Advertisement

Diabetic Nephropathy

  • Nikolas B. Harbord
  • James F. WinchesterEmail author
  • Elliot Charen
  • Chiarra Ornillo
  • Naitik Sheth
  • Donald Feinfeld
  • Alan Dubrow
Reference work entry

Abstract

Diabetes is the most common cause of end-stage kidney disease in the world. Diabetic nephropathy is due to cellular and subcellular mechanisms and involves induction of signaling pathways in the kidney which perpetuate the destruction of glomeruli, the intrarenal vasculature, and the interstitium. Diagnosis and prevention center on the detection of albuminuria, tight plasma glucose control, as well as primary interruption of the renin–angiotensin–aldosterone system, which reduces the transglomerular hydrostatic pressure. Some of the newer glucose control therapeutic agents have shown benefit in diabetic nephropathy, and the future holds promise for specific inhibitors of inflammation, as well as inhibitors of microRNA species. Comorbid conditions such as large vessel disease are also commonly associated and require vigilance on the part of the physician and those supervising the predialysis and dialysis patients.

Keywords

Nephropathy  Renin-angiotensin  Inflammation  microRNA  Genetics  Novel therapy 

References

  1. 1.
    Saran R, Li Y, Robinson B, et al. US Renal Data System 2014 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2015;66 Suppl 1:S1–306.Google Scholar
  2. 2.
    Lameire N, Jager K, Van Biesen W, et al. Chronic kidney disease: a European perspective Kidney Int Suppl. 2005; 99:S30–8.Google Scholar
  3. 3.
    Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world – a growing challenge. N Engl J Med. 2007;356:213–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Ramezani M, Ghoddousi K, Hashemi M, et al. Diabetes as the cause of end-stage renal disease affects the pattern of post kidney transplant rehospitalizations. Transplant Proc. 2007;39:966–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Burroughs TE, Swindle J, Takemoto S, et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. Transplantation. 2007;83:1027–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Centers for Disease Control and Prevention (CDC). Prevalence of chronic kidney disease and associated risk factors – United States, 1999–2004. MMWR Morb Mortal Wkly Rep. 2007;56:161–5.Google Scholar
  7. 7.
    Osterby R, Parving HH, Hommel E, et al. Glomerular structure and function in diabetic nephropathy. Early to advanced stages. Diabetes. 1990;39:1057–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 1999;56:1627–37.PubMedCrossRefGoogle Scholar
  9. 9.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Boyle PJ. Diabetes mellitus and macrovascular disease: mechanisms and mediators. Am J Med. 2007;120(9 Suppl 2):S12–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Cavusoglu AC, Bilgili S, Alaluf A, et al. Vascular endothelial growth factor level in the serum of diabetic patients with retinopathy. Ann Ophthalmol (Skokie). 2007;39:205–8.CrossRefGoogle Scholar
  12. 12.
    Ryan GJ. New pharmacologic approaches to treating diabetic retinopathy. Am J Health Syst Pharm. 2007;64(17 Suppl 12):S15–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Zatz R, Dunn BR, Meyer TW, et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest. 1986;77:1925–30.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gruden G, Zonca S, Hayward A, et al. Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes. 2000;49:655–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Lassila M, Jandeleit-Dahm K, Seah KK, et al. Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice. J Am Soc Nephrol. 2004;15:2125–38.PubMedCrossRefGoogle Scholar
  16. 16.
    Goldberg R, Rubinstein AM, Gil N, et al. Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes. 2014;63:4302–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Kato M, Natarajan R. Diabetic nephropathy – emerging epigenetic mechanisms. Nat Rev Nephrol. 2014;10:517–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Deshpande SD, Putta S, Wang M, et al. Transforming growth factor- β induces cross talk between P53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes. 2013;62:3151–62.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kato M, Natarajan R. MicroRNA circuits in transforming growth factor-β actions and diabetic nephropathy. Semin Nephrol. 2012;32:253–60.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jenkins RH, Davies LC, Taylor PR, et al. miR-192 induces G2/M growth arrest in aristolochic acid nephropathy. Am J Pathol. 2014;184:996–1009.PubMedCrossRefGoogle Scholar
  21. 21.
    Trionfini P, Begnini A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11:23–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Tomuleasa C, Fuji S, Cucuianu A, et al. MicroRNAs as biomarkers for graft-versus-host disease following allogeneic stem cell transplantation. Ann Hematol. 2015;94:1081–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Izquierdo A, Lopez-Luna P, Ortega A, et al. The parathyroid hormone-related protein system and diabetic nephropathy outcome in streptozotocin-induced diabetes. Kidney Int. 2006;69:2171–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y, Zhou J, Minto AW, et al. Altered vitamin D metabolism in type II diabetic mouse glomeruli may provide protection from diabetic nephropathy. Kidney Int. 2006;70:882–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Z, Yuan W, Sun L, et al. 1,25 dihydroxy vitamin D3 targeting of NFκB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int. 2007;72:193–201.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Z, Sun L, Wang Y, et al. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int. 2008;73:163–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Earle KS, Walker J, Hill C, et al. Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N Engl J Med. 1992;325:673–7.CrossRefGoogle Scholar
  28. 28.
    Krolewski A, Fogarty D, Warram J. Hypertension and nephropathy in diabetes mellitus: what is inherited and what is acquired? Diabetes Res Clin Pract. 1998;39(Suppl):S1–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Fioretto P, Steffes M, Barbosa J, et al. Is diabetic nephropathy inherited? Studies of glomerular structure in type 1 diabetic sibling pairs. Diabetes. 1999;48:865–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Canani L, Gerchman F, Gross J. Familial clustering of diabetic nephropathy in Brazilian type 2 diabetic patients. Diabetes. 1999;48:909–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Marshall SM. Recent advances in diabetic nephropathy. Postgrad Med J. 2004;80:624–33.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Krolewski A, Canessa M, Warram J, et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med. 1998;318:140–5.CrossRefGoogle Scholar
  33. 33.
    Fujita J, Tsuda K, Seno M, et al. Erythrocyte sodium-lithium countertransport activity as a marker of predisposition to hypertension and diabetic nephropathy in NIDDM. Diabetes Care. 1994;17:977–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Lindsay R, Little J, Jaap A, et al. Diabetic nephropathy is associated with an increased familial risk of stroke. Diabetes Care. 1999;22:422–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Freire MB, van Dijk DJ, Erman A, et al. DNA polymorphisms in the ACE gene, serum ACE activity and the risk of nephropathy in insulin-dependent diabetes mellitus. Nephrol Dial Transplant. 1998;13:2553–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Vleming LJ, van der Pijl JW, Lemkes HH, et al. The DD genotype of the ACE gene polymorphism is associated with progression of diabetic nephropathy to end stage renal failure in IDDM. Clin Nephrol. 1999;51:133–40.PubMedGoogle Scholar
  37. 37.
    Miller JA, Scholey JW. The impact of renin-angiotensin system polymorphisms on physiological and pathophysiological processes in humans. Curr Opin Nephrol Hypertens. 2004;13:101–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Clin Am Soc Nephrol. 2010;21:556–63.CrossRefGoogle Scholar
  39. 39.
    Levey AS, Stevens LA, Schmid CH, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mogensen CE. Glomerular filtration rate and renal plasma flow in short-term and long-term juvenile diabetes mellitus. Scand J Clin Lab Invest. 1971;28:91–100.PubMedCrossRefGoogle Scholar
  41. 41.
    Nowack R, Raum E, Blum W, et al. Renal hemodynamics in recent-onset type II diabetes. Am J Kidney Dis. 1992;20:342–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Parving HH, Chaturvedi N, Viberti GC, et al. Does microalbuminuria predict diabetic nephropathy? Diabetes Care. 2002;25:406–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Stephenson JM, Kenny S, Stevens LK, et al. Proteinuria and mortality in diabetes: the WHO multinational study of vascular disease in diabetes. Diabet Med. 1995;12:149–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Sowers JR, Epstein M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. Hypertension. 1995;26:869–79.PubMedCrossRefGoogle Scholar
  45. 45.
    Amin AP, Whaley-Connell AT, Li S, et al. The synergistic relationship between estimated GFR and microalbuminuria in predicting long-term progression to ESRD or death in patients with diabetes: results from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis. 2013;61(4 Suppl 2):S12–23.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Herlitz H, Aurell M, Holm G, et al. Renal degradation of insulin in patients with renal hypertension. Scand J Urol Nephrol. 1983;17:109–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Feneberg R, Sparber M, Veldhuis JD, et al. Altered temporal organization of plasma insulin oscillations in chronic renal failure. J Clin Endocrinol Metab. 2002;87:1965–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Chimori K, Miyazaki S, Kosaka J, et al. The significance of autonomic neuropathy in the elevation of inactive renin in diabetes mellitus. Clin Exp Hypertens. 1987;9:1–18.Google Scholar
  49. 49.
    Oh MS, Carroll HJ, Clemmons JE, et al. A mechanism for hyporeninemic hypoaldosteronism in chronic renal disease. Metabolism. 1974;23:1157–66.PubMedCrossRefGoogle Scholar
  50. 50.
    Vander AJ. Direct effects of potassium on renin secretion and renal function. Am J Physiol. 1970;219:455–9.PubMedGoogle Scholar
  51. 51.
    Sebastian A, Schambelan M, Lindenfeld S, et al. Amelioration of metabolic acidosis with fludrocortisone therapy in hyporeninemic hypoaldosteronism. N Engl J Med. 1977;297:576–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Eurich DT, McAlister FA, Blackburn DF, et al. Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. Br Med J. 2007;335:497.CrossRefGoogle Scholar
  53. 53.
    Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. J Am Med Assoc. 2007;298:1180–8.CrossRefGoogle Scholar
  54. 54.
    Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. J Am Med Assoc. 2007;298:1189–95.CrossRefGoogle Scholar
  55. 55.
    DCCT Research Group. Effect of intensive therapy on the development and progression on diabetic nephropathy in the Diabetic Control and Complications Trial. Kidney Int. 1995;47:1703–20.CrossRefGoogle Scholar
  56. 56.
    Reichard P, Nilsson BY, Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993;329:304–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. J Am Med Assoc. 2003;290:2159–67.CrossRefGoogle Scholar
  58. 58.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRefGoogle Scholar
  59. 59.
    Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Br Med J. 2000;321:405–12.CrossRefGoogle Scholar
  60. 60.
    Perkovic V, Heerspink HL, Chalmer J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83:517–23.PubMedCrossRefGoogle Scholar
  61. 61.
    ADVANCE Study Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.CrossRefGoogle Scholar
  62. 62.
    Executive summary: standards of medical care in diabetes – 2013. Diabetes Care. 2013;36(Suppl 1):S4–10.Google Scholar
  63. 63.
    Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. Br Med J. 2000;321:412–9.CrossRefGoogle Scholar
  64. 64.
    James P, Oparil S, Carter B, et al. 2014 evidence-based guideline for the management of high blood pressure in adults report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Cooper-DeHoff RM, Gong Y, Handberg EM, et al. Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA. 2010;304:61–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ravid M, Brosh D, Levi Z, et al. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Intern Med. 1998;128:982–8.PubMedCrossRefGoogle Scholar
  67. 67.
    American Diabetes Association. Position Statement. Hypertension management in adults with diabetes. Diabetes Care. 2004;27(S1):S65–7.Google Scholar
  68. 68.
    Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329:1456–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Gerstein H C, Yusuf S, Mann JFE et al for the HOPE investigators Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9.Google Scholar
  70. 70.
    Parving HH, Brenner BM, Cooper ME, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345:870–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Brenner BM, Cooper ME, de Zeeuw D, et al. RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Lewis EJ, Hunsicker LG, Clarke WR, et al. Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.PubMedCrossRefGoogle Scholar
  73. 73.
    UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. Br Med J. 1998;317:713–20.CrossRefGoogle Scholar
  74. 74.
    Schrier RW, Estacio RO, Esler A, et al. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 2002;61:1086–97.PubMedCrossRefGoogle Scholar
  75. 75.
    Casas JP, Chua W, Loukogeorgakis S, et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet. 2005;366:2026–33.PubMedCrossRefGoogle Scholar
  76. 76.
    Green EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model. J Clin Invest. 1996;98:1063–8.CrossRefGoogle Scholar
  77. 77.
    Sato A, Hayashi K, Naruse M, et al. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension. 2003;41:64–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Schjoedt KJ, Anderen S, Rossing P, et al. Aldosterone escape during blockade of the renin-angiotensin-aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia. 2004;47:1936–9.PubMedCrossRefGoogle Scholar
  79. 79.
    van den Meiracker AH, Man in’t Veld AJ, Admiraal PJ, et al. Partial escape of angiotensin converting enzyme (ACE) inhibition during prolonged ACE inhibitor treatment: does it exist and does it affect the antihypertensive response? J Hypertens. 1992;10:803–12.PubMedGoogle Scholar
  80. 80.
    Hollenberg NK, Osei SY, Lansang MC, et al. Salt intake and non-ACE pathways for intrarenal angiotensin II generation in man. J Renin Angiotensin Aldosterone Syst. 2001;2:14–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Weinberg AJ, Zappe DH, Ashton M, et al. Safety and tolerability of high-dose angiotensin receptor blocker therapy in patients with chronic kidney disease: a pilot study. Am J Nephrol. 2004;24:340–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Mogensen CE, Neldam S, Tikkanen I, et al. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. Br Med J. 2000;321:1440–4.CrossRefGoogle Scholar
  83. 83.
    van den Meiracker AH, Baggen RG, Pauli S, et al. Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J Hypertens. 2006;24:2285–92.PubMedCrossRefGoogle Scholar
  84. 84.
    Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369:1892–903.PubMedCrossRefGoogle Scholar
  85. 85.
    Brem AS, Morris DJ, Gong R. Aldosterone-induced fibrosis in the kidney: questions and controversies. Am J Kidney Dis. 2011;58:471–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mavrakanas T, Gariani K, Martin P, et al. Mineralocorticoid receptor blockade in addition to angiotensin converting enzyme inhibitor or angiotensin II receptor blocker treatment: an emerging paradigm in diabetic nephropathy a systematic review. Eur J Intern Med. 2014;25:173–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Hollenberg NK. Aldosterone in the development and progression of renal injury. Kidney Int. 2004;66:1–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Schersten B, Thulin T, Kuylenstierna J, et al. Clinical and biochemical effects of spironolactone administered once daily in primary hypertension. Multicenter Sweden study. Hypertension. 1980;2:672–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Sato A. The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy. Hypertens Res. 2015;38:367–74.PubMedCrossRefGoogle Scholar
  90. 90.
    Yano Y, Hoshida Y, Tamaki N, et al. Efficacy of eplerenone added to renin-angiotensin blockade in elderly hypertensive patients: the Jichi-Eplerenone Treatment (JET) study. J Renin Angiotensin Aldosterone Syst. 2011;12:340–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Saklayen M, Gyebi L, Tasosa J, Yap J. Effects of additive therapy with spironolactone with on proteinuria in diabetic patients already on ACEI or ARB therapy. J Investig Med. 2008;56:714–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Chrysostomou A, Becker G. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med. 2001;345:925–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Epstein M, Williams GH, Weinberger M, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1:940–51.PubMedCrossRefGoogle Scholar
  94. 94.
    Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the Randomized Aldactone Evaluation Study (RALES). Circulation. 2000;102:2700–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Iraqi W, Rossignol P, Angioi M, et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation. 2009;119:2471–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Parving HH, Persson F, Lewis JB, et al. Aliskerin combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008;358:2433–46.PubMedCrossRefGoogle Scholar
  97. 97.
    Parving HH, Brenner BM, McMurray JJ, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.PubMedCrossRefGoogle Scholar
  98. 98.
    Schrijvers BF, De Vriese AS, Flyvbjerg A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev. 2004;25:971–1010.PubMedCrossRefGoogle Scholar
  99. 99.
    Ha H, Yu MR, Choi YJ, Kitamura M, Lee HB. Role of high glucose induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol. 2002;13:894–902.PubMedGoogle Scholar
  100. 100.
    Brosius III FC. New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy. Rev Endocr Metab Disord. 2008;9:245–54.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Huang JS, Chuang LY, Guh JY, et al. Antioxidants attenuates high glucose-induced hypertrophic growth renal tubular epithelial cells. Am J Physiol. 2007;293:F1072–82.CrossRefGoogle Scholar
  102. 102.
    Amiri F, Shaw S, Wang X, Tang J, et al. Angiotensin II activation of the JAK/STAT pathway in mesangial cells is altered by high glucose. Kidney Int. 2002;61:1605–16.PubMedCrossRefGoogle Scholar
  103. 103.
    Wang X, Shaw S, Amiri F, et al. Inhibition of the JAK/STAT signaling pathway prevents the high-glucose induced increase in TGF-beta and fibronectin synthesis in mesangial cells. Diabetes. 2002;51:3505–9.PubMedCrossRefGoogle Scholar
  104. 104.
    US National Library of Medicine. Clinicaltrials.gov (online). 2014. http://www.clinicaltrials.gov/ct2/show/NCT01683409
  105. 105.
    Schneider CA, Ferrannini E, Defronzo R, et al. Effect of pioglitazone on cardiovascular outcome in diabetes and chronic kidney disease. J Am Soc Nephrol. 2008;19:182–7.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sarafidis PA, Stafylas PC, Georgianos PI, et al. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am J Kidney Dis. 2010;55:835–47.PubMedCrossRefGoogle Scholar
  107. 107.
    Alter ML, Ott IM, von Websky K, et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res. 2012;36:119–30.PubMedCrossRefGoogle Scholar
  108. 108.
    Sakata K, Hayakawa M, Yano Y, et al. Efficacy of alogliptin, a dipeptidyl peptidase-4 inhibitor, on glucose parameters, the activity of the advanced glycation end product (AGE) – receptor for AGE (RAGE) axis and albuminuria in Japanese type 2 diabetes. Diabetes Metab Res Rev. 2013;29:624–30.PubMedCrossRefGoogle Scholar
  109. 109.
    Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36:3460–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Mori H, Okada Y, Arao T, Tanaka Y. Sitagliptin improved albuminuria in patients with type 2 diabetes. J Diabetes Invest. 2014;5:313–9.CrossRefGoogle Scholar
  111. 111.
    RamachandraRao SP, Zhu Y, Ravasi T, et al. Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol. 2009;20:1765–75.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sharma K, Ix JH, Mathew A, Cho M, et al. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011;22:1144–51.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Gambaro G, Venturini AP, Noonan DM, et al. Treatment with a glycosaminoglycan formulation amleiorates diabetic nephropathy. Kidney Int. 1994;46:797–806.PubMedCrossRefGoogle Scholar
  114. 114.
    Dedov I, Shestakova M, Vorontzov A, Palazzini E. A randomized, controlled study of sulodexide therapy for the treatment of diabetic nephropathy. Nephrol Dial Transplant. 1997;12:2295–300.PubMedCrossRefGoogle Scholar
  115. 115.
    Szelanowska M, Poplawska A, Jopdska J, et al. A pilot study of the effect of the glycosaminoglycan sulodexide on microalbuminuria in type I diabetic patients. Curr Med Res Opin. 1997;13(9):539–45.PubMedCrossRefGoogle Scholar
  116. 116.
    Solini A, Vergnani L, Ricci F, Crepaldi G. Glycosaminoglycans delay the progression of nephropathy in NIDDM. Diabetes Care. 1997;20(5):819–23.PubMedCrossRefGoogle Scholar
  117. 117.
    Gambaro G, Kinalska I, Oksa A, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol. 2002;13:615–1625.CrossRefGoogle Scholar
  118. 118.
    Packham D, Wolfe R, Reutens AT, et al and for the Collaborative Study Group. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol. 2012;23:123–30.Google Scholar
  119. 119.
    Tuttle KB, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW. The effect of ruboxistaurin on nephopathy in type 2 diabetes. Diabetes Care. 2005;28:2686–90.PubMedCrossRefGoogle Scholar
  120. 120.
    Tuttle KR, McGill JB, Haney DJ, Lin TE, Anderson PW. Kidney outcomes in long-term studies of ruoxistaurin for diabetic eye disease. Clin J Am Soc Nephrol. 2007;2:31–636.CrossRefGoogle Scholar
  121. 121.
    Gembardt F, Bartuan C, Jarzebka N, et al. The SGLT-2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob/ type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol. 2014;307:F317–25.PubMedCrossRefGoogle Scholar
  122. 122.
    Terami N, Ogawa D, Tachibana H, et al. Long term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;9:e100777.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Cefalu W, Leiter LA, Yoon KH, Niskanen L, Xie J, Balis DA, Canovatchel W, Meininger G. Efficacy and safety of canagliflozin versus glimepiride in patient with type 2 diabetes inadequately controlled with metformin (CATATA-SU): 52 week results from a randomized, double blind, phase 3 non-inferiority trial. Lancet. 2013;382:941–50.PubMedCrossRefGoogle Scholar
  124. 124.
    Vlassara H, Striker GE. Dietary restriction of advanced glycation end products in diabetes and diabetic complications. Endocrinol Metab Clin North Am. 2013;42:697–719.PubMedCrossRefGoogle Scholar
  125. 125.
    Yubero-Serrano EM, Woodward M, Poretsky L, et al. AGE-less Study Group. Effects of sevelamer carbonate on advanced glycation end products and antioxidant/pro-oxidant status in patients with diabetic kidney disease. Clin J Am Soc Nephrol. 2015;10:759–66.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Fernandez-Fernandez B, Ortiz A, Gomez-Guerrero C, et al. The therapeutic approaches to diabetic nephropathy – beyond RAS. Nat Rev Nephrol. 2014;10:325–46.PubMedCrossRefGoogle Scholar
  127. 127.
    Pergola P, Raskin P, Toto R, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365:327–36.PubMedCrossRefGoogle Scholar
  128. 128.
    de Zeeuw D, Akizawa T, Agarwal R, et al. Rationale and trial design of Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes: the Occurrence of Renal Events (BEACON). Am J Nephrol. 2013;37:212–22.PubMedCrossRefGoogle Scholar
  129. 129.
    Gonzalez-Parra E, Rojas-Rivera J, Tuñón J, et al. Vitamin D receptor activation and cardiovascular disease. Nephrol Dial Transplant. 2012;27 Suppl 4:iv17–21.PubMedCrossRefGoogle Scholar
  130. 130.
    Rojas-Rivera J, De La Piedra C, Ramos A, et al. The expanding spectrum of biological actions of vitamin D. Nephrol Dial Transplant. 2010;25:2850–65.PubMedCrossRefGoogle Scholar
  131. 131.
    Sanchez-Nino MD, Bozic M, Córdoba-Lanús E, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Renal Physiol. 2012;302:F647–57.PubMedCrossRefGoogle Scholar
  132. 132.
    de Zeeuw D, Agarawal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes: a randomized controlled trial. Lancet. 2010;376:1543–51.PubMedCrossRefGoogle Scholar
  133. 133.
    Pérez-Gòmez M, Ortiz-Arduan A. Vitamin D and proteinuria: a critical review of molecular bases and clinical experience. Nefrologia. 2013;33:716–26.PubMedGoogle Scholar
  134. 134.
    Kohan DE, Pollock DM. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br J Clin Pharmacol. 2013;76:573–9.PubMedGoogle Scholar
  135. 135.
    Mann J, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010;21:527–35.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Coll B. A randomized, multicountry, multicenter, double-blind, parallel, placebo-controlled study of the effects of atrasentan on renal outcomes in subjects with type 2 diabetes and nephropathy. SONAR: Study of Diabetic Nephropathy with Atrasentan. https://clinicaltrials.gov/ct2/show/NCT01858532

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nikolas B. Harbord
    • 1
  • James F. Winchester
    • 1
    Email author
  • Elliot Charen
    • 1
  • Chiarra Ornillo
    • 1
  • Naitik Sheth
    • 1
  • Donald Feinfeld
    • 1
  • Alan Dubrow
    • 1
  1. 1.Division of Nephrology and Hypertension, Department of MedicineMount Sinai Beth Israel, Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations