Advertisement

Male Sexual Dysfunction in Diabetes Mellitus

  • Arnold MelmanEmail author
  • Barry Mason
  • Albert C. Leung
  • Michael E. DiSanto
Reference work entry

Abstract

Erectile dysfunction (ED), also known as impotence, is defined as the inability to achieve or maintain an erection sufficient for satisfactory sexual function. Based on these data and the US population projection for the year 2020 of more than 74 million men 45–84 years old, ED will affect more than 38 million men and millions more over the age of 84. Diabetic men have a more than threefold increase in risk of ED compared to their nondiabetic counterparts. Diabetes mellitus (DM) is a common chronic disease affecting 285 million people and is expected to increase to 7.7% by 2030. Because both ED and DM are so prevalent, it is not surprising the two are associated. ED is reported to occur in more than 50% of men with diabetes. The penis is a complex vascular organ that requires the coordination of an initiated spinal reflex to a vascular process in which nerves, sinusoidal and vascular endothelium, and smooth muscle (SM) cells are involved to achieve satisfactory penile erection. In men with DM who have impaired erection, there is the inability to either obtain or maintain a state of penile rigidity sufficient for satisfactory intercourse. In those having DM with ED, there is a panoply of possible adverse effects on the neurological function, vascular (including smooth muscle and endothelium) supply, cell membranes, contractile proteins, and a myriad of neurotransmitters and second messengers that can interfere with the normal mechanism of erection. These potential mechanisms and modern therapies for ED are reviewed as a starting point for understanding the basis of this important physiological function.

Keywords

Erectile dysfunction Endothelial Corpora cavernosal smooth muscle Contractile proteins Ion channels Maxi-k channel Contractile proteins Diabetes mellitus 

Notes

Acknowledgments

We would like to thank Sarah Collins, M.D., Urogynecology Fellow at the Albert Einstein College of Medicine, for making valuable contributions in editing the text.

We also want to thank Kelvin Davies, Ph.D., Professor in the Department of Urology at Albert Einstein College of Medicine, for his diagrammatic representation of SM physiology.

References

  1. 1.
    NIH Consensus Developmen. Panel on impotence. NIH Consensus Conference. J Am Med Assoc. 1993;270:83–90.CrossRefGoogle Scholar
  2. 2.
    Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol. 1994;151:54–61.PubMedCrossRefGoogle Scholar
  3. 3.
  4. 4.
    Ayta IA, Mckinlay JB, Krane RJ. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 1999;84(1):50–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Kaiser FE, Korenman SG. Impotence in diabetic men. Am J Med. 1988;85(5A):147–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Mazzilli R, Elia J, Delfino M, Benedetti F, Scordovillo G, Mazzilli F. Prevalence of diabetes mellitus (DM) in a population of men affected by erectile dysfunction (ED). Clin Ter. 2015;166(5):e317–20.PubMedGoogle Scholar
  8. 8.
    McCulloch DK, Campbell IW, Wu FC, Prescott RJ, Clarke BF. The prevalence of diabetic impotence. Diabetologia. 1980;18(4):279–83.PubMedCrossRefGoogle Scholar
  9. 9.
    McCulloch DK, Young RJ, Prescott RJ, Campbell IW, Clarke BF. The natural history of impotence in diabetic men. Diabetologia. 1984;26:437–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Fedele D, Bartolotti A, Coscelli C, Santeusanio F, Chatenoud L, Colle E, Lavezzari M, Landoni M, Parazzini F. Erectile dysfunctoon in type 1 and type 2 diabetics in Italy. On behalf of Gruppo Italiano Studio Deficit Erettile nei Diabetici. Int J Epidemiol. 2000;29(3):524–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Benet AE, Melman A. The epidemiology of erectile dysfunction. Urol Clin N Am. 1995;22:699–709.Google Scholar
  12. 12.
    Ellenberg M. Impotence in diabetes: the neurologic factor. Ann Intern Med. 1971;75:213–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Ellenberg M. Sexual function in diabetic patients. Ann Intern Med. 1980;92:331–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Melman A, Gingell JC. The epidemiology and pathophysiology of erectile dysfunction. Urology. 1999;161:5–11.CrossRefGoogle Scholar
  15. 15.
    Buvat J, Lemaire A, Buvat-Herbaut M, et al. Comparative investigations in 26 impotent and 26 nonimpotent diabetic patients. J Urol. 1985;133:34–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Cummings MH, Alexander WD. Erectile dysfunction in patients with diabetes. Hosp Med. 1999;60:638–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Pop-Busui R, Hotaling J, Braffett BH, Cleary PA, Dunn RL, Martin CL, Jacobson AM, Wessells H, Sarma AV, DCCT/EDIC Research Group. Cardiovascular autonomic neuropathy, erectile dysfunction and lower urinary tract symptoms in men with type 1 diabetes: findings from the DCCT/EDIC. J Urol. 2015;193(6):2045–51.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Musicki B, Bella AJ, Bivalacqua TJ, et al. Basic science evidence for the link between erectile dysfunction and cardiometabolic dysfunction. J Sex Med. 2015;12:2233–55.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lehman TP, Jacobs JA. Etiology of diabetic impotence. J Urol. 1983;129:291–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Christ GJ, Brink PR, Melman A, Spray DC. The role of gap junctions and ion channels in the modulation of electrical and chemical signals in human corpus cavernosum smooth muscle. Int J Impot Res. 1993;5:77–96.PubMedGoogle Scholar
  21. 21.
    Andersson K-E. Mechanisms of Penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol Rev. 2011;63:811–59.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldstein I. Impotence (editorial). J Urol. 1994;51:1533–4.CrossRefGoogle Scholar
  23. 23.
    Lue TF. Erectile dysfunction associated with cavernous and neurological model (editorial). J Urol. 1994;151:890–1.PubMedCrossRefGoogle Scholar
  24. 24.
    Andersson KE, Wagner G. Physiology of penile erection. Physiol Rev. 1995;75:191.PubMedGoogle Scholar
  25. 25.
    Lerner SE, Melman A, Christ CJ. A review of erectile dysfunction: new insights and more questions. J Urol. 1993;149:1246–55.PubMedCrossRefGoogle Scholar
  26. 26.
    Wagner G, Brindley GS. The effect of atropine, alpha and beta blockers on human penile erection: a controlled pilot study. In: Zorgniotti AW, Rossi G, editors. Vasculogenic impotence. Proceedings of the first international conference on gorpus cavernosum revascularization. Springfield: Charles C Thomas Publishers; 1980. p. 77–81.Google Scholar
  27. 27.
    Saenz de Tejada I, Goldstein I. Diabetic penile neuropathy. Urol Clin N Am. 1988;15:17–22.Google Scholar
  28. 28.
    Blanco R, Saenz de Tejada I, Goldstein I, Krane RJ, Wotiz HH, Cohen RA. Dysfunctional penile cholinergic nerves in diabetic impotent men. J Urol. 1990;144:278–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Melman A, Henry DP. The possible role of the catecholamines of the corpora in penile erection. Urology. 1979;121:419–21.CrossRefGoogle Scholar
  30. 30.
    Felten DL, Felten SY, Melman A. Noradrenergic innervation of the penis in control and streptozotocin-diabetic rats: evidence of autonomic neuropathy. Anat Rec. 1983;206:49–59.PubMedCrossRefGoogle Scholar
  31. 31.
    Melman A, Henry DP, Felten DL. Catecholamine content of penile corpora in patients with diabetes associated impotence. Surg Forum. 1978;29:634–6.PubMedGoogle Scholar
  32. 32.
    Melman A, Henry DP, Felten DL, O’Connor BL. Effect of diabetes upon penile sympathetic nerves in impotent patients. South Med J. 1980;73:307–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Melman A, Henry DP, Felten DL, O’Connor BL. Alteration of the penile corpora in patients with erectile impotence. Investig Urol. 1980;17:474–7.Google Scholar
  34. 34.
    Christ GJ, Maayani S, Valcic M, Melman A. Pharmacological studies of human erectile tissue: characteristics of spontaneous contractions and alterations in alpha-adrenoceptor responsiveness with age and disease in isolated tissues. Br J Pharmacol. 1990;101:375–81.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chang S, Hypolite J, Changolkar A, Wein AJ, Chacko S, DiSanto ME. Increased contractility of diabetic rabbit corpora smooth muscle in response to endothelin is mediated via Rho-kinase beta. Int J Impot Res. 2003;15:53–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Gu J, Polak JM, Probert L, Islam KN, et al. Peptidergic innervation of the human male genital tract. J Urol. 1983;130:386–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Adaiken PG, Kottegoda SR, Ratnam SS. Is vasoactive intestinal peptide the principal transmitter involved in human penile erection? J Urol. 1986;135:638–40.CrossRefGoogle Scholar
  38. 38.
    Gu J, Polak J, Lazarides M, Morgan R, et al. Decrease of vasoactive intestinal polypeptide (VIP) in the penises from impotent men. Lancet. 1984;2:315–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Crowe R, Lincoln J, Blacklay FP, Pryor JP, Lumley JS, Burnstock G. Vasoactive intestinal polypeptide-like immunoreactive nerves in diabetic penis. A comparison between streptozocin-treated rats and man. Diabetes. 1983;32:1075–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Lincoln J, Crowe R, Blacklay PF, Pryor JP, Lumley JS, Burnstock G. Changes in the VIPergic, cholinergic and adrenergic innervation of human penile tissue in diabetic and non-diabetic important males. J Urol. 1987;137:1053–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Azadzoi K, Kim N, Brown ML, Goldstein I, Cohen RA, Saenz de Tejada I. Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone. Urology. 1992;147:220–5.CrossRefGoogle Scholar
  42. 42.
    Saenz de Tejada I, Carson MP, de las Morenas A, Goldstein I, Triash AM. Endothelin: localization, synthesis, activity, and receptor types in human penile corpus cavernosum. Am J Physiol. 1991;261:H1078–85.PubMedGoogle Scholar
  43. 43.
    Luscher TF, Barton M. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation. 2000;102:2434–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Firth JD, Ratcliffe PJ. Organ distribution of the three rat endothelin messenger RNAs and the effects of ischemia on renal gene expression. J Clin Invest. 1992;90:1023–31.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Granchi S, Vannelli GB, Vignozzi L, et al. Expression and regulation of endothelin-1 and its receptors in human penile smooth muscle cells. Mol Hum Reprod. 2002;8:1053–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Christ GJ, Lerner SE, Kim DC, Melman A. Endothelin-1 as a putative modulator of erectile dysfunction: 1.Characteristics of contraction of isolated corporal tissue strips. J Urol. 1995;153:1998–2003.PubMedCrossRefGoogle Scholar
  48. 48.
    Makino A, Kamata K. Time-course changes in plasma endothelin-1 and its effects on the mesenteric arterial bed in streptozotocin-induced diabetic rats. Diabetes Obes Metab. 2000;2:47–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Jesmin S, Hattori Y, Maeda S, Zaedi S, Sakuma I, Miyauchi T. The subdepressor dose of benidipine ameliorates diabetic cardiac remodeling accompanied by the normalization of the upregulated endothelin system in rats. Am J Physiol Heart Circ Physiol. 2006;290:H2146–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Shestakova MV, Jarek-Martynowa IR, Ivanishina NS, et al. Role of endothelial dysfunction in the development of cardiorenal syndrome in patients with type 1 diabetes mellitus. Diabetes Res Clin Pract. 2005;68(Suppl1):S65–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Migdalis IN, Kalogeropoulou K, Karmaniolas KD, Varvarigos N, Mortzos G, Cordopatis P. Plasma levels of endothelin and early carotid atherosclerosis in diabetic patients. Res Commun Mol Pathol Pharmacol. 2000;108:15–25.PubMedGoogle Scholar
  52. 52.
    Francavilla S, Properzi G, Bellini C, Marino G, Ferri C, Santucci A. Endothelin-1 in diabetic and nondiabetic men with erectile dysfunction. J Urol. 1997;158:1770–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Nakamuta M, Takayanagi R, Sakai Y, et al. Cloning and sequence analysis of a cDNA encoding human non-selective type of endothelin receptor. Biochem Biophys Res Commun. 1991;177:34–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Sakamoto A, Yanagisawa M, Sakurai T, Takuwa Y, Yanagisawa H, Masaki T. Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun. 1991;178:656–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Bell CR, Sullivan ME, Dashwood MR, Muddle JR, Morgan RJ. The density and distribution of endothelin 1 and endothelin receptor subtypes in normal and diabetic rat corpus cavernosum. Br J Urol. 1995;76:203–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Endo K, Matsumoto T, Kobayashi T, Kasuya Y, Kamata K. Diabetes-related changes in contractile responses of stomach fundus to endothelin-1 in streptozotocin-induced diabetic rats. J Smooth Muscle Res. 2005;41:35–47.PubMedCrossRefGoogle Scholar
  57. 57.
    Sullivan ME, Dashwood MR, Thompson CS, Muddle JR, Mikhailidis DP, Morgan RJ. Alterations in endothelin B receptor sites in cavernosal tissue of diabetic rabbits: potential relevance to the pathogenesis of erectile dysfunction. J Urol. 1997;158:1966–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim N, Azadzoi K, Goldstein I, Saenz de Tejada I. A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J Clin Invest. 1991;88:112–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med. 1992;326:90–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Corbin JD. Mechanisms of action of PDE5 inhibition in erectile dysfunction. Int J Impot Res. 2004;16(Supple 1):S4–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Seftel AD, Vaziri ND, Ni Z, et al. Advanced glycation end products in human penis: elevation in diabetic tissue, site of deposition, and possible effect through iNOS or eNOS. Urology. 1997;50:1016–26.PubMedCrossRefGoogle Scholar
  62. 62.
    Cellek S, Rodrigo J, Lobos E, Fernandez P, Serrano J, Moncada S. Selective nitrergic neurodegeneration of diabetes mellitus – a nitric oxide-dependent phenomenon. Br J Pharmacol. 1999;128:1804–12.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    El-Sakka AI, Lin CS, Chui RM, Dahiya R, Lue TF. Effects of diabetes on nitric oxide synthase and growth factors genes and protein expression in an animal model. Int J Impot Res. 1999;11:123–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Sullivan M, Thompson CS, Mikhailidis DP, Morgan RJ, Angelini GD, Jeremy JY. Differential alterations of prostacyclin, cyclic AMP and cyclic GMP formation in the corpus cavernosum of the diabetic rabbit. Br J Urol. 1998;82:578–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Elabbady AA, Gagnon C, Hassouna MM, Begin LR, Elhilali MM. Diabetes mellitus increases nitric oxide synthase in penises but not in major pelvic ganglia of rats. Br J Urol. 1995;76:196–202.PubMedCrossRefGoogle Scholar
  66. 66.
    Basar MM, Yildiz M, Soylemezoglu F, et al. Histopathological changes and nitric oxide synthase activity in corpus cavernosum from rats with neurogenic erectile dysfunction. BJU Int. 1999;83:101–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Miller MA, Morgan RJ, Thompson CS, Mikhailidis DP, Jeremy JY. Hydrolysis of cyclic guanosine monophosphate and cyclic adenosine monophosphate by the penis and aorta of the diabetic rat. Br J Urol. 1996;78:252–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Angulo J, Gonzalez-Corrochano R, Cuevas P, Fernandez A, La Fuente JM, Rolo F, Allona A, Saenz de Tejada I. Diabetes exacerbates the functional deficiency of NO/cGMP pathway associated with erectile dysfunction in human corpus cavernosum and penile arteries. J Sex Med. 2010;7(2 Pt 1):758–68.PubMedCrossRefGoogle Scholar
  69. 69.
    Ferrini MG, Rivera S, Moon J, Venet D, Rafjer J, Gonzalez-Cadavid NF. The genetic inactivation of inducible nitiric oxide synthase (iNOS) intensifies fibrosis and oxidative stress in the penile corpora in type 1 diabetes. J Sex Med. 2010;7:3033–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang T, Li M, Yuan H, Zhan Y, Xu H, Wang S, Yang W, Liu J, Ye Z, Li LC. saRNA guided iNOS up-regultion improves erectile function of diabetic rats. J Urol. 2013;190(2):790–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Mandosi E, Giannetta E, Filardi T, Lococo M, Bertolini C, Fallarino M, Gianfrilli D, Venneri MA, Lenti L, Lenzi A, Morano S. Endothelial dysfunction markers as a therapeutic target for Sildenafil treatment and effects on metabolic control in type 2 diabetes. Expert Opin Ther Targets. 2015;19:1617–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Ellati RT, Dokun AO, Kavoussi PK, Steers WD, Annex BH, Lysiak JJ. Increased phosphodiesterase type 5 levels in a mouse model of type 2 diabetes mellitus. J Sex Med. 2013;10(2):362–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Jin HR, Kim WJ, Song JS, Piao S, Tumurbaatar M, Shin SH, Choi MJ, Tuvshintur B, Song KM, Kwon MH, Yin GN, Koh GY, Ryu JK, Suh JK. Intracavernous delivery of synthetic angiopoietin-1 protein as a novel therapeutic strategy for erectile dysfunction in the type II diabetic db/db mouse. J Sex Med. 2010;7(11):3635–46. doi:10.1111/j.1743-6109.2010.01925.x.PubMedCrossRefGoogle Scholar
  74. 74.
    Jensen SB. Sexual dysfunction in insulin-treated diabetes: a six-year follow-up study of 101 patients. Arch Sex Behav. 1986;15:271–83.Google Scholar
  75. 75.
    Kolodny RC, Kahn CB, Goldstein HH, Barnett DM. Sexual dysfunction in diabetic men. Diabetes. 1974;23:306–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Deutsch S, Sherman L. Previously unrecognized diabetes mellitus in sexually impotent men. J Am Med Assoc. 1980;244:2430–2.CrossRefGoogle Scholar
  77. 77.
    Christ GJ, Hsieh Y, Zhao W, et al. Effects of streptozotocin-induced diabetes on bladder and erectile (dys)function in the same rat in vivo. BJU Int. 2006;97:1076–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Faerman I, Glocer L, Fox D, Jadzinsky MN, Rapaport M. Impotence and diabetes. Histological studies of the autonomic nervous fibers of the corpora cavernosa in impotent diabetic males. Diabetes. 1974;23:971–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Bermelmans BL, Meuleman EJ, Doesburg WH, Notermans SL, Debruyne FM. Erectile dysfunction in diabetic men: the neurological factor revisited. J Urol. 1994;151:884–9.CrossRefGoogle Scholar
  80. 80.
    Schaumberg H, Zotova E, Raine C, et al. Experimental autonomic neuropathy. Ann Neurol. 2007;62:S65.Google Scholar
  81. 81.
    Zotova EG, Schaumburg HH, Raine CS, Cannella B, Tar M, Melman A, Arezzo JC. Effects of hyperglycemia on rat cavernous nerve axons: a functional and ultrastructural study. Exp Neurol. 2008;213(2):439–47. doi:10.1016/j.expneurol.2008.07.009, Epub 2008 Jul 18.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Melman A, Zotova E, Kim M, Arezzo J, Davies K, DiSanto M, Tar M. Longitudinal studies of time-dependent changes in both bladder and erectile function after streptozotocin-induced diabetes in Fischer 344 male rats. BJU Int. 2009;104(9):1292–300. doi:10.1111/j.1464-410X.2009.08573.x, Epub 2009 Apr 15.PubMedCrossRefGoogle Scholar
  83. 83.
    Christ GJ. The penis as a vascular organ. The importance of corporal smooth muscle tone in the control of erection. Urol Clin N Am. 1995;22:727–45.Google Scholar
  84. 84.
    Zhang X, Kanika ND, Melman A, DiSanto ME. Smooth muscle myosin expression, isoform composition, and functional activities in rat corpus cavernosum altered by the streptozotocin-induced type 1 diabetes. Am J Physiol Endocrinol Metab. 2012;302(1):E32–42. doi:10.1152/ajpendo.00231.2011, Epub 2011 Sep 13.PubMedCrossRefGoogle Scholar
  85. 85.
    Wei AY, He SH, Zhao JF, liu Y, Liu Y, Hu YW, Zhang T, Wu ZY. Characterization of corpus cavernosum smooth muscle cell phenotype in diabetic rats with erectile dysfunction. Int J Impot Res. 2012;24(5):196–201. doi:10.1038/ijir.2012.16, Epub 2012 May 17.PubMedCrossRefGoogle Scholar
  86. 86.
    He S, Zhang T, Liu Y, Liu L, Zhang H, Chen F, Wei A. Myocardin restores erectile function in diabetic rats: phenotypic modulation of corpus cavernosum smooth muscle cells. Andrologia. 2015;47(3):303–9. doi:10.1111/and.12261, Epub 2014 Mar 12.PubMedCrossRefGoogle Scholar
  87. 87.
    Lee SW, Wang HZ, Christ GJ. Characterization of ATP-sensitive potassium channels in human corporal smooth muscle cells. Int J Impot Res. 1999;11:179–88.PubMedCrossRefGoogle Scholar
  88. 88.
    Lee SW, Wang HZ, Zhao W, Ney P, Brink PR, Christ GJ. Prostaglandin E1 activates the large conductance KCa channel in human corporal smooth muscle. Int J Impot Res. 1999;11:189–99.PubMedCrossRefGoogle Scholar
  89. 89.
    Christ GJ, Moreno AP, Melman A, Spray DC. Gap junction-mediated intercellular diffusion of Ca in cultured human corporeal smooth muscle cells. Am J Physiol. 1992;263:C373–83.PubMedGoogle Scholar
  90. 90.
    Campos de Carvalho AC, Roy C, Moreno AP, et al. Gap junctions formed of connexin 43 are found between smooth muscle cells of human corpus cavernosum. J Urol. 1993;149:1568–75.PubMedCrossRefGoogle Scholar
  91. 91.
    Christ GJ, Moreno AP, Parker ME, et al. Intercellular communication through gap junctions: potential role in pharmacomechanical coupling and syncytial tissue contraction in vascular smooth muscle isolated from the human corpus cavernosum. Life Sci. 1991;49:PL195–200.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhu JH, Jia RP, Xu LW, Wu JP, Liang K, Su Q. Diabetes mellitus reduces the expression of SK3 in rat cavernous tissues. Zhonghua Nan Ke Xue. 2010;16(3):236–9, Chinese.PubMedGoogle Scholar
  93. 93.
    Rehman J, Chenven E, Brink P, et al. Diminished neurogenic, but not pharmacological erections in the 2- to 3-month experimentally diabetic F-344 rat. Am J Physiol. 1997;272:H1960–71.PubMedGoogle Scholar
  94. 94.
    Giraldi A, Wen Y, Geliebter J, Christ GJ. Differential gap junction mRNA expression in human corpus cavernosum: a significant regulatory event in cell-to-cell communication? Urology. 1995;153:508A.Google Scholar
  95. 95.
    Andersen J, Grine E, Eng CL, et al. Expression of connexin-43 in human myometrium and leiomyoma. Am J Obstet Gynecol. 1993;169:1266–77.PubMedCrossRefGoogle Scholar
  96. 96.
    Risek B, Guthrie S, Kumar N, Gilula NB. Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol. 1990;110:269–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Somlyo AP, Wu X, Walker LA, Somlyo AV. Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol. 1999;134:201–34.PubMedGoogle Scholar
  98. 98.
    Ishizaki T, Maekawa M, Fujisawa K, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15:1885–93.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Leung T, Manser E, Tan L, Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 1995;270:29051–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273:245–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Bivalacqua TJ, Champion HC, Usta MF, et al. RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A. 2004;101:9121–6.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Yousif MH, Makki B, El-Hashim AZ, Akhtar S, Benter IF. Chronic treatment with Ang-(1–7) reverses abnormal reactivity in the corpus cavernosum and normalizes diabetes-induced changes in the protein levels of ACE, ACE2, ROCK1, ROCK2 and omega-hydroxylase in a rat model of type 1 diabetes. J Diabetes Res. 2014;2014:142154.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Villalba N, Contreras C, Hernández M, García-Sacristán A, Prieto D. Impaired Ca2+ handling in penile arteries from prediabetic Zucker rats: involvement of Rho kinase. Am J Physiol Heart Circ Physiol. 2011;300(6):H2044–53.PubMedCrossRefGoogle Scholar
  104. 104.
    Li WJ, Park K, Paick JS, Kim SW. Chronic treatment with an oral rho-kinase inhibitor restores erectile function by suppressing corporal apoptosis in diabetic rats. J Sex Med. 2011;8:400–10.PubMedCrossRefGoogle Scholar
  105. 105.
    Sawada N, Itoh H, Yamashita J, et al. cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Commun. 2001;280:798–805.PubMedCrossRefGoogle Scholar
  106. 106.
    Surks HK, Mochizuki N, Kasai Y, et al. Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science. 1999;286:1583–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Hedlund P, Aszodi A, Pfeifer A, et al. Erectile dysfunction in cyclic GMP-dependent kinase I-deficient mice. Proc Natl Acad Sci U S A. 2000;97:2349–54.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Francis SH, Woodford TA, Wolfe L, Corbin JD. Types I alpha and I beta isozymes of cGMP-dependent protein kinase: alternative mRNA splicing may produce different inhibitory domains. Second Messengers Phosphoproteins. 1988;12:301–10.PubMedGoogle Scholar
  109. 109.
    Wolfe L, Corbin JD, Francis SH. Characterization of a novel isozyme of cGMP-dependent protein kinase from bovine aorta. J Biol Chem. 1989;264:7734–41.PubMedGoogle Scholar
  110. 110.
    Chang S, Hypolite JA, Velez M, et al. Downregulation of cGMP-dependent protein kinase-1 activity in the corpus cavernosum smooth muscle of diabetic rabbits. Am J Physiol Regul Integr Comp Physiol. 2004;287:R950–60.PubMedCrossRefGoogle Scholar
  111. 111.
    Bivalacqua TJ, Kendirci M, Champion HC, Hellstrom WJ, Andersson KE, Hedlund P. Dysregulation of cGMP-dependent protein kinase 1 (PKG-1) impairs erectile function in diabetic rats: influence of in vivo gene therapy of PKG1alpha. BJU Int. 2007;99(6):1488–94.PubMedCrossRefGoogle Scholar
  112. 112.
    Hänel P, Andréani P, Gräler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J. 2007;21(4):1202–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta. 2006;1758(12):2016–26.PubMedCrossRefGoogle Scholar
  114. 114.
    Watterson KR, Ratz PH, Spiegel S. The role of sphingosine-1-phosphate in smooth muscle contraction. Cell Signal. 2005;17(3):289–98.PubMedCrossRefGoogle Scholar
  115. 115.
    di Villa Bianca R, Sorrentino R, Sorrentino R, et al. Sphingosine-1-phosphate induces endothelial nitric-oxide synthase activation through phosphorylation in human corpus cavernosum. J Pharmacol Exp Ther. 2006;316:703–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Vernet D, Cai L, Garban H, et al. Reduction of penile nitric oxide synthase in diabetic BB/WORdp (type 1) and BBZ/WORdp (type II) rats with erectile dysfunction. Endocrinology. 1995;136:5709–17.PubMedCrossRefGoogle Scholar
  117. 117.
    Davies KP, Tar M, Rougeot C, Melman A. Sialorphin (the mature peptide product of Vcsa1) relaxes corporal smooth muscle tissue and increases erectile function in the ageing rat. BJU Int. 2007;99(2):431–5, Epub 2006 Oct 9.PubMedCrossRefGoogle Scholar
  118. 118.
    Tong Y, Tar M, Davelman F, Christ G, Melman A, Davies KP. Variable coding sequence protein A1 as a marker for erectile dysfunction. BJU Int. 2006;98:396–401.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Tong Y, Tar M, Melman A, Davies K. The opiorphin gene (ProL1) and its homologues function in erectile physiology. BJU Int. 2008;102(6):736–40.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Christ G, Day N, Santizo C, et al. Intracorporal injection of hSlo cDNA restores erectile capacity in STZ-diabetic F-344 rats in vivo. Am J Physiol Heart Circ Physiol. 2004;287(4):H1544–53.PubMedCrossRefGoogle Scholar
  121. 121.
    Kaiser FE, Udhoji V, Viosca SP, et al. Cardiovascular stress tests in patients with vascular impotence. Clin Res. 1989;37:89A.Google Scholar
  122. 122.
    Virag R, Bouilly P, Frydman D. Is impotence an arterial disorder? A study of arterial risk factors in 440 impotent men. Lancet. 1985;1:181–4.PubMedCrossRefGoogle Scholar
  123. 123.
    Montorsi F, Briganti A, Salonia A, Rigatti P, Margonato A, Macchi A, Galli S, Ravagnani PM, Montorsi P. Erectile dysfunction prevalence, time of onset and association with risk factors in 300 consecutive patients with acute chest pain and angiographically documented coronary artery disease. Eur Urol. 2003;44:360–4.PubMedCrossRefGoogle Scholar
  124. 124.
    Jevtich MJ, Edson M, Jarman WD, Herrera HH. Vascular factor in erectile failure among diabetics. Urology. 1982;19:163–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Herman A, Adar R, Rubinstein Z. Vascular lesions associated with impotence in diabetic and nondiabetic arterial occlusive disease. Diabetes. 1978;27:975–81.PubMedCrossRefGoogle Scholar
  126. 126.
    Akoi I, Shimoyama K, Aoki N, et al. Platelet dependent thrombin generation in patients with diabetes mellitus: effects of glycemic control on coagulopathy in diabetes. J Am Coll Cardiol. 1996;27:560–6.CrossRefGoogle Scholar
  127. 127.
    Jensen T, Bjerre-Knudsen J, Feldt-Rasmussen B, Deckert T. Features of endothelial dysfunction in early diabetic nephropathy. Lancet. 1989;1:461–3.PubMedCrossRefGoogle Scholar
  128. 128.
    Carrier S, Brock G, Kour NW, Lue TF. Pathophysiology of erectile dysfunction. Urology. 1993;42:468–81.PubMedCrossRefGoogle Scholar
  129. 129.
    Rosen MP, Greenfield AJ, Walker TG, et al. Cigarette smoking: an independent risk factor for atherosclerosis in the hypogastric-cavernous arterial bed of men with arteriogenic impotent. J Urol. 1991;145:759–63.PubMedCrossRefGoogle Scholar
  130. 130.
    Hakim LS, Goldstein I. Diabetic sexual dysfunction. Endocrinol Metab Clin N Am. 1996;25:379–400.CrossRefGoogle Scholar
  131. 131.
    Krane RJ, Goldstein I, Saenz de Tejada I. Medical progress: impotence. N Engl J Med. 1989;321:1648.PubMedCrossRefGoogle Scholar
  132. 132.
    Mottonen M, Nieminen K. Relation of atherosclerotic obstruction of the arterial supply of corpus cavernosum to erectile dysfunction. In: Proceedings of the sixth biennial international symposium on corpus cavernosum revascularization and third biennial world meeting on impotence. Boston: 12, 1988.Google Scholar
  133. 133.
    Vlachopoulos C. Progress towards identifying biomarkers of vascular aging for total cardiovascular risk prediction. J Hypertens. 2012;30:S19–26.PubMedCrossRefGoogle Scholar
  134. 134.
    Davis-Joseph B, Tiefer L, Melman A. Accuracy of the initial history and physical examination to establish the etiology of erectile dysfunction. Urology. 1995;45:498–502.PubMedCrossRefGoogle Scholar
  135. 135.
    Merckx LA, DeBruyne RM, Goes E, Derde MP, Keuppens F. The value of dynamic color duplex scanning in the diagnosis of venogenic impotence. J Urol. 1992;148:318–20.PubMedCrossRefGoogle Scholar
  136. 136.
    Kropman RF, Schipper J, Oostayen JA, Nijeholt ABL, Meinhardt W. The value of increased end diastolic velocity during penile duplex sonography in relation to pathological venous leakage in erectile dysfunction. J Urol. 1992;148:314–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Feng Y, Schlösser FJ, Sumpio BE. The Semmes Weinstein monofilament examination is a significant predictor of the risk of foot ulceration and amputation in patients with diabetes mellitus. J Vasc Surg. 2011;53(1):220–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Melman A, Tiefer L, Pedersen R. Evaluation of first 406 patients in urology department based center for male sexual dysfunction. Urology. 1988;32:6–10.PubMedCrossRefGoogle Scholar
  139. 139.
    Bleustein CB, Eckholdt H, Arezzo JC, Melman A. Quantitative somatosensory testing of the penis: optimizing the clinical neurological examination. J Urol. 2003;169:2266–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Nisen HO, Larsen A, Lindstrom BL, Ruutu ML, Virtanen JM, Alfthan OS. Cardiovascular reflexes in the neurological evaluation of impotence. Br J Urol. 1993;71:199–203.PubMedCrossRefGoogle Scholar
  141. 141.
    Rendell MS, Rajfer J, Wicker PA, Smith MD. Sildenafil for treatment of erectile dysfunction in men with diabetes: a randomized controlled trial. Sildenafil Diabetes Study Group. J Am Med Assoc. 1999;281:421–6.CrossRefGoogle Scholar
  142. 142.
    Price DE, Gingell JC, Gepi-Attee S, Wareham K, Yates P, Boolell M. Sildenafil: study of a novel oral treatment for erectile dysfunction in diabetic men. Diabetes Med. 1998;15:821–5.CrossRefGoogle Scholar
  143. 143.
    Guay AT, Perez JB, Jacobson J, Newton RA. Efficacy and safety of sildenafil citrate for treatment of erectile dysfunction in a population with associated organic risk factors. J Androl. 2001;22(5):793–7, Erratum in: J Androl 2002 Jan-Feb;23(1):113.PubMedGoogle Scholar
  144. 144.
    Choi WS, Kwon OS, Cho SY, Paick JS, Kim SW. Effect of chronic administration of PDE5 combined with glycemic control on erectile function in streptozotocin-induced diabetic rats. J Sex Med. 2015;12(3):600–10.PubMedCrossRefGoogle Scholar
  145. 145.
    Martínez-Salamanca JI, La Fuente JM, Cardoso J, Fernández A, Cuevas P, Wright HM, Angulo J. Nebivolol potentiates the efficacy of PDE5 inhibitors to relax corpus cavernosum and penile arteries from diabetic patients by enhancing the NO/cGMP pathway. J Sex Med. 2014;11(5):1182–92.PubMedCrossRefGoogle Scholar
  146. 146.
    González-Corrochano R, La Fuente J, Cuevas P, Fernández A, Chen M, Sáenz de Tejada I, Angulo J. Ca2+ -activated K+ channel (KCa) stimulation improves relaxant capacity of PDE5 inhibitors in human penile arteries and recovers the reduced efficacy of PDE5 inhibition in diabetic erectile dysfunction. Br J Pharmacol. 2013;169(2):449–61.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Fukuhara S, Tsujimura A, Okuda H, Yamamoto K, Takao T, Miyagawa Y, Nonomura N, Okuyama A. Vardenafil and resveratrol synergistically enhance the nitric oxide/cyclic guanosine monophosphate pathway in corpus cavernosal smooth muscle cells and its therapeutic potential for erectile dysfunction in the streptozotocin-induced diabetic rat: preliminary findings. J Sex Med. 2011;8(4):1061–71.PubMedCrossRefGoogle Scholar
  148. 148.
    Yassin AA, Saad F, Traish A. Testosterone undecanoate restores erectile function in a subset of patients with venous leakage: a series of case reports. J Sex Med. 2006;3(4):727–35.PubMedCrossRefGoogle Scholar
  149. 149.
    Zhang XH, Filippi S, Morelli A, Vignozzi L, Luconi M, Donati S, Forti G, Maggi M. Testosterone restores diabetes-induced erectile dysfunction and sildenafil responsiveness in two distinct animal models of chemical diabetes. J Sex Med. 2006;3(2):253–64, discussion 264–5, author reply 265–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Mostafa T, Rashed LA, Kotb K. Testosterone and chronic sildenafil/tadalafil anti-apoptotic role in aged diabetic rats. Int J Impot Res. 2010;22(4):255–61.PubMedCrossRefGoogle Scholar
  151. 151.
    Ciccarelli E, Camanni F. Diagnosis and drug therapy of prolactinoma. Drugs. 1996;51(6):954–65.PubMedCrossRefGoogle Scholar
  152. 152.
    Khan MA, Thompson CS, Sullivan ME, Jeremy JY, Mikhailidis DP, Morgan RJ. The role of prostaglandins in the aetiology and treatment of erectile dysfunction. Prostglandins Leukot Essent Fatty Acids. 1999;60:169–74.CrossRefGoogle Scholar
  153. 153.
    Beaser RS, Van der Hoek C, Jacobson AM, Flood TM, Desautels RE. Experience with penile prosthesis in the treatment of impotence in diabetic men. J Am Med Assoc. 1982;248:943–8.CrossRefGoogle Scholar
  154. 154.
    Scott FB, Fishman IJ, Light JK. An inflatable penile prosthesis for treatment of diabetic impotence. Ann Intern Med. 1980;92:340–2.PubMedCrossRefGoogle Scholar
  155. 155.
    Melman A, Bar-Chama N, Mccullough A, Davies KP, Christ G. hMaxi-K gene transfer in males with erectile dysfunction: results of the first human trial. Hum Gene Ther. 2006;17:1165–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Arnold Melman
    • 1
    Email author
  • Barry Mason
    • 2
  • Albert C. Leung
    • 3
  • Michael E. DiSanto
    • 4
  1. 1.Department of UrologyMontefiore Medical Center/Albert Einstein College of MedicineBronxUSA
  2. 2.Department of UrologyKaiser PermanenteAtlantaUSA
  3. 3.Flushing Hospital Medical CenterFlushingUSA
  4. 4.Biomedical Sciences and Surgery, Urology ResearchCooper Medical School of Rowan UniversityCamdenUSA

Personalised recommendations