Skip to main content

Peripheral Vascular Disease in Diabetes

  • Reference work entry
  • First Online:
Principles of Diabetes Mellitus

Abstract

Diabetes mellitus affects millions of Americans, incurs significant comorbidities, and costs billions annually in health-care dollars. Small and large vessel atherosclerotic changes contribute to coronary, cerebral, and peripheral vascular disease. Untreated macrovascular occlusion may result in loss of life or limb. However, multimodal management of this sequel may be achieved. The focus of this chapter’s discussion will be on the lower extremity peripheral vascular complications of diabetes including diagnosis, treatment, and new advancements in care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Villarroel MA, Vahratian A, Ward BW. Health care utilization among U.S. adults with diagnosed diabetes, 2013. NCHS Data Brief. 2015;(183):1–8.

    Google Scholar 

  2. Goldenberg S, Alex M, Joshi RA, Blumenthal HT. Nonatheromatous peripheral vascular disease of the lower extremity in diabetes mellitus. Diabetes. 1959;8(4):261–73.

    Article  CAS  PubMed  Google Scholar 

  3. Barner HB, Kaiser GC, Willman VL. Blood flow in the diabetic leg. Circulation. 1971;43(3):391–4.

    Article  CAS  PubMed  Google Scholar 

  4. Conrad MC. Large and small artery occlusion in diabetics and nondiabetics with severe vascular disease. Circulation. 1967;36(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  5. Parving HH, Viberti GC, Keen H, Christiansen JS, Lassen NA. Hemodynamic factors in the genesis of diabetic microangiopathy. Metab Clin Exp. 1983;32(9):943–9.

    Article  CAS  PubMed  Google Scholar 

  6. Flynn MD, Tooke JE. Aetiology of diabetic foot ulceration: a role for the microcirculation? Diabet Med. 1992;9(4):320–9.

    Article  CAS  PubMed  Google Scholar 

  7. Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370(16):1514–23.

    Article  CAS  PubMed  Google Scholar 

  8. Yashkin AP, Picone G, Sloan F. Causes of the change in the rates of mortality and severe complications of diabetes mellitus: 1992–2012. Med Care. 2015;53(3):268–75.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rayman G, Williams SA, Spencer PD, Smaje LH, Wise PH, Tooke JE. Impaired microvascular hyperaemic response to minor skin trauma in type I diabetes. Br Med J. 1986;292(6531):1295–8.

    Article  CAS  Google Scholar 

  10. Parkhouse N, Le Quesne PM. Impaired neurogenic vascular response in patients with diabetes and neuropathic foot lesions. N Engl J Med. 1988;318(20):1306–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hill RE, Williams PE. Perineurial cell basement membrane thickening and myelinated nerve fibre loss in diabetic and nondiabetic peripheral nerve. J Neurol Sci. 2004;217(2):157–63.

    Article  PubMed  Google Scholar 

  12. Baron AD. The coupling of glucose metabolism and perfusion in human skeletal muscle. The potential role of endothelium-derived nitric oxide. Diabetes. 1996;45 Suppl 1:S105–9.

    Article  CAS  PubMed  Google Scholar 

  13. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524–6.

    Article  CAS  PubMed  Google Scholar 

  14. Timimi FK, Ting HH, Haley EA, Roddy MA, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1998;31(3):552–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J. 1987;245(1):243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eton D, Weaver F, editors. Vascular disease: a multi-specialty approach to diagnosis and management. Austin: Landes Bioscience; 1998.

    Google Scholar 

  17. Ws M. Vascular surgery: a comprehensive review. 5th ed. Philadelphia: Saunders; 1997.

    Google Scholar 

  18. Muntner P, Wildman RP, Reynolds K, Desalvo KB, Chen J, Fonseca V. Relationship between HbA1c level and peripheral arterial disease. Diabetes Care. 2005;28(8):1981–7.

    Article  PubMed  Google Scholar 

  19. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article  CAS  PubMed  Google Scholar 

  20. Loscalzo J, Creager M, Dzau VJ, editors. Vascular, medicine: a textbook of vascular biology and diseases. 2nd ed. Boston: Little, Brown; 1996.

    Google Scholar 

  21. Baker WH, String ST, Hayes AC, Turner D. Diagnosis of peripheral occlusive disease: comparison of clinical evaluation and noninvasive laboratory. Arch Surg. 1978;113(11):1308–10.

    Article  CAS  PubMed  Google Scholar 

  22. Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002;105(7):816–22.

    Article  CAS  PubMed  Google Scholar 

  23. Kislinger T, Tanji N, Wendt T, Qu W, Lu Y, Ferran Jr LJ, et al. Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2001;21(6):905–10.

    Article  CAS  PubMed  Google Scholar 

  24. Malmstedt J, Karvestedt L, Swedenborg J, Brismar K. The receptor for advanced glycation end products and risk of peripheral arterial disease, amputation or death in type 2 diabetes: a population-based cohort study. Cardiovasc Diabetol. 2015;14:93.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004;109(21 Suppl 1):II27–33.

    PubMed  Google Scholar 

  26. Koyama H, Yamamoto H, Nishizawa Y. Endogenous secretory RAGE as a novel biomarker for metabolic syndrome and cardiovascular diseases. Biomark Insights. 2007;2:331–9.

    PubMed  PubMed Central  Google Scholar 

  27. Fox CS, Golden SH, Anderson C, Bray GA, Burke LE, de Boer IH, et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2015;38(9):1777–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suckow BD, Kraiss LW, Schanzer A, Stone DH, Kalish J, DeMartino RR, et al. Statin therapy after infrainguinal bypass surgery for critical limb ischemia is associated with improved 5-year survival. J Vasc Surg. 2015;61(1):126–33.

    Article  PubMed  Google Scholar 

  29. Mora S, Ridker PM. Justification for the use of statins in primary prevention: an intervention trial evaluating rosuvastatin (JUPITER) – can C-reactive protein be used to target statin therapy in primary prevention? Am J Cardiol. 2006;97(2A):33A–41.

    Article  CAS  PubMed  Google Scholar 

  30. Driver VR, Madsen J, Goodman RA. Reducing amputation rates in patients with diabetes at a military medical center: the limb preservation service model. Diabetes Care. 2005;28(2):248–53.

    Article  PubMed  Google Scholar 

  31. Regensteiner JG, Wolfel EE, Brass EP, Carry MR, Ringel SP, Hargarten ME, et al. Chronic changes in skeletal muscle histology and function in peripheral arterial disease. Circulation. 1993;87(2):413–21.

    Article  CAS  PubMed  Google Scholar 

  32. American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care. 2003;26(12):3333–41.

    Article  Google Scholar 

  33. Gloviczki P, Bower TC, Toomey BJ, Mendonca C, Naessens JM, Schabauer AM, et al. Microscope-aided pedal bypass is an effective and low-risk operation to salvage the ischemic foot. Am J Surg. 1994;168(2):76–84.

    Article  CAS  PubMed  Google Scholar 

  34. LoGerfo FW, Gibbons GW, Pomposelli Jr FB, Campbell DR, Miller A, Freeman DV, et al. Trends in the care of the diabetic foot. Expanded role of arterial reconstruction. Arch Surg. 1992;127(5):617–20; discussion 20–1.

    Article  CAS  PubMed  Google Scholar 

  35. Criqui MH, Denenberg JO, Langer RD, Fronek A. The epidemiology of peripheral arterial disease: importance of identifying the population at risk. Vasc Med. 1997;2(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  36. VascularWeb. Endovascular training program endorsement essentials. 2007 [cited Dec 2007]. www.vascularweb.org.

  37. Prinssen M, Verhoeven EL, Buth J, Cuypers PW, van Sambeek MR, Balm R, et al. A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms. N Engl J Med. 2004;351(16):1607–18.

    Article  CAS  PubMed  Google Scholar 

  38. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: an intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy. J Vasc Surg. 2010;51 Suppl 5:5S–17.

    Article  PubMed  Google Scholar 

  39. Andras A, Hansrani M, Stewart M, Stansby G. Intravascular brachytherapy for peripheral vascular disease. Cochrane Database Syst Rev. 2014;1, CD003504.

    Google Scholar 

  40. Kitrou P, Parthipun A, Diamantopoulos A, Padayachee S, Karunanithy N, Ahmed I, et al. Paclitaxel-coated balloons for failing peripheral bypass grafts: the BYPACS study. J Cardiovasc Surg (Torino). 2014;55(2):217–24.

    CAS  Google Scholar 

  41. McCaslin JE, Andras A, Stansby G. Cryoplasty for peripheral arterial disease. Cochrane Database Syst Rev. 2013;8, CD005507.

    Google Scholar 

  42. San Norberto EM, Taylor JH, Carrera S, Vaquero C. Percutaneous transluminal angioplasty with drug-eluting balloons for salvage of infrainguinal bypass grafts. J Endovasc Ther. 2014;21(1):12–21.

    Article  PubMed  Google Scholar 

Internet Resources

  1. www.diabetes.org

  2. http://diabetes.niddk.nih.gov

  3. http://www.cdc.gov/diabetes

  4. http://www.fda.gov/diabetes

  5. http://www.who.int/diabetes/en

  6. http://www.americanheart.org

  7. http://www.mayoclinic.org/peripheral-vascular-disease

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer K. Svahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Edwards, S.B., Svahn, J.K., Kirk, J.S., Llaguna, O.H., Habib, N.A. (2017). Peripheral Vascular Disease in Diabetes. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-18741-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18741-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18740-2

  • Online ISBN: 978-3-319-18741-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics