floris-Moore M, Schoenbaum EE, Klein RS, Arnsten JH, Howard AA. Incident hyperglycaemia among older adults with or at-risk for HIV infection. Antivir Ther. 2011;16(2):181–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Monroe AK, Glesby MJ, Brown TT. Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis. 2015;60(3):453–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Mehta SH, Moore RD, Thomas DL, Chaisson RE, Sulkowski MS. The effect of HAART and HCV infection on the development of hyperglycemia among HIV-infected persons. J Acquir Immune Defic Syndr. 2003;33(5):577–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Howard AA, Lo Y, Floris-Moore M, Klein RS, Fleischer N, Schoenbaum EE. Hepatitis C virus infection is associated with insulin resistance among older adults with or at risk of HIV infection. AIDS. 2007;21(5):633–41.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Monroe AK, Dobs AS, Xu X, et al. Sex hormones, insulin resistance, and diabetes mellitus among men with or at risk for HIV infection. J Acquir Immune Defic Syndr. 2011;58(2):173–80.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Howard AA, Hoover DR, Anastos K, et al. The effects of opiate use and hepatitis C virus infection on risk of diabetes mellitus in the women’s interagency HIV study. J Acquir Immune Defic Syndr. 2010;54(2):152–9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Tsiodras S, Mantzoros C, Hammer S, Samore M. Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy: a 5-year cohort study. Arch Intern Med. 2000;160(13):2050–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Ledergerber B, Furrer H, Rickenbach M, et al. Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the swiss HIV cohort study. Clin Infect Dis. 2007;45(1):111–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Frontini M, Chotalia J, Spizale L, Onya W, Ruiz M, Clark RA. Sex and race effects on risk for selected outcomes among elderly HIV-infected patients. J Int Assoc Physicians AIDS Care (Chic). 2012;11(1):12–5.CrossRefGoogle Scholar
  28. 28.
    Adeyemi OM, Livak B, Orsi J, et al. Vitamin D and insulin resistance in non-diabetic women’s interagency HIV study participants. AIDS Patient Care STDS. 2013;27(6):320–5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Buchacz K, Baker RK, Palella Jr FJ, et al. Disparities in prevalence of key chronic diseases by gender and race/ethnicity among antiretroviral-treated HIV-infected adults in the US. Antivir Ther. 2013;18(1):65–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Tien PC, Schneider MF, Cole SR, et al. Antiretroviral therapy exposure and incidence of diabetes mellitus in the women’s interagency HIV study. AIDS. 2007;21(13):1739–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Danoff A, Shi Q, Justman J, et al. Oral glucose tolerance and insulin sensitivity are unaffected by HIV infection or antiretroviral therapy in overweight women. J Acquir Immune Defic Syndr. 2005;39(1):55–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Mulligan K, Anastos K, Justman J, et al. Fat distribution in HIV-infected women in the United States: DEXA substudy in the women’s interagency HIV study. J Acquir Immune Defic Syndr. 2005;38(1):18–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Willig AL, Westfall AO, Overton ET, et al. Obesity is associated with race/sex disparities in diabetes and hypertension prevalence, but not cardiovascular disease, among HIV-infected adults. AIDS Res Hum Retroviruses. 2015;31(9):898–904.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Aebi-Popp K, Lapaire O, Glass TR, et al. Pregnancy and delivery outcomes of HIV infected women in Switzerland 2003–2008. J Perinat Med. 2010;38(4):353–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Moore R, Adler H, Jackson V, et al. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis. Int J STD AIDS. 2015;0(0):1–5Google Scholar
  36. 36.
    Marti C, Pena JM, Bates I, et al. Obstetric and perinatal complications in HIV-infected women. Analysis of a cohort of 167 pregnancies between 1997 and 2003. Acta Obstet Gynecol Scand. 2007;86(4):409–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Gonzalez-Tome MI, Ramos Amador JT, Guillen S, et al. Gestational diabetes mellitus in a cohort of HIV-1 infected women. HIV Med. 2008;9(10):868–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Jao J, Wong M, Van Dyke RB, et al. Gestational diabetes mellitus in HIV-infected and -uninfected pregnant women in cameroon. Diabetes Care. 2013;36(9):e141–2.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hitti J, Andersen J, McComsey G, et al. Protease inhibitor-based antiretroviral therapy and glucose tolerance in pregnancy: AIDS clinical trials group A5084. Am J Obstet Gynecol. 2007;196(4):331.e1–7.Google Scholar
  40. 40.
    Tang JH, Sheffield JS, Grimes J, et al. Effect of protease inhibitor therapy on glucose intolerance in pregnancy. Obstet Gynecol. 2006;107(5):1115–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Watts DH, Balasubramanian R, Maupin Jr RT, et al. Maternal toxicity and pregnancy complications in human immunodeficiency virus-infected women receiving antiretroviral therapy: PACTG 316. Am J Obstet Gynecol. 2004;190(2):506–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Tuomala RE, Kalish LA, Zorilla C, et al. Changes in total, CD4+, and CD8+ lymphocytes during pregnancy and 1 year postpartum in human immunodeficiency virus-infected women. The women and infants transmission study. Obstet Gynecol. 1997;89(6):967–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Hadigan C, Corcoran C, Piecuch S, Rodriguez W, Grinspoon S. Hyperandrogenemia in human immunodeficiency virus-infected women with the lipodystrophy syndrome. J Clin Endocrinol Metab. 2000;85(10):3544–50.PubMedGoogle Scholar
  44. 44.
    Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353(9170):2093–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Saves M, Chene G, Dellamonica P. Incidence of lipodystrophy and glucose and lipid abnormalities during the follow-up of a cohort of HIV-infected patients started on a protease inhibitor (PI)-containing regimen. In: 9th conference on retroviruses and opportunistic infections, Seattle, WA 302. 2002.Google Scholar
  46. 46.
    Hommes MJ, Romijn JA, Endert E, Eeftinck Schattenkerk JK, Sauerwein HP. Insulin sensitivity and insulin clearance in human immunodeficiency virus-infected men. Metabolism. 1991;40(6):651–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Heyligenberg R, Romijn JA, Hommes MJ, Endert E, Eeftinck Schattenkerk JK, Sauerwein HP. Non-insulin-mediated glucose uptake in human immunodeficiency virus-infected men. Clin Sci (Lond). 1993;84(2):209–16.CrossRefGoogle Scholar
  48. 48.
    Stein TP, Nutinsky C, Condoluci D, Schluter MD, Leskiw MJ. Protein and energy substrate metabolism in AIDS patients. Metabolism. 1990;39(8):876–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Brown TT, Li X, Cole SR, et al. Cumulative exposure to nucleoside analogue reverse transcriptase inhibitors is associated with insulin resistance markers in the multicenter AIDS cohort study. AIDS. 2005;19(13):1375–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Galli L, Salpietro S, Pellicciotta G, et al. Risk of type 2 diabetes among HIV-infected and healthy subjects in Italy. Eur J Epidemiol. 2012;27(8):657–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Rasmussen LD, Mathiesen ER, Kronborg G, Pedersen C, Gerstoft J, Obel N. Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS One. 2012;7(9), e44575.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Brown TT, Tassiopoulos K, Bosch RJ, Shikuma C, McComsey GA. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010;33(10):2244–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Capeau J, Bouteloup V, Katlama C, et al. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS. 2012;26(3):303–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Panel on antiretroviral guidelines for adults and adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at http://Aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf. Accessed 1 Oct 2015.
  55. 55.
    Lo JC, Kazemi MR, Hsue PY, et al. The relationship between nucleoside analogue treatment duration, insulin resistance, and fasting arterialized lactate level in patients with HIV infection. Clin Infect Dis. 2005;41(9):1335–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Blumer RM, van Vonderen MG, Sutinen J, et al. Zidovudine/lamivudine contributes to insulin resistance within 3 months of starting combination antiretroviral therapy. AIDS. 2008;22(2):227–36.PubMedCrossRefGoogle Scholar
  57. 57.
    Walli R, Herfort O, Michl GM, et al. Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1-infected patients. AIDS. 1998;12(15):F167–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Walli R, Goebel FD, Demant T. Impaired glucose tolerance and protease inhibitors. Ann Intern Med. 1998;129(10):837–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Mulligan K, Grunfeld C, Tai VW, et al. Hyperlipidemia and insulin resistance are induced by protease inhibitors independent of changes in body composition in patients with HIV infection. J Acquir Immune Defic Syndr. 2000;23(1):35–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Visnegarwala F, Darcourt J, Sajja P, et al. Changes in metabolic profile among antiretroviral-naive patients initiating protease inhibitor versus non-protease inhibitor containing HAART regimens. J Acquir Immune Defic Syndr. 2003;33(5):653–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Noor MA, Parker RA, O’Mara E, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults. AIDS. 2004;18(16):2137–44.PubMedCrossRefGoogle Scholar
  62. 62.
    Noor MA, Flint OP, Maa JF, Parker RA. Effects of atazanavir/ritonavir and lopinavir/ritonavir on glucose uptake and insulin sensitivity: demonstrable differences in vitro and clinically. AIDS. 2006;20(14):1813–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Guffanti M, Caumo A, Galli L, et al. Switching to unboosted atazanavir improves glucose tolerance in highly pretreated HIV-1 infected subjects. Eur J Endocrinol. 2007;156(4):503–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Yan Q, Hruz PW. Direct comparison of the acute in vivo effects of HIV protease inhibitors on peripheral glucose disposal. J Acquir Immune Defic Syndr. 2005;40(4):398–403.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    d’Ettorre G, Ceccarelli G, Zaccarelli M, et al. Impact of switching from lopinavir/ritonavir to boosted and un-boosted atazanavir on glucose metabolism: ATAzanavir & GLUcose metabolism (ATAGLU) study. Int J STD AIDS. 2015;0(0): 1–6Google Scholar
  66. 66.
    Vrouenraets SM, Wit FW, Fernandez Garcia E, et al. Randomized comparison of metabolic and renal effects of saquinavir/r or atazanavir/r plus tenofovir/emtricitabine in treatment-naive HIV-1-infected patients. HIV Med. 2011;12(10):620–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Capel E, Auclair M, Caron-Debarle M, Capeau J. Effects of ritonavir-boosted darunavir, atazanavir and lopinavir on adipose functions and insulin sensitivity in murine and human adipocytes. Antivir Ther. 2012;17(3):549–56.PubMedCrossRefGoogle Scholar
  68. 68.
    Arathoon E, Schneider S, Baraldi E, et al. Effects of once-daily darunavir/ritonavir versus lopinavir/ritonavir on metabolic parameters in treatment-naive HIV-1-infected patients at week 96: ARTEMIS. Int J STD AIDS. 2013;24(1):12–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Aberg JA, Tebas P, Overton ET, et al. Metabolic effects of darunavir/ritonavir versus atazanavir/ritonavir in treatment-naive, HIV type 1-infected subjects over 48 weeks. AIDS Res Hum Retroviruses. 2012;28(10):1184–95.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Antinori A, Borderi M, Cauda R, et al. Safety of darunavir/ritonavir (DRV/r) in HIV-1-infected DRV/r-experienced and -naive patients: analysis of data in the real-world setting in Italy. J Int AIDS Soc. 2014;17(4 Suppl 3):19573.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Menzaghi B, Ricci E, Carenzi L, et al. Safety and durability in a cohort of HIV-1 positive patients treated with once and twice daily darunavir-based therapy (SCOLTA project). Biomed Pharmacother. 2013;67(4):293–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Dube MP, Edmondson-Melancon H, Qian D, Aqeel R, Johnson D, Buchanan TA. Prospective evaluation of the effect of initiating indinavir-based therapy on insulin sensitivity and B-cell function in HIV-infected patients. J Acquir Immune Defic Syndr. 2001;27(2):130–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Noor MA, Lo JC, Mulligan K, et al. Metabolic effects of indinavir in healthy HIV-seronegative men. AIDS. 2001;15(7):F11–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Noor MA, Seneviratne T, Aweeka FT, et al. Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS. 2002;16(5):F1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shankar SS, Considine RV, Gorski JC, Steinberg HO. Insulin sensitivity is preserved despite disrupted endothelial function. Am J Physiol Endocrinol Metab. 2006;291(4):E691–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000;275(27):20251–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Murata H, Hruz PW, Mueckler M. Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS. 2002;16(6):859–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Nolte LA, Yarasheski KE, Kawanaka K, Fisher J, Le N, Holloszy JO. The HIV protease inhibitor indinavir decreases insulin- and contraction-stimulated glucose transport in skeletal muscle. Diabetes. 2001;50(6):1397–401.PubMedCrossRefGoogle Scholar
  79. 79.
    Hruz PW, Murata H, Qiu H, Mueckler M. Indinavir induces acute and reversible peripheral insulin resistance in rats. Diabetes. 2002;51(4):937–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Lee GA, Lo JC, Aweeka F, et al. Single-dose lopinavir-ritonavir acutely inhibits insulin-mediated glucose disposal in healthy volunteers. Clin Infect Dis. 2006;43(5):658–60.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lee GA, Seneviratne T, Noor MA, et al. The metabolic effects of lopinavir/ritonavir in HIV-negative men. AIDS. 2004;18(4):641–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Martinez E, Domingo P, Galindo MJ, et al. Risk of metabolic abnormalities in patients infected with HIV receiving antiretroviral therapy that contains lopinavir-ritonavir. Clin Infect Dis. 2004;38(7):1017–23.PubMedCrossRefGoogle Scholar
  83. 83.
    Lafeuillade A, Hittinger G, Philip G, Lambry V, Jolly P, Poggi C. Metabolic evaluation of HIV-infected patients receiving a regimen containing lopinavir/ritonavir (kaletra). HIV Clin Trials. 2004;5(6):392–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee GA, Rao M, Mulligan K, et al. Effects of ritonavir and amprenavir on insulin sensitivity in healthy volunteers. AIDS. 2007;21(16):2183–90.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Dube MP, Qian D, Edmondson-Melancon H, et al. Prospective, intensive study of metabolic changes associated with 48 weeks of amprenavir-based antiretroviral therapy. Clin Infect Dis. 2002;35(4):475–81.PubMedCrossRefGoogle Scholar
  86. 86.
    Fisac C, Virgili N, Ferrer E, et al. A comparison of the effects of nevirapine and nelfinavir on metabolism and body habitus in antiretroviral-naive human immunodeficiency virus-infected patients: a randomized controlled study. J Clin Endocrinol Metab. 2003;88(11):5186–92.PubMedCrossRefGoogle Scholar
  87. 87.
    Dube MP, Parker RA, Tebas P, et al. Glucose metabolism, lipid, and body fat changes in antiretroviral-naive subjects randomized to nelfinavir or efavirenz plus dual nucleosides. AIDS. 2005;19(16):1807–18.PubMedCrossRefGoogle Scholar
  88. 88.
    Hruz PW, Yan Q. Tipranavir without ritonavir does not acutely induce peripheral insulin resistance in a rodent model. J Acquir Immune Defic Syndr. 2006;43(5):624–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Vyas AK, Koster JC, Tzekov A, Hruz PW. Effects of the HIV protease inhibitor ritonavir on GLUT4 knock-out mice. J Biol Chem. 2010;285(47):36395–400.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Anderson PL, Brundage RC, Bushman L, Kakuda TN, Remmel RP, Fletcher CV. Indinavir plasma protein binding in HIV-1-infected adults. AIDS. 2000;14(15):2293–7.PubMedCrossRefGoogle Scholar
  91. 91.
    van Vonderen MG, Blumer RM, Hassink EA, et al. Insulin sensitivity in multiple pathways is differently affected during zidovudine/lamivudine-containing compared with NRTI-sparing combination antiretroviral therapy. J Acquir Immune Defic Syndr. 2010;53(2):186–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Fleischman A, Johnsen S, Systrom DM, et al. Effects of a nucleoside reverse transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial function in muscle of healthy adults. Am J Physiol Endocrinol Metab. 2007;292(6):E1666–73.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pace CS, Martin AM, Hammond EL, Mamotte CD, Nolan DA, Mallal SA. Mitochondrial proliferation, DNA depletion and adipocyte differentiation in subcutaneous adipose tissue of HIV-positive HAART recipients. Antivir Ther. 2003;8(4):323–31.PubMedGoogle Scholar
  94. 94.
    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Martinez E, Garcia-Viejo MA, Blanco JL, et al. Impact of switching from human immunodeficiency virus type 1 protease inhibitors to efavirenz in successfully treated adults with lipodystrophy. Clin Infect Dis. 2000;31(5):1266–73.PubMedCrossRefGoogle Scholar
  96. 96.
    Martinez E, Conget I, Lozano L, Casamitjana R, Gatell JM. Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine. AIDS. 1999;13(7):805–10.PubMedCrossRefGoogle Scholar
  97. 97.
    Petit JM, Duong M, Masson D, et al. Serum adiponectin and metabolic parameters in HIV-1-infected patients after substitution of nevirapine for protease inhibitors. Eur J Clin Invest. 2004;34(8):569–75.PubMedCrossRefGoogle Scholar
  98. 98.
    Estrada V, De Villar NG, Larrad MT, Lopez AG, Fernandez C, Serrano-Rios M. Long-term metabolic consequences of switching from protease inhibitors to efavirenz in therapy for human immunodeficiency virus-infected patients with lipoatrophy. Clin Infect Dis. 2002;35(1):69–76.PubMedCrossRefGoogle Scholar
  99. 99.
    Fisac C, Fumero E, Crespo M, et al. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS. 2005;19(9):917–25.PubMedCrossRefGoogle Scholar
  100. 100.
    Seelmeier S, Schmidt H, Turk V, von der Helm K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci U S A. 1988;85(18):6612–6.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kohl NE, Diehl RE, Rands E, et al. Expression of active human immunodeficiency virus type 1 protease by noninfectious chimeric virus particles. J Virol. 1991;65(6):3007–14.PubMedPubMedCentralGoogle Scholar
  102. 102.
    DiIanni CL, Davis LJ, Holloway MK, et al. Characterization of an active single polypeptide form of the human immunodeficiency virus type 1 protease. J Biol Chem. 1990;265(28):17348–54.PubMedGoogle Scholar
  103. 103.
    Mackin RB. Proinsulin: recent observations and controversies. Cell Mol Life Sci. 1998;54(7):696–702.PubMedCrossRefGoogle Scholar
  104. 104.
    Behrens G, Dejam A, Schmidt H, et al. Impaired glucose tolerance, beta cell function and lipid metabolism in HIV patients under treatment with protease inhibitors. AIDS. 1999;13(10):F63–70.PubMedCrossRefGoogle Scholar
  105. 105.
    Woerle HJ, Mariuz PR, Meyer C, et al. Mechanisms for the deterioration in glucose tolerance associated with HIV protease inhibitor regimens. Diabetes. 2003;52(4):918–25.PubMedCrossRefGoogle Scholar
  106. 106.
    Danoff A, Ling WL. Protease inhibitors do not interfere with prohormone processing. Ann Intern Med. 2000;132(4):330.PubMedCrossRefGoogle Scholar
  107. 107.
    Koster JC, Remedi MS, Qiu H, Nichols CG, Hruz PW. HIV protease inhibitors acutely impair glucose-stimulated insulin release. Diabetes. 2003;52(7):1695–700.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Haugaard SB, Andersen O, Halsall I, Iversen J, Hales CN, Madsbad S. Impaired proinsulin secretion before and during oral glucose stimulation in HIV-infected patients who display fat redistribution. Metabolism. 2007;56(7):939–46.PubMedCrossRefGoogle Scholar
  109. 109.
    Zhang S, Carper MJ, Lei X, Cade WT, Yarasheski KE, Ramanadham S. Protease inhibitors used in the treatment of HIV+ induce beta-cell apoptosis via the mitochondrial pathway and compromise insulin secretion. Am J Physiol Endocrinol Metab. 2009;296(4):E925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Schwarz JM, Lee GA, Park S, et al. Indinavir increases glucose production in healthy HIV-negative men. AIDS. 2004;18(13):1852–4.PubMedCrossRefGoogle Scholar
  111. 111.
    Lee GA, Schwarz JM, Patzek S, et al. The acute effects of HIV protease inhibitors on insulin suppression of glucose production in healthy HIV-negative men. J Acquir Immune Defic Syndr. 2009;52(2):246–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sekhar RV, Jahoor F, White AC, et al. Metabolic basis of HIV-lipodystrophy syndrome. Am J Physiol Endocrinol Metab. 2002;283(2):E332–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Hadigan C, Borgonha S, Rabe J, Young V, Grinspoon S. Increased rates of lipolysis among human immunodeficiency virus-infected men receiving highly active antiretroviral therapy. Metabolism. 2002;51(9):1143–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Reeds DN, Mittendorfer B, Patterson BW, Powderly WG, Yarasheski KE, Klein S. Alterations in lipid kinetics in men with HIV-dyslipidemia. Am J Physiol Endocrinol Metab. 2003;285(3):E490–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Hadigan C, Rabe J, Meininger G, Aliabadi N, Breu J, Grinspoon S. Inhibition of lipolysis improves insulin sensitivity in protease inhibitor-treated HIV-infected men with fat redistribution. Am J Clin Nutr. 2003;77(2):490–4.PubMedGoogle Scholar
  116. 116.
    Hadigan C, Liebau J, Torriani M, Andersen R, Grinspoon S. Improved triglycerides and insulin sensitivity with 3 months of acipimox in human immunodeficiency virus-infected patients with hypertriglyceridemia. J Clin Endocrinol Metab. 2006;91(11):4438–44.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lindegaard B, Frosig C, Petersen AM, et al. Inhibition of lipolysis stimulates peripheral glucose uptake but has no effect on endogenous glucose production in HIV lipodystrophy. Diabetes. 2007;56(8):2070–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Seltzer HS. Drug-induced hypoglycemia. A review of 1418 cases. Endocrinol Metab Clin North Am. 1989;18(1):163–83.PubMedGoogle Scholar
  119. 119.
    Abourizk NN, Lyons RW, Madden GM. Transient state of NIDDM in a patient with AIDS. Diabetes Care. 1993;16(6):931–3.PubMedCrossRefGoogle Scholar
  120. 120.
    Nasti G, Zanette G, Inchiostro S, Donadon V, Tirelli U. Diabetes mellitus following intravenous pentamidine administration in a patient with HIV infection. Arch Intern Med. 1995;155(6):645–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Coyle P, Carr AD, Depczynski BB, Chisholm DJ. Diabetes mellitus associated with pentamidine use in HIV-infected patients. Med J Aust. 1996;165(10):587–8.PubMedGoogle Scholar
  122. 122.
    Uzzan B, Bentata M, Campos J, et al. Effects of aerosolized pentamidine on glucose homeostasis and insulin secretion in HIV-positive patients: a controlled study. AIDS. 1995;9(8):901–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Jain P, Girardi LS, Sherman L, Berelowicz M, Smith LG. Insulin resistance and development of diabetes mellitus associated with megestrol acetate therapy. Postgrad Med J. 1996;72(848):365–7.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kilby JM, Tabereaux PB. Severe hyperglycemia in an HIV clinic: preexisting versus drug-associated diabetes mellitus. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(1):46–50.PubMedCrossRefGoogle Scholar
  125. 125.
    Gonzalez Del Valle L, Herrero Ambrosio A, Martinez Hernandez P, Garcia Diaz B, Jimenez Caballero E. Hyperglycemia induced by megestrol acetate in a patient with AIDS. Ann Pharmacother. 1996;30(10):1113–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Samaras K, Pett S, Gowers A, McMurchie M, Cooper DA. Iatrogenic cushing’s syndrome with osteoporosis and secondary adrenal failure in human immunodeficiency virus-infected patients receiving inhaled corticosteroids and ritonavir-boosted protease inhibitors: six cases. J Clin Endocrinol Metab. 2005;90(7):4394–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Lewis J, Turtle L, Khoo S, Nsutebu EN. A case of iatrogenic adrenal suppression after co-administration of cobicistat and fluticasone nasal drops. AIDS. 2014;28(17):2636–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Ramanathan R, Pau AK, Busse KH, et al. Iatrogenic cushing syndrome after epidural triamcinolone injections in an HIV type 1-infected patient receiving therapy with ritonavir-lopinavir. Clin Infect Dis. 2008;47(12):e97–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med. 2005;352(1):48–62.PubMedCrossRefGoogle Scholar
  130. 130.
    Lo JC, Mulligan K, Noor MA, et al. The effects of low-dose growth hormone in HIV-infected men with fat accumulation: a pilot study. Clin Infect Dis. 2004;39(5):732–5.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Blanch J, Rousaud A, Martinez E, et al. Factors associated with severe impact of lipodystrophy on the quality of life of patients infected with HIV-1. Clin Infect Dis. 2004;38(10):1464–70.PubMedCrossRefGoogle Scholar
  132. 132.
    Ammassari A, Antinori A, Cozzi-Lepri A, et al. Relationship between HAART adherence and adipose tissue alterations. J Acquir Immune Defic Syndr. 2002;31 Suppl 3:S140–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Martinez E, Mocroft A, Garcia-Viejo MA, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet. 2001;357(9256):592–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Heath KV, Singer J, O’Shaughnessy MV, Montaner JS, Hogg RS. Intentional nonadherence due to adverse symptoms associated with antiretroviral therapy. J Acquir Immune Defic Syndr. 2002;31(2):211–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Galli M, Cozzi-Lepri A, Ridolfo AL, et al. Incidence of adipose tissue alterations in first-line antiretroviral therapy: the LipoICoNa study. Arch Intern Med. 2002;162(22):2621–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Saves M, Raffi F, Capeau J, et al. Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis. 2002;34(10):1396–405.PubMedCrossRefGoogle Scholar
  137. 137.
    Bacchetti P, Gripshover B, Grunfeld C, et al. Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr. 2005;40(2):121–31.PubMedCrossRefGoogle Scholar
  138. 138.
    Carr A, Emery S, Law M, et al. An objective case definition of lipodystrophy in HIV-infected adults: a case-control study. Lancet. 2003;361(9359):726–35.PubMedCrossRefGoogle Scholar
  139. 139.
    Mankal PK, Kotler DP. From wasting to obesity, changes in nutritional concerns in HIV/AIDS. Endocrinol Metab Clin North Am. 2014;43(3):647–63.PubMedCrossRefGoogle Scholar
  140. 140.
    Lichtenstein KA, Ward DJ, Moorman AC, et al. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS. 2001;15(11):1389–98.PubMedCrossRefGoogle Scholar
  141. 141.
    Kotler DP, Rosenbaum K, Wang J, Pierson RN. Studies of body composition and fat distribution in HIV-infected and control subjects. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;20(3):228–37.PubMedCrossRefGoogle Scholar
  142. 142.
    Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401(6748):73–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350(12):1220–34.PubMedCrossRefGoogle Scholar
  145. 145.
    Heath KV, Hogg RS, Singer J, Chan KJ, O’Shaughnessy MV, Montaner JS. Antiretroviral treatment patterns and incident HIV-associated morphologic and lipid abnormalities in a population-based cohort. J Acquir Immune Defic Syndr. 2002;30(4):440–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Podzamczer D, Ferrer E, Martinez E, et al. How much fat loss is needed for lipoatrophy to become clinically evident? AIDS Res Hum Retroviruses. 2009;25(6):563–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Raulin J. Human immunodeficiency virus and host cell lipids. interesting pathways in research for a new HIV therapy. Prog Lipid Res. 2002;41(1):27–65.PubMedCrossRefGoogle Scholar
  148. 148.
    Mallon PW, Sedwell R, Rogers G, et al. Effect of rosiglitazone on peroxisome proliferator-activated receptor gamma gene expression in human adipose tissue is limited by antiretroviral drug-induced mitochondrial dysfunction. J Infect Dis. 2008;198(12):1794–803.PubMedCrossRefGoogle Scholar
  149. 149.
    Edgeworth A, Treacy MP, Hurst TP. Thiazolidinediones in the treatment of HIV/HAART-associated lipodystrophy syndrome. AIDS Rev. 2013;15(3):171–80.PubMedGoogle Scholar
  150. 150.
    Mallal SA, John M, Moore CB, James IR, McKinnon EJ. Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS. 2000;14(10):1309–16.PubMedCrossRefGoogle Scholar
  151. 151.
    Shlay JC, Visnegarwala F, Bartsch G, et al. Body composition and metabolic changes in antiretroviral-naive patients randomized to didanosine and stavudine vs. abacavir and lamivudine. J Acquir Immune Defic Syndr. 2005;38(2):147–55.PubMedCrossRefGoogle Scholar
  152. 152.
    Duong M, Petit JM, Piroth L, et al. Association between insulin resistance and hepatitis C virus chronic infection in HIV-hepatitis C virus-coinfected patients undergoing antiretroviral therapy. J Acquir Immune Defic Syndr. 2001;27(3):245–50.PubMedCrossRefGoogle Scholar
  153. 153.
    Jacobson DL, Knox T, Spiegelman D, Skinner S, Gorbach S, Wanke C. Prevalence of, evolution of, and risk factors for fat atrophy and fat deposition in a cohort of HIV-infected men and women. Clin Infect Dis. 2005;40(12):1837–45.PubMedCrossRefGoogle Scholar
  154. 154.
    McDermott AY, Terrin N, Wanke C, Skinner S, Tchetgen E, Shevitz AH. CD4+ cell count, viral load, and highly active antiretroviral therapy use are independent predictors of body composition alterations in HIV-infected adults: a longitudinal study. Clin Infect Dis. 2005;41(11):1662–70.PubMedCrossRefGoogle Scholar
  155. 155.
    Mulligan K, Parker RA, Komarow L, et al. Mixed patterns of changes in central and peripheral fat following initiation of antiretroviral therapy in a randomized trial. J Acquir Immune Defic Syndr. 2006;41(5):590–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Mallon PW, Miller J, Cooper DA, Carr A. Prospective evaluation of the effects of antiretroviral therapy on body composition in HIV-1-infected men starting therapy. AIDS. 2003;17(7):971–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Domingo P, Matias-Guiu X, Pujol RM, et al. Subcutaneous adipocyte apoptosis in HIV-1 protease inhibitor-associated lipodystrophy. AIDS. 1999;13(16):2261–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Bastard JP, Caron M, Vidal H, et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet. 2002;359(9311):1026–31.PubMedCrossRefGoogle Scholar
  159. 159.
    Dowell P, Flexner C, Kwiterovich PO, Lane MD. Suppression of preadipocyte differentiation and promotion of adipocyte death by HIV protease inhibitors. J Biol Chem. 2000;275(52):41325–32.PubMedCrossRefGoogle Scholar
  160. 160.
    Caron M, Auclair M, Vigouroux C, Glorian M, Forest C, Capeau J. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes. 2001;50(6):1378–88.PubMedCrossRefGoogle Scholar
  161. 161.
    Caron M, Auclair M, Sterlingot H, Kornprobst M, Capeau J. Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS. 2003;17(17):2437–44.PubMedCrossRefGoogle Scholar
  162. 162.
    Roche R, Poizot-Martin I, Yazidi CM, et al. Effects of antiretroviral drug combinations on the differentiation of adipocytes. AIDS. 2002;16(1):13–20.PubMedCrossRefGoogle Scholar
  163. 163.
    Nolan D, Hammond E, Martin A, et al. Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. AIDS. 2003;17(9):1329–38.PubMedCrossRefGoogle Scholar
  164. 164.
    Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med. 1995;1(5):417–22.PubMedCrossRefGoogle Scholar
  165. 165.
    Dalakas MC, Illa I, Pezeshkpour GH, Laukaitis JP, Cohen B, Griffin JL. Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med. 1990;322(16):1098–105.PubMedCrossRefGoogle Scholar
  166. 166.
    Lewis W, Simpson JF, Meyer RR. Cardiac mitochondrial DNA polymerase-gamma is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ Res. 1994;74(2):344–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Hammond E, McKinnon E, Nolan D. Human immunodeficiency virus treatment-induced adipose tissue pathology and lipoatrophy: prevalence and metabolic consequences. Clin Infect Dis. 2010;51(5):591–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Sievers M, Walker UA, Sevastianova K, et al. Gene expression and immunohistochemistry in adipose tissue of HIV type 1-infected patients with nucleoside analogue reverse-transcriptase inhibitor-associated lipoatrophy. J Infect Dis. 2009;200(2):252–62.PubMedCrossRefGoogle Scholar
  169. 169.
    Joly V, Flandre P, Meiffredy V, et al. Increased risk of lipoatrophy under stavudine in HIV-1-infected patients: results of a substudy from a comparative trial. AIDS. 2002;16(18):2447–54.PubMedCrossRefGoogle Scholar
  170. 170.
    Podzamczer D, Ferrer E, Sanchez P, et al. Less lipoatrophy and better lipid profile with abacavir as compared to stavudine: 96-week results of a randomized study. J Acquir Immune Defic Syndr. 2007;44(2):139–47.PubMedCrossRefGoogle Scholar
  171. 171.
    Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: A 3-year randomized trial. JAMA. 2004;292(2):191–201.PubMedCrossRefGoogle Scholar
  172. 172.
    Shlay JC, Sharma S, Peng G, Gibert CL, Grunfeld C. Long-term subcutaneous tissue changes among antiretroviral-naive persons initiating stavudine, zidovudine, or abacavir with lamivudine. J Acquir Immune Defic Syndr. 2008;48(1):53–62.PubMedCrossRefGoogle Scholar
  173. 173.
    Dube MP, Komarow L, Mulligan K, et al. Long-term body fat outcomes in antiretroviral-naive participants randomized to nelfinavir or efavirenz or both plus dual nucleosides. Dual X-ray absorptiometry results from A5005s, a substudy of adult clinical trials group 384. J Acquir Immune Defic Syndr. 2007;45(5):508–14.PubMedCrossRefGoogle Scholar
  174. 174.
    Shlay JC, Sharma S, Peng G, et al. The effect of individual antiretroviral drugs on body composition in HIV-infected persons initiating highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;51(3):298–304.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Gallant JE, DeJesus E, Arribas JR, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med. 2006;354(3):251–60.PubMedCrossRefGoogle Scholar
  176. 176.
    van der Valk M, Gisolf EH, Reiss P, et al. Increased risk of lipodystrophy when nucleoside analogue reverse transcriptase inhibitors are included with protease inhibitors in the treatment of HIV-1 infection. AIDS. 2001;15(7):847–55.PubMedCrossRefGoogle Scholar
  177. 177.
    Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395.PubMedCrossRefGoogle Scholar
  179. 179.
    Estrada V, Martinez-Larrad MT, Gonzalez-Sanchez JL, et al. Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metabolism. 2006;55(7):940–5.PubMedCrossRefGoogle Scholar
  180. 180.
    Verkauskiene R, Dollfus C, Levine M, et al. Serum adiponectin and leptin concentrations in HIV-infected children with fat redistribution syndrome. Pediatr Res. 2006;60(2):225–30.PubMedCrossRefGoogle Scholar
  181. 181.
    Paruthi J, Gill N, Mantzoros CS. Adipokines in the HIV/HAART-associated lipodystrophy syndrome. Metabolism. 2013;62(9):1199–205.PubMedCrossRefGoogle Scholar
  182. 182.
    Kosmiski LA, Bacchetti P, Kotler DP, et al. Relationship of fat distribution with adipokines in human immunodeficiency virus infection. J Clin Endocrinol Metab. 2008;93(1):216–24.PubMedCrossRefGoogle Scholar
  183. 183.
    Addy CL, Gavrila A, Tsiodras S, Brodovicz K, Karchmer AW, Mantzoros CS. Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia, and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy. J Clin Endocrinol Metab. 2003;88(2):627–36.PubMedCrossRefGoogle Scholar
  184. 184.
    Reeds DN, Yarasheski KE, Fontana L, et al. Alterations in liver, muscle, and adipose tissue insulin sensitivity in men with HIV infection and dyslipidemia. Am J Physiol Endocrinol Metab. 2006;290(1):E47–53.PubMedCrossRefGoogle Scholar
  185. 185.
    Lee GA, Mafong DD, Noor MA, et al. HIV protease inhibitors increase adiponectin levels in HIV-negative men. J Acquir Immune Defic Syndr. 2004;36(1):645–7.PubMedCrossRefGoogle Scholar
  186. 186.
    Omar F, Dave JA, King JA, Levitt NS, Pillay TS. High molecular weight (HMW): total adiponectin ratio is low in hiv-infected women receiving protease inhibitors. BMC Clin Pathol. 2014;14(1):46-6890-14-46. eCollection 2014.Google Scholar
  187. 187.
    Chen D, Misra A, Garg A. Clinical review 153: lipodystrophy in human immunodeficiency virus-infected patients. J Clin Endocrinol Metab. 2002;87(11):4845–56.PubMedCrossRefGoogle Scholar
  188. 188.
    Yanovski JA, Miller KD, Kino T, et al. Endocrine and metabolic evaluation of human immunodeficiency virus-infected patients with evidence of protease inhibitor-associated lipodystrophy. J Clin Endocrinol Metab. 1999;84(6):1925–31.PubMedCrossRefGoogle Scholar
  189. 189.
    Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “cushing’s disease of the omentum”? Lancet. 1997;349(9060):1210–3.PubMedCrossRefGoogle Scholar
  190. 190.
    Sutinen J, Kannisto K, Korsheninnikova E, et al. In the lipodystrophy associated with highly active antiretroviral therapy, pseudo-cushing’s syndrome is associated with increased regeneration of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue. Diabetologia. 2004;47(10):1668–71.PubMedCrossRefGoogle Scholar
  191. 191.
    Brown TT, Chu H, Wang Z, et al. Longitudinal increases in waist circumference are associated with HIV-serostatus, independent of antiretroviral therapy. AIDS. 2007;21(13):1731–8.PubMedCrossRefGoogle Scholar
  192. 192.
    de Waal R, Cohen K, Maartens G. Systematic review of antiretroviral-associated lipodystrophy: lipoatrophy, but not central fat gain, is an antiretroviral adverse drug reaction. PLoS One. 2013;8(5):e63623.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Palella Jr FJ, Cole SR, Chmiel JS, et al. Anthropometrics and examiner-reported body habitus abnormalities in the multicenter AIDS cohort study. Clin Infect Dis. 2004;38(6):903–7.PubMedCrossRefGoogle Scholar
  194. 194.
    Herman WH. Standards of medical care in diabetes-2016: summary of revisions. Diabetes Care. 2016;39 Suppl 1:S4–5.Google Scholar
  195. 195.
    Kim PS, Woods C, Georgoff P, et al. A1C underestimates glycemia in HIV infection. Diabetes Care. 2009;32(9):1591–3.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Diop ME, Bastard JP, Meunier N, et al. Inappropriately low glycated hemoglobin values and hemolysis in HIV-infected patients. AIDS Res Hum Retroviruses. 2006;22(12):1242–7.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Polgreen PM, Putz D, Stapleton JT. Inaccurate glycosylated hemoglobin A1C measurements in human immunodeficiency virus-positive patients with diabetes mellitus. Clin Infect Dis. 2003;37(4):e53–6.PubMedCrossRefGoogle Scholar
  198. 198.
    Glesby MJ, Hoover DR, Shi Q, et al. Glycated haemoglobin in diabetic women with and without HIV infection: data from the women’s interagency HIV study. Antivir Ther. 2010;15(4):571–7.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Slama L, Palella Jr FJ, Abraham AG, et al. Inaccuracy of haemoglobin A1c among HIV-infected men: effects of CD4 cell count, antiretroviral therapies and haematological parameters. J Antimicrob Chemother. 2014;69(12):3360–7.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Aberg JA, Gallant JE, Ghanem KG, et al. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the infectious diseases society of America. Clin Infect Dis. 2014;58(1):e1–34.PubMedCrossRefGoogle Scholar
  201. 201.
    Roubenoff R, Schmitz H, Bairos L, et al. Reduction of abdominal obesity in lipodystrophy associated with human immunodeficiency virus infection by means of diet and exercise: case report and proof of principle. Clin Infect Dis. 2002;34(3):390–3.PubMedCrossRefGoogle Scholar
  202. 202.
    Jones SP, Doran DA, Leatt PB, Maher B, Pirmohamed M. Short-term exercise training improves body composition and hyperlipidaemia in HIV-positive individuals with lipodystrophy. AIDS. 2001;15(15):2049–51.PubMedCrossRefGoogle Scholar
  203. 203.
    Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–4.PubMedCrossRefGoogle Scholar
  204. 204.
    Saint-Marc T, Touraine JL. Effects of metformin on insulin resistance and central adiposity in patients receiving effective protease inhibitor therapy. AIDS. 1999;13(8):1000–2.PubMedCrossRefGoogle Scholar
  205. 205.
    Hadigan C, Corcoran C, Basgoz N, Davis B, Sax P, Grinspoon S. Metformin in the treatment of HIV lipodystrophy syndrome: a randomized controlled trial. JAMA. 2000;284(4):472–7.PubMedCrossRefGoogle Scholar
  206. 206.
    Hadigan C, Rabe J, Grinspoon S. Sustained benefits of metformin therapy on markers of cardiovascular risk in human immunodeficiency virus-infected patients with fat redistribution and insulin resistance. J Clin Endocrinol Metab. 2002;87(10):4611–5.PubMedCrossRefGoogle Scholar
  207. 207.
    Mulligan K, Yang Y, Wininger DA, et al. Effects of metformin and rosiglitazone in HIV-infected patients with hyperinsulinemia and elevated waist/hip ratio. AIDS. 2007;21(1):47–57.PubMedCrossRefGoogle Scholar
  208. 208.
    van Wijk JP, de Koning EJ, Cabezas MC, et al. Comparison of rosiglitazone and metformin for treating HIV lipodystrophy: a randomized trial. Ann Intern Med. 2005;143(5):337–46.PubMedCrossRefGoogle Scholar
  209. 209.
    Joven J, Menendez JA, Fernandez-Sender L, et al. Metformin: a cheap and well-tolerated drug that provides benefits for viral infections. HIV Med. 2013;14(4):233–40.PubMedCrossRefGoogle Scholar
  210. 210.
    Bevilacqua M, Dominguez LJ, Barbagallo M. Insulin resistance and the cardiometabolic syndrome in HIV infection. J Cardiometab Syndr. 2009;4(1):40–3.PubMedCrossRefGoogle Scholar
  211. 211.
    Fitch K, Abbara S, Lee H, et al. Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome. AIDS. 2012;26(5):587–97.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Kohli R, Shevitz A, Gorbach S, Wanke C. A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV Med. 2007;8(7):420–6.PubMedCrossRefGoogle Scholar
  213. 213.
    Sheth SH, Larson RJ. The efficacy and safety of insulin-sensitizing drugs in HIV-associated lipodystrophy syndrome: a meta-analysis of randomized trials. BMC Infect Dis. 2010;10:183-2334-10-183.Google Scholar
  214. 214.
    Vrouenraets SM, Treskes M, Regez RM, et al. Hyperlactataemia in HIV-infected patients: the role of NRTI-treatment. Antivir Ther. 2002;7(4):239–44.PubMedGoogle Scholar
  215. 215.
    Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc. 2014;17(4 Suppl 3):19584.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Aperis G, Paliouras C, Zervos A, Arvanitis A, Alivanis P. Lactic acidosis after concomitant treatment with metformin and tenofovir in a patient with HIV infection. J Ren Care. 2011;37(1):25–9.PubMedCrossRefGoogle Scholar
  217. 217.
    Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18.PubMedCrossRefGoogle Scholar
  218. 218.
    Renga B, Francisci D, D’Amore C, et al. The HIV matrix protein p17 subverts nuclear receptors expression and induces a STAT1-dependent proinflammatory phenotype in monocytes. PLoS One. 2012;7(4):e35924.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Carr A. HIV protease inhibitor-related lipodystrophy syndrome. Clin Infect Dis. 2000;30 Suppl 2:S135–42.PubMedCrossRefGoogle Scholar
  220. 220.
    Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.PubMedCrossRefGoogle Scholar
  221. 221.
    Tungsiripat M, Bejjani DE, Rizk N, et al. Rosiglitazone improves lipoatrophy in patients receiving thymidine-sparing regimens. AIDS. 2010;24(9):1291–8.PubMedPubMedCentralGoogle Scholar
  222. 222.
    Slama L, Lanoy E, Valantin MA, et al. Effect of pioglitazone on HIV-1-related lipodystrophy: a randomized double-blind placebo-controlled trial (ANRS 113). Antivir Ther. 2008;13(1):67–76.PubMedGoogle Scholar
  223. 223.
    Gavrila A, Hsu W, Tsiodras S, et al. Improvement in highly active antiretroviral therapy-induced metabolic syndrome by treatment with pioglitazone but not with fenofibrate: a 2 × 2 factorial, randomized, double-blinded, placebo-controlled trial. Clin Infect Dis. 2005;40(5):745–9.PubMedCrossRefGoogle Scholar
  224. 224.
    Yarasheski KE, Cade WT, Overton ET, et al. Exercise training augments the peripheral insulin-sensitizing effects of pioglitazone in HIV-infected adults with insulin resistance and central adiposity. Am J Physiol Endocrinol Metab. 2011;300(1):E243–51.PubMedCrossRefGoogle Scholar
  225. 225.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.PubMedCrossRefGoogle Scholar
  226. 226.
    van Wijk JP, Hoepelman AI, de Koning EJ, Dallinga-Thie G, Rabelink TJ, Cabezas MC. Differential effects of rosiglitazone and metformin on postprandial lipemia in patients with HIV-lipodystrophy. Arterioscler Thromb Vasc Biol. 2011;31(1):228–33.PubMedCrossRefGoogle Scholar
  227. 227.
    Tungsiripat M, El-Bejjani D, Rizk N, et al. Carotid intima media thickness, inflammatory markers, and endothelial activation markers in HIV patients with lipoatrophy increased at 48 weeks regardless of use of rosiglitazone or placebo. AIDS Res Hum Retroviruses. 2011;27(3):295–302.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459–69.PubMedCrossRefGoogle Scholar
  229. 229.
    Carr A, Workman C, Carey D, et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet. 2004;363(9407):429–38.PubMedCrossRefGoogle Scholar
  230. 230.
    Goodwin SR, Reeds DN, Royal M, Struthers H, Laciny E, Yarasheski KE. Dipeptidyl peptidase IV inhibition does not adversely affect immune or virological status in HIV infected men and women: a pilot safety study. J Clin Endocrinol Metab. 2013;98(2):743–51.PubMedCrossRefGoogle Scholar
  231. 231.
    Best C, Struthers H, Laciny E, Royal M, Reeds DN, Yarasheski KE. Sitagliptin reduces inflammation and chronic immune cell activation in HIV+ adults with impaired glucose tolerance. J Clin Endocrinol Metab. 2015;100(7):2621–9.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care. 2011;34 Suppl 2:S279–84.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Oriot P, Hermans MP, Selvais P, Buysschaert M, de la Tribonniere X. Exenatide improves weight loss insulin sensitivity and beta-cell function following administration to a type 2 diabetic HIV patient on antiretroviral therapy. Ann Endocrinol (Paris). 2011;72(3):244–6.CrossRefGoogle Scholar
  234. 234.
    Diamant M, van Agtmael M. Liraglutide treatment in a patient with HIV and uncontrolled insulin-treated type 2 diabetes. Diabetes Care. 2012;35(5):e34-0021.CrossRefGoogle Scholar
  235. 235.
    Arioglu E, Duncan-Morin J, Sebring N, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med. 2000;133(4):263–74.PubMedCrossRefGoogle Scholar
  236. 236.
    Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care. 1999;22(6):908–12.PubMedCrossRefGoogle Scholar
  237. 237.
    Kawai T, Takei I, Oguma Y, et al. Effects of troglitazone on fat distribution in the treatment of male type 2 diabetes. Metabolism. 1999;48(9):1102–7.PubMedCrossRefGoogle Scholar
  238. 238.
    Kelly IE, Han TS, Walsh K, Lean ME. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care. 1999;22(2):288–93.PubMedCrossRefGoogle Scholar
  239. 239.
    Gelato MC, Mynarcik DC, Quick JL, et al. Improved insulin sensitivity and body fat distribution in HIV-infected patients treated with rosiglitazone: a pilot study. J Acquir Immune Defic Syndr. 2002;31(2):163–70.PubMedCrossRefGoogle Scholar
  240. 240.
    Hadigan C, Yawetz S, Thomas A, Havers F, Sax PE, Grinspoon S. Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann Intern Med. 2004;140(10):786–94.PubMedCrossRefGoogle Scholar
  241. 241.
    Sutinen J, Hakkinen AM, Westerbacka J, et al. Rosiglitazone in the treatment of HAART-associated lipodystrophy–a randomized double-blind placebo-controlled study. Antivir Ther. 2003;8(3):199–207.PubMedGoogle Scholar
  242. 242.
    Cavalcanti RB, Raboud J, Shen S, Kain KC, Cheung A, Walmsley S. A randomized, placebo-controlled trial of rosiglitazone for HIV-related lipoatrophy. J Infect Dis. 2007;195(12):1754–61.PubMedCrossRefGoogle Scholar
  243. 243.
    Tungsiripat M, El-Bejjani D, Rizk N, et al. Changes in inflammation, oxidative stress, mitochondrial DNA content after rosiglitazone in HIV lipoatrophy. J AIDS Clin Res. 2012;3(8):174.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Carr A, Workman C, Smith DE, et al. Abacavir substitution for nucleoside analogs in patients with HIV lipoatrophy: a randomized trial. JAMA. 2002;288(2):207–15.PubMedCrossRefGoogle Scholar
  245. 245.
    John M, McKinnon EJ, James IR, et al. Randomized, controlled, 48-week study of switching stavudine and/or protease inhibitors to combivir/abacavir to prevent or reverse lipoatrophy in HIV-infected patients. J Acquir Immune Defic Syndr. 2003;33(1):29–33.PubMedCrossRefGoogle Scholar
  246. 246.
    Martin A, Smith DE, Carr A, et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX extension study. AIDS. 2004;18(7):1029–36.PubMedCrossRefGoogle Scholar
  247. 247.
    Tebas P, Zhang J, Yarasheski K, et al. Switching to a protease inhibitor-containing, nucleoside-sparing regimen (lopinavir/ritonavir plus efavirenz) increases limb fat but raises serum lipid levels: results of a prospective randomized trial (AIDS clinical trial group 5125s). J Acquir Immune Defic Syndr. 2007;45(2):193–200.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Carr A, Hudson J, Chuah J, et al. HIV protease inhibitor substitution in patients with lipodystrophy: a randomized, controlled, open-label, multicentre study. AIDS. 2001;15(14):1811–22.PubMedCrossRefGoogle Scholar
  249. 249.
    Moyle GJ, Sabin CA, Cartledge J, et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS. 2006;20(16):2043–50.PubMedCrossRefGoogle Scholar
  250. 250.
    Driscoll SD, Meininger GE, Lareau MT, et al. Effects of exercise training and metformin on body composition and cardiovascular indices in HIV-infected patients. AIDS. 2004;18(3):465–73.PubMedCrossRefGoogle Scholar
  251. 251.
    Falutz J, Mamputu JC, Potvin D, et al. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab. 2010;95(9):4291–304.PubMedCrossRefGoogle Scholar
  252. 252.
    Falutz J, Allas S, Blot K, et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N Engl J Med. 2007;357(23):2359–70.PubMedCrossRefGoogle Scholar
  253. 253.
    Stanley TL, Feldpausch MN, Oh J, et al. Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial. JAMA. 2014;312(4):380–9.PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Glesby MJ, Albu J, Chiu YL, et al. Recombinant human growth hormone and rosiglitazone for abdominal fat accumulation in HIV-infected patients with insulin resistance: a randomized, double-blind, placebo-controlled, factorial trial. PLoS One. 2013;8(4):e61160.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Metabolism, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations