Skip to main content

Endocrine Pancreas

  • Reference work entry
  • First Online:

Abstract

The endocrine pancreas is comprised of the islets of Langerhans which contain beta cells that secrete insulin and amylin, alpha cells that secrete glucagon, delta cells that secrete somatostatin, pancreatic polypeptide cells that secrete pancreatic polypeptide, and epsilon cells that secrete ghrelin. The islets have a complex innervation and capillary network that enables communication and coordination of hormone secretion to regulate glucose and nutrient homeostasis.

Barry Brass: deceased.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rhodes CJ, Halban PA. Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive pathway. J Cell Biol. 1987;105:145–53.

    Article  CAS  PubMed  Google Scholar 

  2. Wallerath T, Kunt T, Forst T, et al. Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide. 2003;9:95–102.

    Article  CAS  PubMed  Google Scholar 

  3. Forst T, De La Tour DD, Kunt T, et al. Effects of proinsulin C-peptide on nitric oxide microvascular blood flow and erythrocyte Na, K-ATPase activity in diabetes mellitus type 1. Clin Sci. 2000;98:283–90.

    Article  CAS  PubMed  Google Scholar 

  4. John W, Larsson C. C-peptide: new findings and therapeutic possibilities. Diabetes Res Clin Pract. 2015;107:309–19.

    Article  Google Scholar 

  5. Lim YC, Bhatt MP, Kwon MH, et al. Prevention of VEGF-mediated mircorvascular permability by C-peptide in diabetic mice. Cardiovasc Res. 2014;101:155–64.

    Article  CAS  PubMed  Google Scholar 

  6. Hills CE, Willars GB, Brunskill NJ. Proinsulin C-peptide antagonizes the profibrotic effects of TGF-beta1 via upregulation of retinoic acid and HGF-related signaling pathways. Mol Endocrinol. 2010;24:822–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindenblatt N, Braun B, Menger MD, et al. C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice. Diabetologia. 2006;49:792–800.

    Article  CAS  PubMed  Google Scholar 

  8. Luppi P, Cifarelli V, Tse H, et al. Human C-peptide antagonizes high glucose-induced endothelial dysfunction through the nuclear factor-kappa β pathway. Diabetologia. 2008;51:1534–43.

    Google Scholar 

  9. Ekberg K, Brismar T, Johansson B-L, et al. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes. 2003;52(2):536–41.

    Article  CAS  PubMed  Google Scholar 

  10. Ekberg K, Brismar T, Johansson B-L, et al. C-peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007;30(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  11. Johansson BI, Borg K, Fernqvist-Forbes E, et al. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabet Med. 2000;17:181–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ido Y, Vindigni A, Chang K, et al. Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science. 1997;277:563–6.

    Article  CAS  PubMed  Google Scholar 

  13. Newgard C, McGary J. Metabolic coupling factors in pancreatic ß-cell signal transduction. Ann Rev Biochem. 1995;64:689–719.

    Article  CAS  PubMed  Google Scholar 

  14. Koster JC, Marshall BA, Ensor N, et al. Targeted overactivity of beta call K(ATP) channels induces profound neonatal diabetes. Cell. 2000;100:645.

    Article  CAS  PubMed  Google Scholar 

  15. Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005;54:2503–13.

    Article  CAS  PubMed  Google Scholar 

  16. Pearson ER, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir 6.2 mutations. N Engl J Med. 2006;355:507–10. Look into ABCC8 gene?.

    Article  Google Scholar 

  17. Froguel P, Zouali H, Vionnet N, et al. Familial hyperglycemia due to mutation in glucokinase. N Engl J Med. 1993;328(10):697–702.

    Article  CAS  PubMed  Google Scholar 

  18. Nolan C, Madiraju MSR, Delghingaro-Augusto V, et al. Fatty acid signaling in the beta cell and insulin secretion. Diabetes. 2006;55:S16–23.

    Article  CAS  PubMed  Google Scholar 

  19. Ahrén B, Holst J. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50(5):1030–8.

    Article  PubMed  Google Scholar 

  20. Ahrén B, Wierup N, Sundler F. Neuropeptides and the regulation of islet function. Diabetes. 2006;55:S98–107.

    Article  Google Scholar 

  21. Cheng H, Straub S, Sharp G. Protein acylation in the inhibition of insulin secretion by norepinephrine, somatostatin, galanin, and PGE2. Am J Physiol Endocrinol Metab. 2003;285:E287–94.

    Article  CAS  PubMed  Google Scholar 

  22. Liang Y, et al. Mechanisms of action of non glucose insulin secretagogues. Ann Rev Nutr. 1994;14:59–81.

    Article  CAS  Google Scholar 

  23. Hay DL, Chen S, Lutz TA, et al. Amylin: pharmacology, physiology and clinical potential. Pharmacol Rev. 2015;67:564–600.

    Article  CAS  PubMed  Google Scholar 

  24. Osto M, Wielenga PY, Alder B, et al. Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol Behav. 2007;91:566–72.

    Article  CAS  PubMed  Google Scholar 

  25. Adler BL, Yarchoan M, Hwang HM, et al. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol Aging. 2014;35:793–801.

    Article  CAS  PubMed  Google Scholar 

  26. Murlin JR, Clough HD, Gibbs CBF, et al. Aqueous extracts of pancreas: influence on the carbohydrate metabolism of depancreatized animals. J Biol Chem. 1923;56:253–96.

    CAS  Google Scholar 

  27. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284:E671–8.

    Article  CAS  PubMed  Google Scholar 

  28. Vuguin PM, Charron MJ. Novel insight into glucagon receptor action: lessons from knockout and transgenic mouse models. Diabetes Obes Metab. 2011;13 Suppl 1:144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brereton M, Vergari E, Zhang Q, et al. Alpha-, delta-, and PP- cells: are they architectural cornerstones of islet structure and coordination? J Histochem Cytochem. 2015;63(8):575–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 2012;46:261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andralojc KM, Mercali A, Nowak KW, et al. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia. 2009;52(3):486–93.

    Article  CAS  PubMed  Google Scholar 

  32. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing actylated peptide from stomach. Nature. 1999;402:656–60.

    Article  CAS  PubMed  Google Scholar 

  33. Muller TD, Nogueiras R, Andermann ML, et al. Ghrelin. Mol Metab. 2015;4:437–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cummings D, Weigle D, Scott Frayo R, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.

    Article  PubMed  Google Scholar 

  35. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in 7 patients with type 1 diabetes using glucocorticoid-free immunosuppressant regimen. N Engl J Med. 2000;343:230.

    Article  CAS  PubMed  Google Scholar 

  36. Brennan DC, Kopetskie HA, Sayre PH et al. Long term follow-up of the Edmonton protocol of islet transplantation in the United States. Am J Transplant. 2016; Feb 16(2):509-17.

    Google Scholar 

  37. Robertson RP. Islet transplantation for type 1 diabetes, 2015: what have we learned from alloislet and autoislet successes? Diabetes Care. 2015;38:1030–5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Pauline Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Liao, E.P., Brass, B., Abelev, Z., Poretsky, L. (2017). Endocrine Pancreas. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-18741-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18741-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18740-2

  • Online ISBN: 978-3-319-18741-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics