Advertisement

Coronary Artery Disease and Cardiomyopathy

  • Adam BierzynskiEmail author
  • Dheeraj KhuranaEmail author
  • Richard Devereux
  • Varinder SinghEmail author
Reference work entry

Abstract

The emerging epidemic of obesity and diabetes has been recognized as a major public health problem. The cardiovascular system is particularly susceptible to the biologic perturbations caused by diabetes, and many patients may die from related complications. In terms of major cardiovascular events, coronary heart disease and ischemic stroke are the main causes of morbidity and mortality in diabetic patients. This chapter reviews the clinical implications of the manifestations of diabetic heart disease and the impact of treatment on cardiovascular mortality and morbidity based on clinical trials.

Keywords

Cardiovascular Disease Cardiomyopathy Dyslipidemia Hypertension Coronary Artery Disease Coronary Revascularization Diabetes 

Notes

Acknowledgements

This chapter is a revision and update of the work by Dr Richard B. Devereux from the previous edition’s chapter.

References

  1. 1.
    Tao Z, Shi A, Zhao J. Epidemiological perspectives of diabetes. Cell Biochem Biophys. 2015;73(1):181–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Howard VJ. Heart disease and stroke statistics – 2016 update a report from the American Heart Association. Circulation. 2015;133(4):e38–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Centers for Disease Control and Prevention (CDC). National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.Google Scholar
  4. 4.
    Skyler J, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale E, Sherwin R. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the ADA and a scientific statement of the ACC and AHA. J Am Coll Cardiol. 2009;53(3):298–304.PubMedCrossRefGoogle Scholar
  5. 5.
    Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134.PubMedCrossRefGoogle Scholar
  6. 6.
    National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143.Google Scholar
  7. 7.
    De Backer G, Ambrosioni E, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice: third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Eur J Cardiovasc Prev Rehabil. 2003;10:S1.PubMedGoogle Scholar
  8. 8.
    Haffner SM, Lehto S, Rönnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229.PubMedCrossRefGoogle Scholar
  9. 9.
    Donahoe SM, Stewart GC, McCabe CH, et al. Diabetes and mortality following acute coronary syndromes. J Am Med Assoc. 2007;298:765–75.CrossRefGoogle Scholar
  10. 10.
    Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979;59:8.PubMedCrossRefGoogle Scholar
  11. 11.
    Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. J Am Med Assoc. 1999;281:1291–7.CrossRefGoogle Scholar
  12. 12.
    Jemal A, Ward E, Hao Y, et al. Trends in the leading causes of death in the United States, 1970–2002. J Am Med Assoc. 2005;294:1255–9.CrossRefGoogle Scholar
  13. 13.
    Lee CD, Folsom AR, Pankow JS, et al. Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation. 2004;109:855.PubMedCrossRefGoogle Scholar
  14. 14.
    Miettinen H, Lehto S, Salomaa V, et al. Impact of diabetes on mortality after the first myocardial infarction. Diabetes Care. 1998;21:69–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Fox CS, Coady S, Sorlie PD, et al. Trends in cardiovascular complications of diabetes. JAMA. 2004;292:2495.PubMedCrossRefGoogle Scholar
  16. 16.
    Granger CB, Califf RM, Young S, et al. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. J Am Coll Cardiol. 1993;21:920.PubMedCrossRefGoogle Scholar
  17. 17.
    Anand DV, Lim E, Lahiri A, Bax JJ. The role of non-invasive imaging in the risk stratification of asymptomatic diabetic subjects. Eur Heart J. 2006;27:905.PubMedCrossRefGoogle Scholar
  18. 18.
    Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100:813.PubMedCrossRefGoogle Scholar
  19. 19.
    Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation. 1998;98:961.PubMedCrossRefGoogle Scholar
  20. 20.
    Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1997;30:1472.PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia MJ, McNamara M, Gordon T, Kannel WB. 16 year follow-up study. Morbidity and mortality in diabetics in the Framingham population. Diabetes. 1974;23:105–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Kannel WB, McGee DL. Diabetes and cardiovascular disease; The Framingham study. J Am Med Assoc. 1979;241:2035–8.CrossRefGoogle Scholar
  23. 23.
    Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors and 12-year cardiovascular mortality in men screened in the multiple risk factor intervention trial (MRFIT). Diabetes Care. 1993;16:434–44.PubMedCrossRefGoogle Scholar
  24. 24.
    WHO. Definition of metabolic syndrome in definition, diagnosis and classification of diabetes and its complications. Report of a WHO consultation. Part 1: diagnosis and classification of diabetes mellitus. WHO/NCD/NCS/99.2. Geneva: World Health Organization – Department of Noncommunicable Disease Surveillance; 1999.Google Scholar
  25. 25.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.Google Scholar
  26. 26.
    Balkau B, Charles MA, Drivsholm T, et al. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab. 2002;28:364–76.PubMedGoogle Scholar
  27. 27.
    Einhorn D, Reaven GM, Cobin RH, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract. 2003;9:237–52; Alberti G. Introduction to the metabolic syndrome. Eur Heart J Suppl. 2005;7:3–5.Google Scholar
  28. 28.
    Howard BV, Best LG, Galloway JM, et al. Coronary heart disease risk equivalence in diabetes depends on concomitant risk factors. Diabetes Care. 2006;29:391–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Folsom AR, Chambless LE, Duncan BB, The Atherosclerosis Risk in Communities Study Investigators, et al. Prediction of coronary heart disease in middle-aged adults with diabetes. Diabetes Care. 2003;26:2777–84.PubMedCrossRefGoogle Scholar
  30. 30.
    American Diabetes Association. Cardiovascular disease and risk management. Diabetes Care. 2016;39 Suppl 1:S60–71.Google Scholar
  31. 31.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebo controlled trial. Lancet. 2002;360(9326):7–22.CrossRefGoogle Scholar
  32. 32.
    Cheung BMY, Lauder IJ, Lau C, Kumana C. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol. 2004;57(5):640–51.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cannon CP, Steinberg BA, Murphy SA, et al. Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J Am Coll Cardiol. 2006;48(3):438–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Stone NJ, Robinson JG, Lichtenstein AH, Merz CNB, Blum CB, Eckel RH, …, McBride P. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889–934.Google Scholar
  35. 35.
    Cannon CP, Blazing M, Giugliano R, McCagg A, White J, Theroux P, De Ferrari G. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Boden WE, Probstfield JL, Anderson T, Chaitman B, Desvignes-Nickens P, Koprowicz K, Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Frick MH, Elo O, Haapa K, Heinonen O, Heinsalmi P, Helo P, Mäenpää H. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. N Engl J Med. 1987;20(317):1237–45.CrossRefGoogle Scholar
  38. 38.
    Rubins HB, Robins SJ, Collins D, Fye C, Anderson JW, Elam MB, Wilt T. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med. 1999;6(341):410–8.CrossRefGoogle Scholar
  39. 39.
    FIELD Study Investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;9500(366):1849–61.Google Scholar
  40. 40.
    The ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.PubMedCentralCrossRefGoogle Scholar
  41. 41.
    Food and Drug Administration, “Federal Register,” 18 Apr 2016. [Online]. Available: https://federalregister.gov/a/2016-08887. Accessed 6 May 2016.
  42. 42.
    Robinson J, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Koren M. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99.PubMedCrossRefGoogle Scholar
  43. 43.
    Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Scott R. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Ezzati M, Vander HS, Lopez A, Danaei G, Rodgers A, Mathers C, Murray C. Comparative quantification of mortality and burden of disease attributable to selected risk factors. New York: Oxford University Press; 2006.Google Scholar
  45. 45.
    Sowers JR, Epstein M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy: an update. Hypertension. 1995;26(6):869–79.PubMedCrossRefGoogle Scholar
  46. 46.
    Multiple Risk Factor Intervention Trial Research Group. Multiple risk factor intervention trial. JAMA. 1982;248(12):1465–77.CrossRefGoogle Scholar
  47. 47.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green L, Izzo Jr JL, Jones DW, Roccella EJ. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Meltzer JI. A specialist in clinical hypertension critiques ALLHAT. Am J Hypertens. 2003;16:416–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Patel A, Advance Collaborative Group. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomized controlled trial. Lancet. 2007;370(9590):829–40.PubMedCrossRefGoogle Scholar
  50. 50.
    ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.CrossRefGoogle Scholar
  51. 51.
    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Smith SC. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC8). JAMA. 2014;311(5):507–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Mitka M. Groups spar over new hypertension guidelines. JAMA. 2014;311(7):663–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Wright JT, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Kimmel PL. A randomized trial of intensive versus standard blood pressure control. N Engl J Med. 2015;373(22):2103–16.PubMedCrossRefGoogle Scholar
  54. 54.
    ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288(23):2981–97.CrossRefGoogle Scholar
  55. 55.
    Heart Outcomes Prevention Evaluation(HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355(9200):253–9.CrossRefGoogle Scholar
  56. 56.
    Schrier RW, Estacio RO, Jeffers B. Appropriate blood pressure control in NIDDM (ABCD) trial. Diabetologia. 1996;39(12):1646–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Tatti P, Pahor M, Byington RP, Di Mauro P, Guarisco R, Strollo G, Strollo F. Outcome results of the Fosinopril versus amlodipine cardiovascular events randomized trial (FACET) in patients with hypertension and NIDDM. Diabetes Care. 1998;21(4):597–603.PubMedCrossRefGoogle Scholar
  58. 58.
    Alderman MH. JNC 7: brief summary and critique. Clin Exp Hypertens. 2003;26(7-8):753–61.Google Scholar
  59. 59.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329(20):1456–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Brownlee M. Glycation and diabetic complications. Diabetes. 1994;43:836–41.PubMedCrossRefGoogle Scholar
  62. 62.
    West KM, Ahuja MM, Bennet PH, et al. The role of circulating glucose and triglyceride concentrations and their interactions with other “risk factors” as determinants of arterial disease in nine diabetic population samples from the WHO multinational study. Diabetes Care. 1983;6:361–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Wilson PW, Cupples LA, Kannel WB. Is hyperglycemia associated with cardiovascular disease? The Framingham study. Am Heart J. 1991;121(2 Pt 1):586–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Jarrett RJ, Shipley MJ. Type 2 (non-insulin dependent) diabetes mellitus and cardiovascular disease. Putative associations via common antecedents. Further evidence from the Whitehall study. Diabetologia. 1988;31:737–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Kuusisto J, Mykkänen L, Pyorala K, et al. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes. 1994;43:960–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Klein R. Kelly West Lecture 1994. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18:258–68.PubMedCrossRefGoogle Scholar
  67. 67.
    Diabetes Control and Complications Trial Research Group (DVVT). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRefGoogle Scholar
  68. 68.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). Lancet. 1998;352:837–52.CrossRefGoogle Scholar
  69. 69.
    Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.CrossRefGoogle Scholar
  70. 70.
    ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.CrossRefGoogle Scholar
  71. 71.
    Wilcox R, Kupfer S, Erdmann E, Proactive Study Investigators. Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from PROspective pioglitAzone Clinical Trial In macro Vascular Events (PROactive 10). Am Heart J. 2008;155:712–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Broedl UC. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRefGoogle Scholar
  73. 73.
    Colwell JA. Aspirin therapy in diabetes. Diabetes Care. 1997;20:1767–71.PubMedCrossRefGoogle Scholar
  74. 74.
    Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW. Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation. 2008;117:93–102.PubMedCrossRefGoogle Scholar
  75. 75.
    Bell EJ, Folsom AR, Lutsey PL, Selvin E, Zakai NA, Cushman M, Alonso A. Diabetes mellitus and venous thromboembolism: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2016;111:10–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Cederholm J, Eeg-Olofsson K, Eliasson B, On behalf of the Swedish National Diabetes Register, et al. Risk prediction of cardiovascular disease in type 2 diabetes: a risk equation from the Swedish National Diabetes Register (NDR). Diabetes Care. 2008;30:2038–43.CrossRefGoogle Scholar
  77. 77.
    Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007;298(22):2654–64.PubMedCrossRefGoogle Scholar
  78. 78.
    Menke A, Rust KF, Fradkin J, Cheng YJ, Cowie CC. Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States: a series of cross-sectional studies. Ann Intern Med. 2014;161(5):328–35.PubMedCrossRefGoogle Scholar
  79. 79.
    Smith SC, Faxon D, Cascio W, et al. Prevention Conference VI: diabetes and cardiovascular disease: Writing Group VI: revascularization in diabetic patients. Circulation. 2002;105(18):e165–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Tada T, Kimura T, Morimoto T, et al. Comparison of three-year clinical outcomes after sirolimus-eluting stent implantation among insulin-treated diabetic, non-insulin-treated diabetic, and non-diabetic patients from j-Cypher registry. Am J Cardiol. 2011;107:1155.PubMedCrossRefGoogle Scholar
  81. 81.
    The Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med. 1996;335:217–25.CrossRefGoogle Scholar
  82. 82.
    BARI Investigators. The final 10-year follow-up results from the BARI randomized trial. J Am Coll Cardiol. 2007;49:1600–6.CrossRefGoogle Scholar
  83. 83.
    Serruys PW, Ong AT. Five-year outcomes after coronary stenting versus bypass surgery for the treatment of multivessel disease the final analysis of the arterial revascularization therapies study (ARTS) randomized trial. J Am Coll Cardiol. 2005;46(4):575–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Brooks MM, Chaitman BR, Nesto RW, et al. Clinical and angiographic risk stratification and differential impact on treatment outcomes in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Circulation. 2012;126:2115.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kapur A, Hall RJ, Malik IS, et al. Randomized comparison of percutaneous coronary intervention with coronary artery bypass grafting in diabetic patients. 1-year results of the CARDia (Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol. 2010;55(5):432–40.PubMedCrossRefGoogle Scholar
  86. 86.
    Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, FREEDOM Trial Investigators, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367(25):2375e84.CrossRefGoogle Scholar
  87. 87.
    Mohr FW, Morice MC, Kappetein AP, Feldman TE, Ståhle E, Colombo A, Mack MJ, Holmes Jr DR, Morel MA, Van Dyck N, Houle VM, Dawkins KD, Serruys PW. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381:629–38.PubMedCrossRefGoogle Scholar
  88. 88.
    De Luca G, Schaffer A, Verdoia M, Suryapranata H. Meta-analysis of 14 trials comparing bypass grafting vs drug-eluting stents in diabetic patients with multivessel coronary artery disease. Nutr Metab Cardiovasc Dis. 2014;24(4):344–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, Neurological Outcome Research Group and the Cardiothoracic Anesthesiology Research Endeavors Investigators, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402.PubMedCrossRefGoogle Scholar
  90. 90.
    Rubler S, Dlugash J, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595.PubMedCrossRefGoogle Scholar
  91. 91.
    Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213–23.PubMedCrossRefGoogle Scholar
  92. 92.
    de Simone G, Devereux RB, Chinali M, et al. Diabetes and incident congestive heart failure: the Strong Heart Study. Circulation. 2007;116:835.Google Scholar
  93. 93.
    Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol. 2006;48:1548.PubMedCrossRefGoogle Scholar
  94. 94.
    Vered A, Battler A, Segal P, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol. 1984;54:633.PubMedCrossRefGoogle Scholar
  95. 95.
    Iribarren C, Karter AJ, Go AS, et al. Glycemic control and heart failure among adult patients with diabetes. Circulation. 2001;103:2668.PubMedCrossRefGoogle Scholar
  96. 96.
    Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care. 2001;24:1614.PubMedCrossRefGoogle Scholar
  97. 97.
    Barzilay JI, Kronmal RA, Gottdiener JS, et al. The association of fasting glucose levels with congestive heart failure in diabetic adults > or =65 years: the Cardiovascular Health Study. J Am Coll Cardiol. 2004;43:2236.PubMedCrossRefGoogle Scholar
  98. 98.
    Carr AA, Kowey PR, Devereux RB, et al. Hospitalizations for new heart failure among subjects with diabetes mellitus in the RENAAL and LIFE studies. Am J Cardiol. 2005;96:1530.PubMedCrossRefGoogle Scholar
  99. 99.
    Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Liao Y, Cooper RS, McGee DL, et al. The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. J Am Med Assoc. 1995;273:1592–7.CrossRefGoogle Scholar
  101. 101.
    Ghali JK, et al. The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med. 1992;117(10):831–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Raher MJ, Thibault HB, Buys ES, Kuruppu D, Shimizu N, Brownell AL, Blake SL, Rieusset J, Kaneki M, Derumeaux G, Picard MH, Bloch KD, Scherrer-Crosbie M. A short duration of high-fat diet induces insulin resistance and predisposes to adverse left ventricular remodeling after pressure overload. Am J Physiol Heart Circ Physiol. 2008;295:H2495–502.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ouwens DM, Boer C, Fodor M, de Galan P, Heine RJ, Maassen JA, Diamant M. Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia. 2005;48:1229–37.PubMedCrossRefGoogle Scholar
  104. 104.
    Van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic and hypertensive-diabetic heart disease. Circulation. 1990;82:848–55.PubMedCrossRefGoogle Scholar
  105. 105.
    Galderisi M, Anderson KM, Wilson PW, et al. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol. 1991;68:85–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the Strong Heart Study. Circulation. 2000;101:2271–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Palmieri V, Bella JN, Arnett DK, et al. Impact of type II diabetes on left ventricular geometry and function: the hypertension genetic epidemiology network (HyperGEN) study. Circulation. 2001;103:102–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Bella JN, Devereux RB, Roman MJ, et al. Separate and joint cardiovascular effects of hypertension and diabetes: the Strong Heart Study. Am J Cardiol. 2001;87:1260–5.PubMedCrossRefGoogle Scholar
  109. 109.
    De Marco M, de Simone G, Russell M, et al. Metabolic and cardiovascular characteristics of diabetes in adolescents and young adults: the Strong Heart Study. Circulation. 2008;118 Suppl 2:1116.Google Scholar
  110. 110.
    Liu JE, Palmieri V, Roman MJ, et al. Cardiovascular disease and prognosis in adults with glucose disorders: the Strong Heart Study. J Am Coll Cardiol. 2000;35:263A.CrossRefGoogle Scholar
  111. 111.
    Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I, Porcellati C. Prognostic value of a new electrocardiographic method for diagnosis of left ventricular hypertrophy. J Am Coll Cardiol. 1998;31:383–90.PubMedCrossRefGoogle Scholar
  112. 112.
    Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, Snapinn S, Harris KE, Aurup P, Edelman JM, Wedel H, Lindholm LH, Dahlöf B, For the LIFE Study Investigators. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and prediction of major cardiovascular events. JAMA. 2004;292:2343–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Okin PM, Gerdts E, Snapinn SM, et al. The impact of diabetes on regression of electrocardiographic left ventricular hypertrophy and the prediction of outcome during antihypertensive therapy: the LIFE Study. Circulation. 2006;113:1588–96.PubMedCrossRefGoogle Scholar
  114. 114.
    Gerdts E, Okin PM, Omvik P, et al. Impact of concomitant diabetes on changes in left ventricular structure and systolic function during long-term antihypertensive treatment in hypertensive patients with left ventricular hypertrophy (the LIFE study). Nutr Metab Cardiovasc Dis. 2009;19:306–12.PubMedCrossRefGoogle Scholar
  115. 115.
    Okin PM, Harris KE, Jern S, et al. In-treatment resolution or absence of electrocardiographic left ventricular hypertrophy is associated with decreased incidence of new-onset diabetes mellitus in hypertensive patients: The LIFE Study. Hypertension. 2007;50:984–90.PubMedCrossRefGoogle Scholar
  116. 116.
    Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116:434.PubMedCrossRefGoogle Scholar
  117. 117.
    Nielsen LB, Bartels ED, Bollano E. Overexpression of apolipoprotein B in the heart impedes cardiac triglyceride accumulation and development of cardiac dysfunction in diabetic mice. J Biol Chem. 2002;277:27014–20.PubMedCrossRefGoogle Scholar
  118. 118.
    Suarez J, Scott B, Dillmann WH. Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1439–45.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar A, Emani S, Bonagura JD, Feldman DS, Gyorke S, Carnes CA. Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1787–97.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Mustonen JN, Uusitupa MI, Laakso M, et al. Left ventricular systolic function in middle-aged patients with diabetes mellitus. Am J Cardiol. 1994;73:1202.PubMedCrossRefGoogle Scholar
  121. 121.
    Mildenberger RR, Bar-Shlomo B, Druck MN, et al. Clinically unrecognized ventricular dysfunction in young diabetic patients. J Am Coll Cardiol. 1984;4:234.PubMedCrossRefGoogle Scholar
  122. 122.
    Kamalesh M, Cleophas TJ. Heart failure due to systolic dysfunction and mortality in diabetes: pooled analysis of 39,505 subjects. J Card Fail. 2009;15(4):305–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Bella JN, Palmieri V, Liu JE, et al. Mitral E/A ratio as a predictor of mortality in middle-aged and elderly adults: the Strong Heart Study. Circulation. 2002;105:1928–33.PubMedCrossRefGoogle Scholar
  124. 124.
    From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010;55:300.PubMedCrossRefGoogle Scholar
  125. 125.
    Stahrenberg R, Edelmann F, Mende M, et al. Association of glucose metabolism with diastolic function along the diabetic continuum. Diabetologia. 2010;53:1331.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Liu JE, Palmieri V, Roman MJ, et al. The impact of glycemia and diabetes on left ventricular filling pattern: the Strong Heart Study. J Am Coll Cardiol. 2001;37:1943–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Mock MB, Ringqvist I, Fischer LD, Participants in the Coronary Artery Surgery Study (CASS) Registry. Survival of medically treated patients in the Coronary Artery Study (CASS) registry. Circulation. 1982;66:562–71.PubMedCrossRefGoogle Scholar
  128. 128.
    Abbott RD, Donahue RP, Kannel WB, et al. The impact of diabetes on survival following myocardial infarction in men vs. women. The Framingham Study. J Am Med Assoc. 1988;260:3456–60.CrossRefGoogle Scholar
  129. 129.
    Halon DA, Merdler A, Flugelman MY, et al. Late-onset heart failure as a mechanism for adverse long-term outcome in diabetic patients undergoing revascularization (a 13-year report from the Lady Davis Carmel Medical Center registry). Am J Cardiol. 2000;85:1420.PubMedCrossRefGoogle Scholar
  130. 130.
    Neubauer B, Christensen NJ. Norepinephrine, epinephrine, and dopamine contents of the cardiovascular system in long-term diabetics. Diabetes. 1976;25:6.PubMedCrossRefGoogle Scholar
  131. 131.
    Scognamiglio R, Avogaro A, Casara D, et al. Myocardial dysfunction and adrenergic cardiac innervation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1998;31:404.PubMedCrossRefGoogle Scholar
  132. 132.
    Hildebrandt P, Wachtell K, Dahlöf B, et al. Impairment of cardiac function in hypertensive patients with type 2 diabetes. A LIFE study. Diabet Med. 2005;22:1005–11.PubMedCrossRefGoogle Scholar
  133. 133.
    Vinereanu D, Nicolaides E, Boden L, Payne N, Jones CJH, Fraser AG. Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart. 2003;89:449–51.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Liu JE, Robbins DC, Palmieri V, et al. Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: The Strong Heart Study. J Am Coll Cardiol. 2003;41:2022–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, et al. Albuminuria reflects widespread vascular damage – the Steno hypothesis. Diabetologia. 1989;32:219–26.PubMedCrossRefGoogle Scholar
  136. 136.
    Regan TJ, Wu CF, Yeh CK, et al. Myocardial composition and function in diabetes: the effect of chronic insulin use. Circ Res. 1981;49:1268–77.PubMedCrossRefGoogle Scholar
  137. 137.
    Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005;111:2073.PubMedCrossRefGoogle Scholar
  138. 138.
    Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes, part I: general concepts. Circulation. 2002;105:1727–33.PubMedCrossRefGoogle Scholar
  139. 139.
    McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart, revisited. Ann Intern Med. 2006;144:517–24.PubMedCrossRefGoogle Scholar
  140. 140.
    Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, Dence C, Klein S, Marsala J, Meyer T, Gropler RJ. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109:2191–6.PubMedCrossRefGoogle Scholar
  141. 141.
    Fein FS, Sonnenblick EH. Diabetic cardiomyopathy. Cardiovasc Drugs Ther. 1994;8:65–73.PubMedCrossRefGoogle Scholar
  142. 142.
    Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25:543–67.PubMedCrossRefGoogle Scholar
  143. 143.
    McEwan PE, Gray GA, Sherry L, Webb DJ, Kenyon CJ. Differential effects of angiotensin II on cardiac cell proliferation and intramyocardial perivascular fibrosis in vivo. Circulation. 1998;98:2765–73.PubMedCrossRefGoogle Scholar
  144. 144.
    Cesario DA, Brar R, Shivkumar K. Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol Metab Clin North Am. 2006;35:601–10, ix–x.PubMedCrossRefGoogle Scholar
  145. 145.
    Pierce GN, Dhalla NS. Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol. 1985;1:48–54.PubMedGoogle Scholar
  146. 146.
    Zhao XY, Hu SJ, Li J, Mou Y, Chen BP, Xia Q. Decreased cardiac sarcoplasmic reticulum Ca2+ -ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats. J Physiol Biochem. 2006;62:1–8.PubMedCrossRefGoogle Scholar
  147. 147.
    Lopaschuk GD, Tahiliani AG, Vadlamudi RV, Katz S, McNeill JH. Cardiac sarcoplasmic reticulum function in insulin- or carnitine-treated diabetic rats. Am J Physiol Heart Circ Physiol. 1983;245:H969–76.Google Scholar
  148. 148.
    Pierce GN, Dhalla NS. Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol. 1981;13:1063–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Tanaka Y, Konno N, Kako KJ. Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc Res. 1992;26:409–14.PubMedCrossRefGoogle Scholar
  150. 150.
    Savabi F. Mitochondrial creatine phosphokinase deficiency in diabetic rat heart. Biochem Biophys Res Commun. 1988;154:469–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Cardiology, Lenox Hill HospitalHofstra Northwell School of Medicine, Northwell HealthNew YorkUSA
  2. 2.Adult Echocardiography LaboratoryWeill Cornell Center of the New York Presbyterian HospitalNew YorkUSA

Personalised recommendations